Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H16N2O3, contains an intra­molecular N—H...O hydrogen bond. The six-membered 1,3-diazo­heterocyclic ring adopts a twisted conformation and the methoxy­benzene group forms a dihedral angle of 54.1 (1)° with the pyrimidinone ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027985/bi2189sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027985/bi2189Isup2.hkl
Contains datablock I

CCDC reference: 655600

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.038
  • wR factor = 0.111
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Heterocyclic ketene aminals, also named cyclic 1,1-enediamines, are useful building blocks in organic synthesis, especially for the synthesis of heterocycles (Huang & Wang, 1994). The title compound (Fig. 1) was synthesized through consecutive nucleophilic addition and cyclocondensation reactions. The crystal structure was determined to provide unambiguous evidence for the molecular configuration.

The six-membered 1,3-diazoheterocyclic ring C1/C2/C3/N2/C4/N1 adopts a twisted conformation, in which the C1/C2/C3/N2 and N1/C1/C2/C3 torsion angles are -52.5 (2) and 54.2 (2)°, respectively. The phenyl ring C10–C15 forms a dihedral angle of 54.1 (1)° to the pyrimidinone ring.

Related literature top

The title compound is a heterocyclic ketene aminal; compounds of this type are useful building blocks in organic synthesis, especially for the synthesis of heterocycles. See: Huang & Liu (1986); Huang & Wang (1994).

Experimental top

The title compound was prepared according to the procedure of Huang & Liu (1986) and recrystallized from ethyl acetate in 80% yield.

Refinement top

H atoms were placed geometrically with C—H = 0.93–0.97 Å or N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(C/N) or Uiso(H) = 1.5Ueq(methyl C).

Structure description top

Heterocyclic ketene aminals, also named cyclic 1,1-enediamines, are useful building blocks in organic synthesis, especially for the synthesis of heterocycles (Huang & Wang, 1994). The title compound (Fig. 1) was synthesized through consecutive nucleophilic addition and cyclocondensation reactions. The crystal structure was determined to provide unambiguous evidence for the molecular configuration.

The six-membered 1,3-diazoheterocyclic ring C1/C2/C3/N2/C4/N1 adopts a twisted conformation, in which the C1/C2/C3/N2 and N1/C1/C2/C3 torsion angles are -52.5 (2) and 54.2 (2)°, respectively. The phenyl ring C10–C15 forms a dihedral angle of 54.1 (1)° to the pyrimidinone ring.

The title compound is a heterocyclic ketene aminal; compounds of this type are useful building blocks in organic synthesis, especially for the synthesis of heterocycles. See: Huang & Liu (1986); Huang & Wang (1994).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b-axis.
9-(4-Methoxybenzoyl)-1,2,3,4-tetrahydro-6H-pyrido[1,2-a]pyrimidin-6-one top
Crystal data top
C16H16N2O3Z = 2
Mr = 284.12F(000) = 300
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Melting point = 437–439 K
a = 7.9544 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3320 (19) ÅCell parameters from 1694 reflections
c = 11.063 (3) Åθ = 2.5–26.4°
α = 77.913 (3)°µ = 0.10 mm1
β = 73.384 (4)°T = 294 K
γ = 77.641 (4)°Prism, colorless
V = 677.7 (3) Å30.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD
diffractometer
1814 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω and φ scansh = 94
3460 measured reflectionsk = 99
2370 independent reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1309P]
where P = (Fo2 + 2Fc2)/3
2370 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H16N2O3γ = 77.641 (4)°
Mr = 284.12V = 677.7 (3) Å3
Triclinic, P1Z = 2
a = 7.9544 (18) ÅMo Kα radiation
b = 8.3320 (19) ŵ = 0.10 mm1
c = 11.063 (3) ÅT = 294 K
α = 77.913 (3)°0.20 × 0.18 × 0.16 mm
β = 73.384 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1814 reflections with I > 2σ(I)
3460 measured reflectionsRint = 0.017
2370 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.12 e Å3
2370 reflectionsΔρmin = 0.16 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58919 (16)0.28590 (17)0.11492 (13)0.0664 (4)
O20.22334 (15)0.58455 (15)0.22135 (13)0.0572 (4)
O30.29821 (17)1.13578 (14)0.55187 (12)0.0580 (4)
N10.29385 (17)0.30686 (16)0.13068 (13)0.0438 (3)
N20.00321 (18)0.32891 (16)0.13146 (13)0.0470 (4)
H20.10950.38400.14780.056*
C10.3389 (3)0.1542 (2)0.0723 (2)0.0635 (5)
H1A0.43770.08150.10060.076*
H1B0.37570.18330.01990.076*
C20.1820 (3)0.0633 (2)0.10810 (19)0.0610 (5)
H2A0.21120.03060.06250.073*
H2B0.15410.02130.19900.073*
C30.0250 (2)0.1795 (2)0.07471 (17)0.0510 (4)
H3A0.04600.20860.01740.061*
H3B0.07980.12620.10690.061*
C40.1214 (2)0.38749 (18)0.16018 (14)0.0385 (4)
C50.0801 (2)0.53028 (18)0.22182 (14)0.0382 (4)
C60.2259 (2)0.5872 (2)0.23969 (16)0.0452 (4)
H60.20290.68240.27710.054*
C70.3953 (2)0.5109 (2)0.20547 (16)0.0499 (4)
H70.48540.55460.21900.060*
C80.4387 (2)0.3644 (2)0.14882 (15)0.0477 (4)
C90.0996 (2)0.61628 (19)0.25642 (16)0.0416 (4)
C100.1457 (2)0.75394 (18)0.33420 (15)0.0400 (4)
C110.2538 (2)0.8991 (2)0.29682 (15)0.0438 (4)
H110.29300.90840.22370.053*
C120.3050 (2)1.03035 (19)0.36520 (16)0.0459 (4)
H120.37341.12830.33620.055*
C130.2537 (2)1.01488 (19)0.47683 (15)0.0434 (4)
C140.1506 (2)0.8687 (2)0.51784 (16)0.0509 (4)
H140.11870.85640.59430.061*
C150.0949 (2)0.7414 (2)0.44651 (16)0.0482 (4)
H150.02210.64560.47380.058*
C160.3885 (3)1.2929 (2)0.5050 (2)0.0648 (5)
H16A0.31541.33870.42530.097*
H16B0.41221.36710.56580.097*
H16C0.49861.27900.49230.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (7)0.0836 (10)0.0730 (9)0.0115 (6)0.0199 (6)0.0244 (7)
O20.0383 (6)0.0571 (7)0.0841 (9)0.0064 (5)0.0148 (6)0.0305 (7)
O30.0664 (8)0.0503 (7)0.0611 (8)0.0042 (6)0.0215 (6)0.0239 (6)
N10.0419 (8)0.0427 (7)0.0465 (8)0.0027 (6)0.0141 (6)0.0123 (6)
N20.0410 (8)0.0434 (8)0.0598 (9)0.0053 (6)0.0114 (6)0.0184 (6)
C10.0541 (11)0.0619 (12)0.0782 (13)0.0136 (9)0.0207 (10)0.0369 (10)
C20.0821 (14)0.0440 (10)0.0607 (11)0.0035 (9)0.0211 (10)0.0192 (8)
C30.0549 (11)0.0496 (10)0.0513 (10)0.0113 (8)0.0082 (8)0.0185 (8)
C40.0397 (9)0.0363 (8)0.0384 (8)0.0061 (6)0.0104 (7)0.0027 (6)
C50.0383 (8)0.0343 (8)0.0427 (9)0.0063 (6)0.0114 (7)0.0055 (6)
C60.0453 (9)0.0415 (9)0.0518 (10)0.0076 (7)0.0158 (8)0.0087 (7)
C70.0395 (9)0.0584 (10)0.0567 (10)0.0091 (8)0.0174 (8)0.0113 (8)
C80.0406 (9)0.0562 (10)0.0434 (9)0.0022 (8)0.0156 (7)0.0054 (8)
C90.0392 (9)0.0365 (8)0.0497 (9)0.0101 (7)0.0093 (7)0.0067 (7)
C100.0365 (8)0.0360 (8)0.0459 (9)0.0074 (6)0.0069 (7)0.0063 (7)
C110.0425 (9)0.0463 (9)0.0434 (9)0.0036 (7)0.0129 (7)0.0095 (7)
C120.0454 (9)0.0385 (9)0.0507 (10)0.0021 (7)0.0139 (8)0.0072 (7)
C130.0433 (9)0.0395 (9)0.0461 (9)0.0057 (7)0.0068 (7)0.0114 (7)
C140.0613 (11)0.0482 (10)0.0441 (9)0.0032 (8)0.0191 (8)0.0072 (8)
C150.0549 (10)0.0357 (8)0.0511 (10)0.0006 (7)0.0169 (8)0.0024 (7)
C160.0742 (13)0.0444 (10)0.0762 (13)0.0039 (9)0.0202 (11)0.0230 (9)
Geometric parameters (Å, º) top
O1—C81.2298 (19)C5—C91.438 (2)
O2—C91.2495 (19)C6—C71.344 (2)
O3—C131.3633 (18)C6—H60.930
O3—C161.423 (2)C7—C81.421 (2)
N1—C41.3714 (19)C7—H70.930
N1—C81.416 (2)C9—C101.498 (2)
N1—C11.476 (2)C10—C111.386 (2)
N2—C41.332 (2)C10—C151.390 (2)
N2—C31.457 (2)C11—C121.384 (2)
N2—H20.860C11—H110.930
C1—C21.512 (3)C12—C131.381 (2)
C1—H1A0.970C12—H120.930
C1—H1B0.970C13—C141.384 (2)
C2—C31.493 (3)C14—C151.376 (2)
C2—H2A0.970C14—H140.930
C2—H2B0.970C15—H150.930
C3—H3A0.970C16—H16A0.960
C3—H3B0.970C16—H16B0.960
C4—C51.426 (2)C16—H16C0.960
C5—C61.420 (2)
C13—O3—C16117.28 (14)C6—C7—C8120.88 (16)
C4—N1—C8123.72 (13)C6—C7—H7119.6
C4—N1—C1120.34 (14)C8—C7—H7119.6
C8—N1—C1115.91 (13)O1—C8—N1118.55 (16)
C4—N2—C3125.61 (14)O1—C8—C7125.50 (16)
C4—N2—H2117.2N1—C8—C7115.94 (14)
C3—N2—H2117.2O2—C9—C5122.69 (14)
N1—C1—C2111.30 (15)O2—C9—C10116.66 (14)
N1—C1—H1A109.4C5—C9—C10120.62 (14)
C2—C1—H1A109.4C11—C10—C15117.62 (14)
N1—C1—H1B109.4C11—C10—C9118.49 (14)
C2—C1—H1B109.4C15—C10—C9123.77 (14)
H1A—C1—H1B108.0C12—C11—C10121.86 (15)
C3—C2—C1109.44 (16)C12—C11—H11119.1
C3—C2—H2A109.8C10—C11—H11119.1
C1—C2—H2A109.8C13—C12—C11119.49 (14)
C3—C2—H2B109.8C13—C12—H12120.3
C1—C2—H2B109.8C11—C12—H12120.3
H2A—C2—H2B108.2O3—C13—C12124.20 (14)
N2—C3—C2108.93 (14)O3—C13—C14116.40 (15)
N2—C3—H3A109.9C12—C13—C14119.40 (15)
C2—C3—H3A109.9C15—C14—C13120.56 (16)
N2—C3—H3B109.9C15—C14—H14119.7
C2—C3—H3B109.9C13—C14—H14119.7
H3A—C3—H3B108.3C14—C15—C10120.98 (15)
N2—C4—N1118.91 (14)C14—C15—H15119.5
N2—C4—C5121.85 (14)C10—C15—H15119.5
N1—C4—C5119.23 (13)O3—C16—H16A109.5
C6—C5—C4116.56 (13)O3—C16—H16B109.5
C6—C5—C9122.47 (14)H16A—C16—H16B109.5
C4—C5—C9120.86 (13)O3—C16—H16C109.5
C7—C6—C5123.47 (15)H16A—C16—H16C109.5
C7—C6—H6118.3H16B—C16—H16C109.5
C5—C6—H6118.3
C4—N1—C1—C226.8 (2)C6—C7—C8—O1179.74 (17)
C8—N1—C1—C2155.27 (15)C6—C7—C8—N10.5 (2)
N1—C1—C2—C354.2 (2)C6—C5—C9—O2167.23 (15)
C4—N2—C3—C226.0 (2)C4—C5—C9—O28.9 (2)
C1—C2—C3—N252.5 (2)C6—C5—C9—C1010.8 (2)
C3—N2—C4—N12.6 (2)C4—C5—C9—C10173.00 (14)
C3—N2—C4—C5176.66 (15)O2—C9—C10—C1143.4 (2)
C8—N1—C4—N2175.55 (14)C5—C9—C10—C11134.74 (16)
C1—N1—C4—N22.2 (2)O2—C9—C10—C15132.67 (17)
C8—N1—C4—C55.1 (2)C5—C9—C10—C1549.2 (2)
C1—N1—C4—C5177.15 (15)C15—C10—C11—C122.4 (2)
N2—C4—C5—C6175.92 (14)C9—C10—C11—C12178.70 (14)
N1—C4—C5—C64.8 (2)C10—C11—C12—C132.7 (2)
N2—C4—C5—C90.5 (2)C16—O3—C13—C126.4 (2)
N1—C4—C5—C9178.82 (14)C16—O3—C13—C14173.73 (16)
C4—C5—C6—C72.1 (2)C11—C12—C13—O3179.36 (15)
C9—C5—C6—C7178.48 (15)C11—C12—C13—C140.5 (2)
C5—C6—C7—C80.5 (3)O3—C13—C14—C15178.17 (15)
C4—N1—C8—O1177.41 (14)C12—C13—C14—C151.9 (3)
C1—N1—C8—O10.4 (2)C13—C14—C15—C102.3 (3)
C4—N1—C8—C72.4 (2)C11—C10—C15—C140.2 (2)
C1—N1—C8—C7179.77 (15)C9—C10—C15—C14175.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.942.624 (2)135

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.12
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.9544 (18), 8.3320 (19), 11.063 (3)
α, β, γ (°)77.913 (3), 73.384 (4), 77.641 (4)
V3)677.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3460, 2370, 1814
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.00
No. of reflections2370
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.942.624 (2)135.2
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds