Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu2(C2H3O2)4(C7H6N2S)2]·2C4H10O, exhibits distorted square-pyramidal coordination geometry around each CuII atom, with the basal plane comprising O atoms from four bridging acetate ligands and the apical position occupied by the thia­zole N atom of 2-amino­benzothia­zole. The dinuclear complex lies on a crystallographic centre of inversion and has a Cu...Cu distance of 2.6850 (14) Å. Complexes are linked into one-dimensional chains by a combination of inter­molecular O—H...O and N—H...O hydrogen bonds involving the butanol solvent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027948/bi2187sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027948/bi2187Isup2.hkl
Contains datablock I

CCDC reference: 654749

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.020 Å
  • R factor = 0.084
  • wR factor = 0.249
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds (x 1000) Ang ... 20
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT223_ALERT_4_C Large Solvent/Anion H Ueq(max)/Ueq(min) ... 3.13 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C14 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C12 PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C9 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C11 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 CU1 -CU1 -N2 -C1 143.00 4.00 3.777 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 CU1 -CU1 -N2 -C2 -40.00 5.00 3.777 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 1.49(3), Rep 1.487(10) ...... 3.00 su-Ra C12 -C13 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 1.49(3), Rep 1.482(10) ...... 3.00 su-Ra C13 -C14 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 1.48(3), Rep 1.483(10) ...... 3.00 su-Ra C14 -C15 1.555 1.555 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.12 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 5
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 18 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Interest in the study of compounds containing the benzothiazole group has increased on account of their broad spectrum of biological activities (Rana et al., 2007), and also their potential applications in the areas of sensors (Kim et al., 2005), non-linear optics, laser dyes, electroluminescent devices (Costa et al., 2006) and as chelating agents (Usman et al., 2003). A large number of copper compounds with diverse ligands have been synthesized and studied as potential therapeutic agents (Wu et al., 2003) and catalysts (Marko et al., 1996).

In the title compound (Fig. 1), each CuII ion is five-coordinated, with a coordination geometry that is best described as distorted square pyramidal. Four O atoms of bridging acetate ligands construct the basal plane of the square pyramid. The 2-aminobenzothiazole molecules are coordinated to CuII through their thiazole N atom and occupy the axial position. Four acetate ligands act as bridges to connect the two CuII centers into a dinuclear complex across a crystallographic centre of inversion. All the geometrical parameters lie within expected ranges.

The complexes are linked into one-dimensional chains by a combination of intermolecular O—H···O and N—H···O hydrogen bonds involving the butane solvent molecules (Fig. 2).

Related literature top

For general literature concerning applications of benzothiazole compounds, see: Rana et al. (2007); Kim et al. (2005); Costa et al. (2006); Wu et al. (2003); Marko et al. (1996). Similar coordination geometry has been observed for a related dinuclear CuII complex containing 2-amino-5-chloropyridine (Liu et al., 2003). Other reported 2-aminobenzothiazole complexes with CuII contain either six-coordinate (Sieroń & Bukowska-Strżyzewska, 1999, 2000; Sieroń, 2007) or four-coordinate CuII (Usman et al., 2003).

Experimental top

A solution of 2-aminobenzothiazole (2 mmol) in butanol (10 ml) was added dropwise to Cu(OAc)2.2H2O (1 mmol in 10 ml of butanol) with stirring. The resulting solution was left to stand at room temperature and black crystals were obtained after several days.

Refinement top

All H atoms were visible in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). The hydroxyl H atoms were treated as riding atoms with O—H distances normalized to 0.85 Å and with Uiso(H) = 1.5Ueq(O). All other H atoms were placed geometrically and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å and N—H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C/N). The C—C bonds and 1,3-distances in the butanol molecule were restrained to 1.50 (1) and 2.45 (2) Å, respectively.

Structure description top

Interest in the study of compounds containing the benzothiazole group has increased on account of their broad spectrum of biological activities (Rana et al., 2007), and also their potential applications in the areas of sensors (Kim et al., 2005), non-linear optics, laser dyes, electroluminescent devices (Costa et al., 2006) and as chelating agents (Usman et al., 2003). A large number of copper compounds with diverse ligands have been synthesized and studied as potential therapeutic agents (Wu et al., 2003) and catalysts (Marko et al., 1996).

In the title compound (Fig. 1), each CuII ion is five-coordinated, with a coordination geometry that is best described as distorted square pyramidal. Four O atoms of bridging acetate ligands construct the basal plane of the square pyramid. The 2-aminobenzothiazole molecules are coordinated to CuII through their thiazole N atom and occupy the axial position. Four acetate ligands act as bridges to connect the two CuII centers into a dinuclear complex across a crystallographic centre of inversion. All the geometrical parameters lie within expected ranges.

The complexes are linked into one-dimensional chains by a combination of intermolecular O—H···O and N—H···O hydrogen bonds involving the butane solvent molecules (Fig. 2).

For general literature concerning applications of benzothiazole compounds, see: Rana et al. (2007); Kim et al. (2005); Costa et al. (2006); Wu et al. (2003); Marko et al. (1996). Similar coordination geometry has been observed for a related dinuclear CuII complex containing 2-amino-5-chloropyridine (Liu et al., 2003). Other reported 2-aminobenzothiazole complexes with CuII contain either six-coordinate (Sieroń & Bukowska-Strżyzewska, 1999, 2000; Sieroń, 2007) or four-coordinate CuII (Usman et al., 2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are omitted.
[Figure 2] Fig. 2. The chain structure in the title compound formed via hydrogen bonds (dashed lines). H atoms are omitted.
Tetra-µ-acetato-κ8O:O'-bis[(2-amino-1,3-benzothiazole-κN)copper(II)] butanol disolvate top
Crystal data top
[Cu2(C2H3O2)4(C7H6N2S)2]·2C4H10OF(000) = 844
Mr = 811.89Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8320 reflections
a = 10.0998 (17) Åθ = 2.2–25.7°
b = 11.465 (2) ŵ = 1.28 mm1
c = 16.514 (3) ÅT = 273 K
β = 91.242 (7)°Block, black
V = 1911.8 (6) Å30.32 × 0.21 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3353 independent reflections
Radiation source: fine-focus sealed tube3000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.686, Tmax = 0.862k = 1313
20441 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0643P)2 + 21.2639P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.97 e Å3
5 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Cu2(C2H3O2)4(C7H6N2S)2]·2C4H10OV = 1911.8 (6) Å3
Mr = 811.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.0998 (17) ŵ = 1.28 mm1
b = 11.465 (2) ÅT = 273 K
c = 16.514 (3) Å0.32 × 0.21 × 0.12 mm
β = 91.242 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3000 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.862Rint = 0.044
20441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0845 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0643P)2 + 21.2639P]
where P = (Fo2 + 2Fc2)/3
3353 reflectionsΔρmax = 0.97 e Å3
217 parametersΔρmin = 1.00 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.93063 (11)0.90286 (8)0.98271 (6)0.0418 (4)
S10.7442 (3)0.5375 (2)0.9140 (2)0.0706 (8)
O11.0552 (7)0.8231 (6)1.0602 (4)0.0611 (18)
O21.0644 (7)0.8793 (6)0.8988 (4)0.0616 (18)
O30.8344 (7)1.0149 (6)0.9128 (4)0.0620 (18)
O40.8287 (7)0.9547 (6)1.0754 (4)0.0624 (18)
O50.0282 (10)0.3940 (7)0.8688 (6)0.088 (3)
H50.00370.32990.88960.131*
N10.9877 (9)0.6283 (8)0.9201 (7)0.074 (3)
H1A1.04400.68910.92400.111*
H1B1.02080.55710.91000.111*
N20.8107 (7)0.7502 (6)0.9518 (5)0.0491 (18)
C10.8607 (10)0.6475 (8)0.9296 (6)0.050 (2)
C20.6731 (9)0.7435 (8)0.9545 (6)0.051 (2)
C30.6197 (11)0.6342 (9)0.9356 (7)0.060 (3)
C40.4832 (12)0.6167 (12)0.9369 (9)0.085 (4)
H4A0.44720.54420.92390.102*
C50.4020 (12)0.7085 (12)0.9576 (10)0.092 (4)
H5A0.31080.69770.95960.110*
C60.4558 (12)0.8154 (11)0.9753 (9)0.081 (4)
H6A0.39990.87710.98750.097*
C70.5897 (11)0.8339 (9)0.9754 (7)0.063 (3)
H7A0.62430.90650.98930.076*
C80.8556 (10)1.1205 (8)0.9024 (6)0.051 (2)
C90.7718 (14)1.1838 (11)0.8413 (9)0.093 (5)
H9A0.70821.13100.81760.139*
H9B0.82681.21470.79980.139*
H9C0.72631.24660.86730.139*
C100.8488 (10)1.0437 (9)1.1167 (6)0.054 (2)
C110.7607 (14)1.0663 (13)1.1869 (8)0.089 (4)
H11A0.69981.00271.19230.134*
H11B0.71211.13731.17770.134*
H11C0.81361.07361.23560.134*
C120.0949 (18)0.3587 (19)0.7984 (11)0.129 (6)
H12A0.07850.41250.75400.154*
H12B0.06840.28090.78170.154*
C130.236 (2)0.361 (3)0.8257 (12)0.220 (15)
H13A0.25700.43760.84820.264*
H13B0.25090.30380.86780.264*
C140.325 (2)0.337 (3)0.7572 (13)0.30 (3)
H14A0.34490.40910.72930.359*
H14B0.28050.28510.71890.359*
C150.449 (2)0.282 (3)0.7884 (18)0.27 (2)
H15A0.50610.26710.74420.410*
H15B0.42790.21040.81510.410*
H15C0.49180.33420.82620.410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0566 (7)0.0260 (5)0.0427 (6)0.0058 (4)0.0026 (4)0.0019 (4)
S10.0751 (18)0.0379 (13)0.099 (2)0.0159 (12)0.0041 (15)0.0175 (13)
O10.079 (5)0.036 (3)0.067 (4)0.003 (3)0.016 (4)0.011 (3)
O20.078 (5)0.049 (4)0.059 (4)0.011 (3)0.015 (3)0.013 (3)
O30.070 (4)0.046 (4)0.069 (4)0.005 (3)0.020 (4)0.009 (3)
O40.068 (4)0.057 (4)0.063 (4)0.016 (3)0.011 (3)0.006 (4)
O50.127 (7)0.041 (4)0.095 (6)0.004 (4)0.022 (6)0.004 (4)
N10.065 (6)0.039 (5)0.117 (8)0.001 (4)0.014 (5)0.014 (5)
N20.052 (4)0.032 (4)0.063 (5)0.004 (3)0.002 (4)0.001 (3)
C10.064 (6)0.032 (4)0.054 (5)0.004 (4)0.003 (4)0.006 (4)
C20.055 (5)0.038 (5)0.058 (5)0.007 (4)0.006 (4)0.007 (4)
C30.068 (6)0.042 (5)0.069 (6)0.016 (5)0.005 (5)0.006 (5)
C40.072 (8)0.068 (8)0.112 (11)0.027 (7)0.015 (7)0.002 (7)
C50.056 (7)0.080 (9)0.139 (13)0.008 (6)0.004 (7)0.014 (9)
C60.067 (7)0.054 (7)0.123 (11)0.000 (6)0.002 (7)0.003 (7)
C70.072 (7)0.033 (5)0.086 (8)0.003 (5)0.001 (6)0.007 (5)
C80.062 (6)0.039 (5)0.051 (5)0.001 (4)0.006 (4)0.011 (4)
C90.110 (10)0.059 (7)0.107 (10)0.002 (7)0.048 (8)0.026 (7)
C100.061 (6)0.054 (6)0.048 (5)0.003 (5)0.003 (4)0.008 (4)
C110.101 (10)0.103 (10)0.066 (7)0.016 (8)0.030 (7)0.013 (7)
C120.145 (16)0.131 (16)0.111 (13)0.019 (13)0.019 (12)0.008 (12)
C130.20 (3)0.31 (4)0.15 (2)0.05 (3)0.02 (2)0.09 (3)
C140.38 (5)0.37 (6)0.14 (2)0.19 (5)0.06 (3)0.06 (3)
C150.14 (2)0.44 (6)0.24 (4)0.03 (3)0.00 (2)0.12 (4)
Geometric parameters (Å, º) top
Cu1—O41.956 (7)C6—C71.369 (15)
Cu1—O31.970 (7)C6—H6A0.930
Cu1—O21.975 (7)C7—H7A0.930
Cu1—O11.996 (7)C8—O1i1.260 (11)
Cu1—N22.183 (7)C8—C91.491 (13)
Cu1—Cu1i2.6862 (19)C9—H9A0.960
S1—C31.720 (12)C9—H9B0.960
S1—C11.740 (9)C9—H9C0.960
O1—C8i1.260 (11)C10—O2i1.274 (12)
O2—C10i1.274 (12)C10—C111.499 (15)
O3—C81.242 (11)C11—H11A0.960
O4—C101.241 (12)C11—H11B0.960
O5—C121.415 (18)C11—H11C0.960
O5—H50.850C12—C131.487 (10)
N1—C11.314 (12)C12—H12A0.970
N1—H1A0.900C12—H12B0.970
N1—H1B0.900C13—C141.482 (10)
N2—C11.336 (11)C13—H13A0.970
N2—C21.394 (12)C13—H13B0.970
C2—C71.383 (14)C14—C151.483 (10)
C2—C31.397 (13)C14—H14A0.970
C3—C41.394 (15)C14—H14B0.970
C4—C51.383 (19)C15—H15A0.960
C4—H4A0.930C15—H15B0.960
C5—C61.370 (18)C15—H15C0.960
C5—H5A0.930
O4—Cu1—O390.0 (3)C6—C7—C2119.4 (10)
O4—Cu1—O2166.1 (3)C6—C7—H7A120.3
O3—Cu1—O290.8 (3)C2—C7—H7A120.3
O4—Cu1—O188.4 (3)O3—C8—O1i123.8 (8)
O3—Cu1—O1166.1 (3)O3—C8—C9118.1 (9)
O2—Cu1—O187.4 (3)O1i—C8—C9118.1 (9)
O4—Cu1—N297.4 (3)C8—C9—H9A109.5
O3—Cu1—N297.0 (3)C8—C9—H9B109.5
O2—Cu1—N296.4 (3)H9A—C9—H9B109.5
O1—Cu1—N297.0 (3)C8—C9—H9C109.5
O4—Cu1—Cu1i82.1 (2)H9A—C9—H9C109.5
O3—Cu1—Cu1i80.4 (2)H9B—C9—H9C109.5
O2—Cu1—Cu1i84.3 (2)O4—C10—O2i124.3 (9)
O1—Cu1—Cu1i85.7 (2)O4—C10—C11118.3 (10)
N2—Cu1—Cu1i177.3 (2)O2i—C10—C11117.3 (9)
C3—S1—C189.8 (5)C10—C11—H11A109.5
C8i—O1—Cu1120.9 (6)C10—C11—H11B109.5
C10i—O2—Cu1122.0 (6)H11A—C11—H11B109.5
C8—O3—Cu1129.2 (6)C10—C11—H11C109.5
C10—O4—Cu1126.7 (7)H11A—C11—H11C109.5
C12—O5—H5103.5H11B—C11—H11C109.5
C1—N1—H1A118.6O5—C12—C13102.5 (14)
C1—N1—H1B122.8O5—C12—H12A111.3
H1A—N1—H1B118.6C13—C12—H12A111.3
C1—N2—C2110.1 (8)O5—C12—H12B111.3
C1—N2—Cu1124.0 (6)C13—C12—H12B111.3
C2—N2—Cu1125.8 (6)H12A—C12—H12B109.2
N1—C1—N2123.8 (8)C14—C13—C12110.8 (14)
N1—C1—S1121.3 (7)C14—C13—H13A109.5
N2—C1—S1114.9 (7)C12—C13—H13A109.5
C7—C2—N2125.4 (8)C14—C13—H13B109.5
C7—C2—C3119.6 (9)C12—C13—H13B109.5
N2—C2—C3115.0 (9)H13A—C13—H13B108.1
C4—C3—C2120.2 (11)C13—C14—C15109.4 (14)
C4—C3—S1129.6 (9)C13—C14—H14A109.8
C2—C3—S1110.1 (8)C15—C14—H14A109.8
C5—C4—C3119.1 (11)C13—C14—H14B109.8
C5—C4—H4A120.5C15—C14—H14B109.8
C3—C4—H4A120.5H14A—C14—H14B108.2
C6—C5—C4120.0 (11)C14—C15—H15A109.5
C6—C5—H5A120.0C14—C15—H15B109.5
C4—C5—H5A120.0H15A—C15—H15B109.5
C7—C6—C5121.7 (12)C14—C15—H15C109.5
C7—C6—H6A119.1H15A—C15—H15C109.5
C5—C6—H6A119.1H15B—C15—H15C109.5
O4—Cu1—O1—C8i80.3 (8)C2—N2—C1—N1178.5 (10)
O3—Cu1—O1—C8i3.3 (18)Cu1—N2—C1—N13.5 (14)
O2—Cu1—O1—C8i86.3 (8)C2—N2—C1—S11.7 (10)
N2—Cu1—O1—C8i177.6 (8)Cu1—N2—C1—S1176.4 (4)
Cu1i—Cu1—O1—C8i1.9 (8)C3—S1—C1—N1178.7 (10)
O4—Cu1—O2—C10i20.0 (18)C3—S1—C1—N21.5 (8)
O3—Cu1—O2—C10i73.2 (8)C1—N2—C2—C7179.9 (10)
O1—Cu1—O2—C10i92.9 (8)Cu1—N2—C2—C71.9 (14)
N2—Cu1—O2—C10i170.3 (8)C1—N2—C2—C31.0 (12)
Cu1i—Cu1—O2—C10i7.0 (8)Cu1—N2—C2—C3177.0 (7)
O4—Cu1—O3—C883.1 (9)C7—C2—C3—C40.7 (16)
O2—Cu1—O3—C882.9 (9)N2—C2—C3—C4179.6 (10)
O1—Cu1—O3—C80 (2)C7—C2—C3—S1178.8 (8)
N2—Cu1—O3—C8179.4 (9)N2—C2—C3—S10.1 (11)
Cu1i—Cu1—O3—C81.2 (9)C1—S1—C3—C4179.7 (12)
O3—Cu1—O4—C1079.9 (9)C1—S1—C3—C20.8 (8)
O2—Cu1—O4—C1013.4 (19)C2—C3—C4—C50.5 (19)
O1—Cu1—O4—C1086.3 (9)S1—C3—C4—C5179.0 (11)
N2—Cu1—O4—C10176.9 (9)C3—C4—C5—C61 (2)
Cu1i—Cu1—O4—C100.4 (8)C4—C5—C6—C72 (2)
O4—Cu1—N2—C1138.9 (8)C5—C6—C7—C22 (2)
O3—Cu1—N2—C1130.2 (8)N2—C2—C7—C6179.7 (11)
O2—Cu1—N2—C138.6 (8)C3—C2—C7—C61.5 (17)
O1—Cu1—N2—C149.6 (8)Cu1—O3—C8—O1i3.1 (16)
Cu1i—Cu1—N2—C1143 (4)Cu1—O3—C8—C9176.2 (9)
O4—Cu1—N2—C238.9 (8)Cu1—O4—C10—O2i5.0 (16)
O3—Cu1—N2—C252.0 (8)Cu1—O4—C10—C11178.6 (8)
O2—Cu1—N2—C2143.6 (7)O5—C12—C13—C14175 (2)
O1—Cu1—N2—C2128.2 (7)C12—C13—C14—C15152 (3)
Cu1i—Cu1—N2—C240 (5)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.902.233.002 (11)144
N1—H1B···O5ii0.901.992.850 (12)159
O5—H5···O1iii0.852.042.885 (10)180
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C7H6N2S)2]·2C4H10O
Mr811.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)10.0998 (17), 11.465 (2), 16.514 (3)
β (°) 91.242 (7)
V3)1911.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.32 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
20441, 3353, 3000
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.249, 1.15
No. of reflections3353
No. of parameters217
No. of restraints5
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0643P)2 + 21.2639P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.97, 1.00

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.902.233.002 (11)143.5
N1—H1B···O5i0.901.992.850 (12)158.8
O5—H5···O1ii0.852.042.885 (10)179.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds