Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe(C10H8N2)2(H2O)4](C7H3NO4)·4H2O, prepared by hydro­thermal synthesis, contains isolated tetra­aqua­bis(4,4'-bipyridine)iron(II) cations, comprising two 4,4'-bipyridine mol­ecules bound to FeII in a trans manner. The cations lie in layers, with pyridine-2,6-dicarboxyl­ate dianions and water mol­ecules forming an extensive hydrogen-bond network between them. The cations exhibit noncrystallographic inversion symmetry. The crystal was a partial inversion twin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027973/bi2196sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027973/bi2196Isup2.hkl
Contains datablock I

CCDC reference: 1148880

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.037
  • wR factor = 0.105
  • Data-to-parameter ratio = 7.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT115_ALERT_5_B ADDSYM Detects Noncrystallographic Inversion ... 86 PerFi PLAT731_ALERT_1_B Bond Calc 0.83(5), Rep 0.820(10) ...... 5.00 su-Ra O1 -H11 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O1 -H12 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.81(5), Rep 0.820(10) ...... 5.00 su-Ra O2 -H22 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O4 -H42 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.81(5), Rep 0.820(10) ...... 5.00 su-Ra O5 -H51 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O6 -H61 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.82(6), Rep 0.820(10) ...... 6.00 su-Ra O6 -H62 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O8 -H81 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.83(5), Rep 0.820(10) ...... 5.00 su-Ra O1 -H11 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O1 -H12 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.81(5), Rep 0.820(10) ...... 5.00 su-Ra O2 -H22 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O4 -H42 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.81(5), Rep 0.820(10) ...... 5.00 su-Ra O5 -H51 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.82(6), Rep 0.820(10) ...... 6.00 su-Ra O6 -H62 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O6 -H61 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.82(5), Rep 0.820(10) ...... 5.00 su-Ra O8 -H81 1.555 1.555 PLAT736_ALERT_1_B H...A Calc 1.97(5), Rep 1.960(10) ...... 5.00 su-Ra H22 -O7 1.555 3.555
Alert level C STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.360 From the CIF: _refine_ls_abs_structure_Flack_su 0.030 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 6.99 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 100 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C2 .. 6.46 su PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.06 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT731_ALERT_1_C Bond Calc 0.82(4), Rep 0.810(10) ...... 4.00 su-Ra O3 -H31 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(4), Rep 0.820(10) ...... 4.00 su-Ra O5 -H52 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.820(10) ...... 3.00 su-Ra O7 -H71 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(4), Rep 0.820(10) ...... 4.00 su-Ra O7 -H72 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.81(4), Rep 0.810(10) ...... 4.00 su-Ra O8 -H82 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 107(5), Rep 106.3(18) ...... 2.78 su-Ra H11 -O1 -H12 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(5), Rep 107.8(19) ...... 2.63 su-Ra H21 -O2 -H22 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 110(5), Rep 109.4(19) ...... 2.63 su-Ra H31 -O3 -H32 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(5), Rep 107.8(19) ...... 2.63 su-Ra H41 -O4 -H42 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(5), Rep 108.4(19) ...... 2.63 su-Ra H51 -O5 -H52 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 107(7), Rep 107.2(19) ...... 3.68 su-Ra H61 -O6 -H62 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(5), Rep 106.9(19) ...... 2.63 su-Ra H71 -O7 -H72 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(5), Rep 108.6(19) ...... 2.63 su-Ra H81 -O8 -H82 1.555 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(4), Rep 0.810(10) ...... 4.00 su-Ra O3 -H31 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(4), Rep 0.820(10) ...... 4.00 su-Ra O5 -H52 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(4), Rep 0.820(10) ...... 4.00 su-Ra O7 -H72 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.820(10) ...... 3.00 su-Ra O7 -H71 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.81(4), Rep 0.810(10) ...... 4.00 su-Ra O8 -H82 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.04(4), Rep 2.040(10) ...... 4.00 su-Ra H31 -O5 1.555 3.545 PLAT736_ALERT_1_C H...A Calc 1.93(5), Rep 1.93(2) ...... 2.50 su-Ra H42 -O11 1.555 2.564 PLAT736_ALERT_1_C H...A Calc 1.95(5), Rep 1.94(2) ...... 2.50 su-Ra H51 -O11 1.555 2.564 PLAT736_ALERT_1_C H...A Calc 2.03(6), Rep 2.03(2) ...... 3.00 su-Ra H61 -O10 1.555 1.565
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.12 From the CIF: _reflns_number_total 3290 Count of symmetry unique reflns 2779 Completeness (_total/calc) 118.39% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 511 Fraction of Friedel pairs measured 0.184 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.36 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (2) 1.71 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 26
0 ALERT level A = In general: serious problem 18 ALERT level B = Potentially serious problem 31 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 44 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Metal-organic frameworks have applications in catalysis, optical materials, membranes, and sorption (Evans, Ngo & Lin, 2001; Vioux et al., 2004; Sanchez et al., 2003; Evans & Lin, 2001; Jannasch, 2003; Javaid et al., 2001; Honma et al., 2001; Sudik et al., 2005; Rowsell et al., 2004; Kitaura et al., 2004; Suzuki et al., 2002).

Design of metal-organic frameworks often utilizes a metal cation, metal cluster, or metal oxide substructure as a node, from which rigid or flexible multitopic organic ligands radiate to act as tethers to adjacent nodes for the bottom-up construction of complex extended architectures. While a variety of organic molecules have been investigated as potential tethers, materials incorporating multitopic carboxylates and pyridine ligands have been employed most extensively.

In the title compound, FeII is hexa-coordinated in an octahedral manner by four water molecules in the equatorial plane and two N atoms in the axial positions from two 4,4'-bipyridine molecules (Fig. 1). The Fe—N and Fe—O bond lengths are in the range 2.265 (4)–2.266 (4) and 2.161 (3)–2.202 (4) Å, respectively. The cations lie in layers in the bc planes. Pyridine-2,6-dicarboxylate anions and water molecules lie between these layers, forming an extensive hydrogen-bond network.

Related literature top

For literature concerning metal–organic frameworks, see: Evans, Ngo & Lin (2001); Vioux et al. (2004); Sanchez et al. (2003); Evans & Lin (2001); Jannasch (2003); Javaid et al. (2001); Honma et al. (2001); Sudik et al. (2005); Rowsell et al. (2004); Kitaura et al. (2004); Suzuki et al. (2002).

Experimental top

A mixture of FeCl2 (0.5 mmol), pyridine-2,6-dicarboxylic acid (0.5 mmol), NaOH (1 mmol), 4,4'-bipyridine (0.5 mmol), H2O (8 ml) and ethanol (8 ml) were place in a 25 ml Teflon-lined stainless steel autoclave and heated at 433 K for two days. On cooling to room temperature, blue crystals were obtained with a yield of 12%. Elemental analysis calculated: C 47.83, H 5.17, N 10.33, Fe 8.27%; found: C 47.87, H 5.21, N 10.27, Fe 8.16%.

Refinement top

H atoms bound to C atoms were placed geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of the water molecules were located from difference Fourier maps and were refined with distance restraints of O—H = 0.82 (1) Å and H···H = 1.35 (2) Å, and with Uiso(H) = 1.5Ueq(O). The [Fe(C10H8N2)2(H2O)4]2+ cations exhibit non-crystallographic inversion symmetry. The refined Flack parameter (Flack, 1983) from 530 Freidel pairs is 0.36 (3).

Structure description top

Metal-organic frameworks have applications in catalysis, optical materials, membranes, and sorption (Evans, Ngo & Lin, 2001; Vioux et al., 2004; Sanchez et al., 2003; Evans & Lin, 2001; Jannasch, 2003; Javaid et al., 2001; Honma et al., 2001; Sudik et al., 2005; Rowsell et al., 2004; Kitaura et al., 2004; Suzuki et al., 2002).

Design of metal-organic frameworks often utilizes a metal cation, metal cluster, or metal oxide substructure as a node, from which rigid or flexible multitopic organic ligands radiate to act as tethers to adjacent nodes for the bottom-up construction of complex extended architectures. While a variety of organic molecules have been investigated as potential tethers, materials incorporating multitopic carboxylates and pyridine ligands have been employed most extensively.

In the title compound, FeII is hexa-coordinated in an octahedral manner by four water molecules in the equatorial plane and two N atoms in the axial positions from two 4,4'-bipyridine molecules (Fig. 1). The Fe—N and Fe—O bond lengths are in the range 2.265 (4)–2.266 (4) and 2.161 (3)–2.202 (4) Å, respectively. The cations lie in layers in the bc planes. Pyridine-2,6-dicarboxylate anions and water molecules lie between these layers, forming an extensive hydrogen-bond network.

For literature concerning metal–organic frameworks, see: Evans, Ngo & Lin (2001); Vioux et al. (2004); Sanchez et al. (2003); Evans & Lin (2001); Jannasch (2003); Javaid et al. (2001); Honma et al. (2001); Sudik et al. (2005); Rowsell et al. (2004); Kitaura et al. (2004); Suzuki et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
Tetraaquabis(4,4'-bipyridine)iron(II) pyridine-2,6-dicarboxylate tetrahydrate top
Crystal data top
[Fe(C10H8N2)2(H2O)4](C7H3NO4)·4H2OF(000) = 1416
Mr = 677.45Dx = 1.452 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3290 reflections
a = 18.201 (1) Åθ = 2.0–55.0°
b = 6.900 (1) ŵ = 0.56 mm1
c = 25.010 (1) ÅT = 293 K
β = 99.40 (3)°Block, blue
V = 3098.9 (5) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2946 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.1°, θmin = 1.7°
ω scansh = 1921
5104 measured reflectionsk = 84
3180 independent reflectionsl = 2912
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0702P)2 + 1.0906P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3180 reflectionsΔρmax = 0.35 e Å3
455 parametersΔρmin = 0.38 e Å3
26 restraintsAbsolute structure: Flack (1983), with 530 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.36 (3)
Crystal data top
[Fe(C10H8N2)2(H2O)4](C7H3NO4)·4H2OV = 3098.9 (5) Å3
Mr = 677.45Z = 4
Monoclinic, CcMo Kα radiation
a = 18.201 (1) ŵ = 0.56 mm1
b = 6.900 (1) ÅT = 293 K
c = 25.010 (1) Å0.10 × 0.10 × 0.10 mm
β = 99.40 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2946 reflections with I > 2σ(I)
5104 measured reflectionsRint = 0.018
3180 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.35 e Å3
S = 1.05Δρmin = 0.38 e Å3
3180 reflectionsAbsolute structure: Flack (1983), with 530 Friedel pairs
455 parametersAbsolute structure parameter: 0.36 (3)
26 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.82218 (7)0.73736 (9)0.62280 (5)0.03412 (16)
C10.5731 (3)0.1741 (7)0.8192 (2)0.0385 (11)
C20.5712 (5)0.2657 (6)0.8733 (4)0.0335 (7)
C30.5690 (3)0.4671 (6)0.8799 (2)0.0395 (10)
H3A0.56800.54730.84980.047*
C40.5683 (3)0.5490 (6)0.9306 (2)0.0405 (10)
H4A0.56630.68290.93430.049*
C50.5706 (2)0.4311 (6)0.97538 (19)0.0391 (10)
H5A0.57030.48661.00920.047*
C60.5735 (3)0.2278 (6)0.9706 (3)0.0342 (13)
C70.5791 (2)0.0996 (6)1.02025 (18)0.0347 (9)
C80.8773 (3)0.8254 (9)0.7460 (2)0.0476 (13)
H8A0.92280.81220.73400.057*
C90.8770 (3)0.8418 (8)0.8006 (2)0.0448 (12)
H9A0.92200.84160.82440.054*
C100.8112 (3)0.8587 (6)0.82083 (18)0.0279 (9)
C110.7468 (3)0.8708 (8)0.7815 (2)0.0481 (13)
H11A0.70070.89110.79200.058*
C120.7517 (3)0.8526 (9)0.7275 (2)0.0503 (14)
H12A0.70790.85820.70250.060*
C130.8081 (2)0.8626 (6)0.87930 (18)0.0287 (10)
C140.8730 (3)0.8650 (7)0.91726 (18)0.0379 (11)
H14A0.91940.86540.90620.045*
C150.8673 (3)0.8668 (7)0.9720 (2)0.0397 (11)
H15A0.91110.86850.99710.048*
C160.7424 (3)0.8637 (7)0.9536 (2)0.0450 (12)
H16A0.69700.86250.96610.054*
C170.7409 (3)0.8628 (7)0.8989 (2)0.0402 (11)
H17A0.69580.86230.87520.048*
C180.8956 (3)0.6415 (7)0.51671 (19)0.0387 (11)
H18A0.94010.64010.54100.046*
C190.8987 (3)0.6324 (8)0.46210 (18)0.0414 (12)
H19A0.94430.62450.45010.050*
C200.8331 (3)0.6353 (6)0.42539 (18)0.0285 (10)
C210.7673 (3)0.6404 (7)0.4459 (2)0.0418 (12)
H21A0.72180.63820.42270.050*
C220.7698 (3)0.6488 (8)0.5007 (2)0.0457 (12)
H22A0.72470.65210.51370.055*
C230.8328 (3)0.6379 (6)0.36586 (18)0.0294 (10)
C240.7669 (3)0.6306 (8)0.3286 (2)0.0478 (13)
H24A0.72140.62190.34080.057*
C250.7689 (3)0.6362 (8)0.2741 (2)0.0482 (13)
H25A0.72390.63110.25020.058*
C260.8947 (4)0.6555 (9)0.2887 (2)0.0576 (15)
H26A0.93940.66410.27530.069*
C270.8981 (3)0.6507 (8)0.3441 (2)0.0467 (13)
H27A0.94390.65600.36680.056*
N10.5734 (3)0.1479 (6)0.91981 (19)0.0466 (10)
N20.8150 (2)0.8275 (5)0.70892 (16)0.0345 (9)
N30.8037 (3)0.8662 (5)0.99043 (16)0.0383 (10)
N40.8316 (2)0.6524 (5)0.53671 (15)0.0322 (9)
N50.8321 (3)0.6486 (5)0.25322 (17)0.0424 (10)
O10.7848 (2)1.0205 (5)0.59307 (15)0.0469 (9)
H110.757 (3)1.098 (6)0.605 (2)0.070*
H120.799 (3)1.074 (7)0.5671 (17)0.070*
O20.9377 (2)0.8418 (5)0.63036 (16)0.0457 (8)
H210.947 (3)0.957 (2)0.631 (3)0.069*
H220.974 (2)0.785 (6)0.646 (3)0.069*
O30.8599 (2)0.4528 (5)0.65227 (14)0.0477 (9)
H310.894 (2)0.384 (8)0.646 (2)0.072*
H320.856 (3)0.445 (8)0.6841 (8)0.072*
O40.70693 (19)0.6295 (5)0.61352 (15)0.0407 (8)
H410.693 (3)0.516 (2)0.611 (3)0.061*
H420.672 (2)0.697 (6)0.600 (3)0.061*
O50.4859 (3)0.7286 (6)0.6359 (2)0.0577 (14)
H510.511 (3)0.738 (9)0.612 (2)0.087*
H520.514 (3)0.724 (11)0.6650 (14)0.087*
O60.5641 (3)0.6916 (7)0.73867 (17)0.0714 (11)
H610.569 (4)0.761 (9)0.7655 (19)0.107*
H620.597 (3)0.610 (9)0.744 (3)0.107*
O70.5641 (3)0.1491 (5)0.68152 (16)0.0554 (10)
H710.571 (4)0.180 (8)0.7137 (8)0.083*
H720.543 (4)0.044 (5)0.679 (2)0.083*
O80.6593 (3)0.2454 (5)0.6074 (2)0.0487 (13)
H810.636 (3)0.220 (9)0.6318 (17)0.073*
H820.635 (3)0.209 (9)0.5790 (13)0.073*
O90.5726 (3)0.2898 (6)0.77972 (17)0.0533 (11)
O100.5739 (2)0.0063 (5)0.81586 (14)0.0472 (8)
O110.5811 (2)0.1826 (5)1.06512 (14)0.0470 (9)
O120.5839 (2)0.0786 (4)1.01353 (13)0.0453 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0355 (3)0.0432 (3)0.0237 (2)0.0010 (3)0.00518 (18)0.0011 (3)
C10.028 (2)0.049 (3)0.038 (3)0.005 (2)0.0020 (19)0.001 (2)
C20.0201 (14)0.0445 (18)0.0342 (17)0.002 (2)0.0004 (12)0.004 (2)
C30.034 (2)0.0435 (19)0.039 (3)0.002 (2)0.0002 (19)0.003 (2)
C40.040 (2)0.032 (2)0.048 (3)0.0044 (19)0.002 (2)0.003 (2)
C50.036 (2)0.044 (2)0.037 (2)0.001 (2)0.0022 (19)0.012 (2)
C60.026 (2)0.041 (2)0.036 (3)0.0011 (19)0.006 (2)0.007 (2)
C70.028 (2)0.045 (2)0.032 (2)0.0034 (19)0.0064 (17)0.0061 (19)
C80.030 (3)0.087 (4)0.027 (3)0.003 (3)0.010 (2)0.007 (3)
C90.024 (2)0.081 (4)0.027 (3)0.002 (2)0.002 (2)0.005 (2)
C100.030 (2)0.0301 (19)0.023 (2)0.0014 (17)0.0050 (19)0.0006 (17)
C110.029 (3)0.081 (3)0.036 (3)0.007 (2)0.012 (2)0.009 (3)
C120.039 (3)0.081 (4)0.029 (3)0.014 (3)0.001 (2)0.005 (2)
C130.033 (3)0.0258 (18)0.026 (2)0.0020 (17)0.003 (2)0.0030 (16)
C140.035 (3)0.059 (3)0.020 (2)0.001 (2)0.006 (2)0.003 (2)
C150.037 (3)0.051 (2)0.028 (3)0.004 (2)0.006 (2)0.003 (2)
C160.044 (3)0.059 (3)0.035 (3)0.002 (2)0.016 (2)0.000 (2)
C170.035 (3)0.057 (3)0.030 (3)0.003 (2)0.009 (2)0.004 (2)
C180.030 (3)0.060 (3)0.025 (2)0.008 (2)0.000 (2)0.005 (2)
C190.033 (3)0.070 (3)0.021 (2)0.004 (2)0.003 (2)0.003 (2)
C200.035 (3)0.0285 (18)0.022 (2)0.0008 (18)0.0047 (18)0.0012 (16)
C210.030 (3)0.070 (3)0.025 (2)0.007 (2)0.003 (2)0.006 (2)
C220.033 (3)0.074 (4)0.031 (3)0.008 (3)0.008 (2)0.007 (2)
C230.034 (3)0.0307 (19)0.025 (2)0.0023 (18)0.0105 (19)0.0012 (17)
C240.034 (3)0.075 (3)0.035 (3)0.002 (2)0.008 (2)0.000 (2)
C250.047 (3)0.071 (3)0.028 (3)0.003 (3)0.007 (2)0.001 (2)
C260.054 (4)0.090 (4)0.034 (3)0.008 (3)0.022 (3)0.008 (3)
C270.034 (3)0.074 (3)0.033 (3)0.005 (2)0.006 (2)0.005 (2)
N10.036 (2)0.056 (2)0.048 (3)0.003 (2)0.0065 (19)0.002 (2)
N20.035 (2)0.042 (2)0.027 (2)0.0029 (17)0.0048 (17)0.0016 (16)
N30.050 (3)0.044 (2)0.023 (2)0.0024 (18)0.0102 (18)0.0008 (16)
N40.033 (2)0.041 (2)0.022 (2)0.0026 (16)0.0033 (17)0.0015 (16)
N50.054 (3)0.046 (2)0.028 (2)0.005 (2)0.0100 (19)0.0045 (18)
O10.061 (2)0.0487 (18)0.0351 (19)0.0179 (17)0.0201 (17)0.0103 (15)
O20.037 (2)0.0534 (18)0.047 (2)0.0058 (16)0.0062 (17)0.0034 (17)
O30.069 (3)0.0472 (18)0.0299 (17)0.0214 (17)0.0172 (17)0.0102 (15)
O40.036 (2)0.0444 (16)0.0406 (19)0.0041 (14)0.0036 (16)0.0007 (15)
O50.054 (3)0.067 (3)0.058 (3)0.008 (2)0.026 (3)0.014 (2)
O60.083 (3)0.084 (3)0.046 (2)0.006 (3)0.010 (2)0.011 (2)
O70.070 (3)0.053 (2)0.045 (2)0.009 (2)0.013 (2)0.0043 (18)
O80.050 (3)0.054 (3)0.042 (3)0.0061 (16)0.010 (2)0.0065 (16)
O90.067 (3)0.065 (2)0.028 (2)0.006 (2)0.007 (2)0.0021 (19)
O100.055 (2)0.0498 (19)0.0355 (17)0.0017 (16)0.0048 (15)0.0096 (15)
O110.052 (2)0.059 (2)0.0322 (19)0.0061 (18)0.0110 (16)0.0121 (16)
O120.057 (2)0.0426 (17)0.0350 (17)0.0006 (16)0.0052 (15)0.0001 (14)
Geometric parameters (Å, º) top
Fe1—O12.161 (3)C16—H16A0.930
Fe1—O32.169 (3)C17—H17A0.930
Fe1—O22.202 (4)C18—N41.342 (6)
Fe1—O42.202 (4)C18—C191.377 (7)
Fe1—N42.265 (4)C18—H18A0.930
Fe1—N22.266 (4)C19—C201.381 (6)
C1—O101.248 (6)C19—H19A0.930
C1—O91.268 (7)C20—C211.379 (7)
C1—C21.499 (10)C20—C231.488 (6)
C2—C31.401 (6)C21—C221.366 (7)
C2—N11.414 (9)C21—H21A0.930
C3—C41.390 (7)C22—N41.321 (6)
C3—H3A0.930C22—H22A0.930
C4—C51.380 (7)C23—C271.389 (7)
C4—H4A0.930C23—C241.394 (7)
C5—C61.410 (6)C24—C251.371 (7)
C5—H5A0.930C24—H24A0.930
C6—N11.385 (7)C25—N51.341 (7)
C6—C71.514 (7)C25—H25A0.930
C7—O121.246 (5)C26—N51.327 (8)
C7—O111.255 (5)C26—C271.378 (8)
C8—N21.342 (6)C26—H26A0.930
C8—C91.371 (7)C27—H27A0.930
C8—H8A0.930O1—H110.82 (1)
C9—C101.379 (7)O1—H120.82 (1)
C9—H9A0.930O2—H210.82 (1)
C10—C111.405 (7)O2—H220.82 (1)
C10—C131.473 (6)O3—H310.81 (1)
C11—C121.373 (7)O3—H320.81 (1)
C11—H11A0.930O4—H410.82 (1)
C12—N21.323 (7)O4—H420.82 (1)
C12—H12A0.930O5—H510.82 (1)
C13—C171.389 (7)O5—H520.82 (1)
C13—C141.391 (6)O6—H610.82 (1)
C14—C151.390 (7)O6—H620.82 (1)
C14—H14A0.930O7—H710.82 (1)
C15—N31.314 (7)O7—H720.82 (1)
C15—H15A0.930O8—H810.82 (1)
C16—N31.326 (7)O8—H820.81 (1)
C16—C171.366 (7)
O1—Fe1—O3179.73 (19)N3—C16—H16A117.5
O1—Fe1—O288.66 (15)C17—C16—H16A117.5
O3—Fe1—O291.28 (16)C16—C17—C13118.6 (5)
O1—Fe1—O491.61 (15)C16—C17—H17A120.7
O3—Fe1—O488.44 (15)C13—C17—H17A120.7
O2—Fe1—O4178.69 (18)N4—C18—C19123.4 (4)
O1—Fe1—N488.59 (14)N4—C18—H18A118.3
O3—Fe1—N491.14 (13)C19—C18—H18A118.3
O2—Fe1—N486.94 (15)C18—C19—C20119.2 (5)
O4—Fe1—N491.79 (15)C18—C19—H19A120.4
O1—Fe1—N290.87 (14)C20—C19—H19A120.4
O3—Fe1—N289.40 (14)C21—C20—C19117.5 (4)
O2—Fe1—N291.78 (16)C21—C20—C23120.7 (4)
O4—Fe1—N289.50 (15)C19—C20—C23121.8 (4)
N4—Fe1—N2178.62 (18)C22—C21—C20119.1 (5)
O10—C1—O9125.1 (5)C22—C21—H21A120.5
O10—C1—C2118.9 (5)C20—C21—H21A120.5
O9—C1—C2116.0 (4)N4—C22—C21124.7 (5)
C3—C2—N1118.1 (7)N4—C22—H22A117.7
C3—C2—C1122.0 (6)C21—C22—H22A117.7
N1—C2—C1119.9 (4)C27—C23—C24116.0 (5)
C4—C3—C2121.0 (6)C27—C23—C20121.9 (4)
C4—C3—H3A119.5C24—C23—C20122.1 (4)
C2—C3—H3A119.5C25—C24—C23120.3 (5)
C5—C4—C3119.9 (4)C25—C24—H24A119.8
C5—C4—H4A120.1C23—C24—H24A119.8
C3—C4—H4A120.1N5—C25—C24123.5 (5)
C4—C5—C6121.0 (5)N5—C25—H25A118.3
C4—C5—H5A119.5C24—C25—H25A118.3
C6—C5—H5A119.5N5—C26—C27124.4 (6)
N1—C6—C5118.6 (5)N5—C26—H26A117.8
N1—C6—C7120.7 (4)C27—C26—H26A117.8
C5—C6—C7120.7 (5)C26—C27—C23119.7 (5)
O12—C7—O11125.3 (4)C26—C27—H27A120.2
O12—C7—C6117.5 (4)C23—C27—H27A120.2
O11—C7—C6117.1 (4)C6—N1—C2121.5 (4)
N2—C8—C9123.2 (5)C12—N2—C8116.4 (4)
N2—C8—H8A118.4C12—N2—Fe1124.0 (3)
C9—C8—H8A118.4C8—N2—Fe1118.7 (3)
C8—C9—C10121.1 (5)C15—N3—C16116.6 (4)
C8—C9—H9A119.4C22—N4—C18116.1 (4)
C10—C9—H9A119.4C22—N4—Fe1117.6 (3)
C9—C10—C11115.1 (4)C18—N4—Fe1125.0 (3)
C9—C10—C13122.9 (4)C26—N5—C25116.2 (5)
C11—C10—C13122.0 (4)Fe1—O1—H11130 (4)
C12—C11—C10120.1 (5)Fe1—O1—H12124 (4)
C12—C11—H11A119.9H11—O1—H12106.3 (18)
C10—C11—H11A119.9Fe1—O2—H21121 (4)
N2—C12—C11123.9 (5)Fe1—O2—H22125 (4)
N2—C12—H12A118.1H21—O2—H22107.8 (19)
C11—C12—H12A118.1Fe1—O3—H31132 (4)
C17—C13—C14117.3 (4)Fe1—O3—H32109 (4)
C17—C13—C10122.0 (4)H31—O3—H32109.4 (19)
C14—C13—C10120.7 (4)Fe1—O4—H41127 (4)
C15—C14—C13118.7 (5)Fe1—O4—H42121 (4)
C15—C14—H14A120.6H41—O4—H42107.8 (19)
C13—C14—H14A120.6H51—O5—H52108.4 (19)
N3—C15—C14123.9 (5)H61—O6—H62107.2 (19)
N3—C15—H15A118.1H71—O7—H72106.9 (19)
C14—C15—H15A118.1H81—O8—H82108.6 (19)
N3—C16—C17125.0 (5)
O10—C1—C2—C3179.0 (7)C19—C20—C23—C24176.6 (4)
O9—C1—C2—C30.1 (10)C27—C23—C24—C250.0 (8)
O10—C1—C2—N12.5 (10)C20—C23—C24—C25179.0 (4)
O9—C1—C2—N1178.5 (6)C23—C24—C25—N50.0 (9)
N1—C2—C3—C40.6 (11)N5—C26—C27—C230.0 (9)
C1—C2—C3—C4179.2 (6)C24—C23—C27—C260.0 (7)
C2—C3—C4—C50.7 (9)C20—C23—C27—C26179.0 (5)
C3—C4—C5—C60.2 (8)C5—C6—N1—C20.5 (9)
C4—C5—C6—N10.4 (8)C7—C6—N1—C2177.4 (6)
C4—C5—C6—C7177.5 (4)C3—C2—N1—C60.1 (11)
N1—C6—C7—O120.2 (7)C1—C2—N1—C6178.6 (5)
C5—C6—C7—O12177.7 (5)C11—C12—N2—C81.8 (8)
N1—C6—C7—O11177.9 (5)C11—C12—N2—Fe1167.1 (4)
C5—C6—C7—O110.0 (7)C9—C8—N2—C122.0 (8)
N2—C8—C9—C101.0 (9)C9—C8—N2—Fe1167.5 (5)
C8—C9—C10—C114.1 (8)O1—Fe1—N2—C1272.5 (4)
C8—C9—C10—C13175.5 (5)O3—Fe1—N2—C12107.6 (4)
C9—C10—C11—C124.3 (8)O2—Fe1—N2—C12161.2 (4)
C13—C10—C11—C12175.3 (5)O4—Fe1—N2—C1219.1 (4)
C10—C11—C12—N21.5 (9)O1—Fe1—N2—C8118.9 (4)
C9—C10—C13—C17174.3 (4)O3—Fe1—N2—C861.1 (4)
C11—C10—C13—C175.2 (7)O2—Fe1—N2—C830.2 (4)
C9—C10—C13—C145.3 (7)O4—Fe1—N2—C8149.5 (4)
C11—C10—C13—C14175.1 (4)C14—C15—N3—C160.0 (7)
C17—C13—C14—C150.2 (7)C17—C16—N3—C150.3 (8)
C10—C13—C14—C15179.4 (4)C21—C22—N4—C181.9 (8)
C13—C14—C15—N30.0 (7)C21—C22—N4—Fe1165.8 (4)
N3—C16—C17—C130.6 (8)C19—C18—N4—C221.8 (7)
C14—C13—C17—C160.6 (7)C19—C18—N4—Fe1164.9 (4)
C10—C13—C17—C16179.1 (4)O1—Fe1—N4—C2263.8 (4)
N4—C18—C19—C200.3 (8)O3—Fe1—N4—C22116.3 (4)
C18—C19—C20—C212.2 (7)O2—Fe1—N4—C22152.5 (4)
C18—C19—C20—C23176.3 (4)O4—Fe1—N4—C2227.8 (4)
C19—C20—C21—C222.1 (7)O1—Fe1—N4—C18102.7 (4)
C23—C20—C21—C22176.4 (4)O3—Fe1—N4—C1877.2 (4)
C20—C21—C22—N40.0 (8)O2—Fe1—N4—C1814.0 (4)
C21—C20—C23—C27174.0 (4)O4—Fe1—N4—C18165.7 (4)
C19—C20—C23—C274.4 (7)C27—C26—N5—C250.0 (9)
C21—C20—C23—C245.0 (7)C24—C25—N5—C260.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O8i0.82 (1)2.06 (3)2.831 (7)156 (6)
O1—H12···N3ii0.82 (1)1.98 (3)2.759 (5)158 (6)
O2—H21···O5iii0.82 (1)2.00 (2)2.806 (6)172 (5)
O2—H22···O7iii0.82 (1)1.96 (1)2.781 (6)178 (8)
O3—H31···O5iv0.81 (1)2.04 (1)2.851 (7)175 (7)
O3—H32···N5v0.81 (1)1.96 (2)2.745 (5)162 (6)
O4—H41···O80.82 (1)1.97 (1)2.785 (5)177 (7)
O4—H42···O11vi0.82 (1)1.93 (2)2.736 (5)170 (5)
O5—H52···O60.82 (1)1.93 (3)2.739 (8)170 (7)
O5—H51···O11vi0.82 (1)1.94 (2)2.742 (7)166 (7)
O6—H62···O90.82 (1)2.46 (8)2.952 (6)120 (7)
O6—H61···O10i0.82 (1)2.03 (2)2.827 (5)164 (7)
O7—H72···O5vii0.82 (1)2.57 (2)3.349 (7)159 (5)
O7—H71···O90.82 (1)1.81 (2)2.622 (6)168 (7)
O8—H81···O70.82 (1)2.01 (3)2.817 (7)170 (6)
O8—H82···O12viii0.81 (1)1.97 (2)2.768 (6)170 (7)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x, y+1, z+1/2; (vi) x, y+1, z1/2; (vii) x, y1, z; (viii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C10H8N2)2(H2O)4](C7H3NO4)·4H2O
Mr677.45
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)18.201 (1), 6.900 (1), 25.010 (1)
β (°) 99.40 (3)
V3)3098.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5104, 3180, 2946
Rint0.018
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections3180
No. of parameters455
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.38
Absolute structureFlack (1983), with 530 Friedel pairs
Absolute structure parameter0.36 (3)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O8i0.82 (1)2.06 (3)2.831 (7)156 (6)
O1—H12···N3ii0.82 (1)1.98 (3)2.759 (5)158 (6)
O2—H21···O5iii0.82 (1)2.00 (2)2.806 (6)172 (5)
O2—H22···O7iii0.82 (1)1.96 (1)2.781 (6)178 (8)
O3—H31···O5iv0.81 (1)2.04 (1)2.851 (7)175 (7)
O3—H32···N5v0.81 (1)1.96 (2)2.745 (5)162 (6)
O4—H41···O80.82 (1)1.97 (1)2.785 (5)177 (7)
O4—H42···O11vi0.82 (1)1.93 (2)2.736 (5)170 (5)
O5—H52···O60.82 (1)1.93 (3)2.739 (8)170 (7)
O5—H51···O11vi0.82 (1)1.94 (2)2.742 (7)166 (7)
O6—H62···O90.82 (1)2.46 (8)2.952 (6)120 (7)
O6—H61···O10i0.82 (1)2.03 (2)2.827 (5)164 (7)
O7—H72···O5vii0.82 (1)2.57 (2)3.349 (7)159 (5)
O7—H71···O90.82 (1)1.81 (2)2.622 (6)168 (7)
O8—H81···O70.82 (1)2.01 (3)2.817 (7)170 (6)
O8—H82···O12viii0.81 (1)1.97 (2)2.768 (6)170 (7)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x, y+1, z+1/2; (vi) x, y+1, z1/2; (vii) x, y1, z; (viii) x, y, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds