Download citation
Download citation
link to html
In the title compound, C6H16N+·C6H6NO3S, the NH2 group of the 4-amino­benzene­sulfonate anion forms N—H...O hydrogen bonds to O atoms of two other 4-amino­benzene­sulfonate anions, generating two-dimensional layers. The triethyl­ammonium cations lie between these layers, forming N—H...O hydrogen bonds to the sulfonate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022027/bi2186sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022027/bi2186Isup2.hkl
Contains datablock I

CCDC reference: 651421

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.055
  • wR factor = 0.171
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.11 PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.02 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - O3 .. 5.36 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT245_ALERT_2_C U(iso) H1A Smaller than U(eq) N1 by ... 0.02 AngSq PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. S1 .. 2.91 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Aminobenzenesulfonic acid and its derivatives, and their complexes, are widely used in the fields of biology, catalysis and materials science. The title compound (Fig. 1) consists of triethylammonium cations and 4-aminobenzenesulfonate anions. The bond lengths and angles of the triethylammonium cation agree with those in the compound triethylammonium 4-(2-chlorobenzoyl)-3-methyl-1-(p-tolyl)-1H-pyrazol-5-olate (Duan et al., 2005). The geometrical parameters of the 4-aminobenzenesulfonate anion are similar to those in a related compound (Sui et al., 2006). The NH2 group of the 4-aminobenzenesulfonate anion forms N—H···O hydrogen bonds to O atoms of two other 4-aminobenzenesulfonate anions (Table 1), generating two-dimensional layers in the (202) planes. The triethylammonium cations lie between these layers, forming N—H···O hydrogen bonds to the sulfonate groups (Fig. 2 and Table 1).

Related literature top

For related literature, see: Duan et al. (2005); Sui et al. (2006).

Experimental top

4-Aminobenzenesulfonic acid (0.02 mol) and triethylamine (0.02 mol) were stirred in ethanol (10 ml) for 0.5 h. The solution was then allowed to evaporate at room temperature. Colourless single crystals of the title compound were formed after 8 d.

Refinement top

H atoms bound to C atoms were positioned geometrically with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). H atoms bound to N atoms were located in difference Fourier maps and refined with isotropic displacement parameters, with the N—H and H···H distances restrained to be 0.90 (1) and 1.50 (1) Å, respectively. The CH2—CH3 distances in the triethylammonium cation were restrained to be 1.54 (1) Å, and the anisotropic displacement parameters of one methyl group (C12) were restrained to be approximately isotropic.

Structure description top

Aminobenzenesulfonic acid and its derivatives, and their complexes, are widely used in the fields of biology, catalysis and materials science. The title compound (Fig. 1) consists of triethylammonium cations and 4-aminobenzenesulfonate anions. The bond lengths and angles of the triethylammonium cation agree with those in the compound triethylammonium 4-(2-chlorobenzoyl)-3-methyl-1-(p-tolyl)-1H-pyrazol-5-olate (Duan et al., 2005). The geometrical parameters of the 4-aminobenzenesulfonate anion are similar to those in a related compound (Sui et al., 2006). The NH2 group of the 4-aminobenzenesulfonate anion forms N—H···O hydrogen bonds to O atoms of two other 4-aminobenzenesulfonate anions (Table 1), generating two-dimensional layers in the (202) planes. The triethylammonium cations lie between these layers, forming N—H···O hydrogen bonds to the sulfonate groups (Fig. 2 and Table 1).

For related literature, see: Duan et al. (2005); Sui et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis. Hydrogen bonds are indicated by dashed lines.
Triethylammonium 4-aminobenzenesulfonate top
Crystal data top
C6H16N+·C6H6NO3SF(000) = 592
Mr = 274.38Dx = 1.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1829 reflections
a = 13.003 (3) Åθ = 2.5–23.6°
b = 8.7648 (19) ŵ = 0.23 mm1
c = 13.041 (3) ÅT = 294 K
β = 101.053 (4)°Block, colourless
V = 1458.8 (6) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2575 independent reflections
Radiation source: fine-focus sealed tube1770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1115
Tmin = 0.956, Tmax = 0.965k = 108
5906 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0918P)2 + 0.6965P]
where P = (Fo2 + 2Fc2)/3
2575 reflections(Δ/σ)max = 0.005
178 parametersΔρmax = 0.77 e Å3
13 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H16N+·C6H6NO3SV = 1458.8 (6) Å3
Mr = 274.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.003 (3) ŵ = 0.23 mm1
b = 8.7648 (19) ÅT = 294 K
c = 13.041 (3) Å0.20 × 0.18 × 0.16 mm
β = 101.053 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2575 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1770 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.965Rint = 0.028
5906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05513 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.77 e Å3
2575 reflectionsΔρmin = 0.36 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53476 (4)0.08476 (6)0.74545 (5)0.04679 (15)
O10.58857 (13)0.20384 (19)0.81109 (15)0.0704 (6)
O20.51159 (12)0.04414 (18)0.80888 (13)0.0597 (5)
O30.58690 (12)0.0356 (2)0.66309 (13)0.0710 (5)
N10.12768 (17)0.3574 (4)0.54777 (18)0.0954 (9)
C10.41219 (16)0.1618 (2)0.68650 (16)0.0416 (5)
C20.37541 (17)0.1483 (3)0.57977 (17)0.0486 (6)
H20.41490.09600.53880.058*
C30.28124 (17)0.2116 (3)0.53432 (18)0.0561 (7)
H30.25730.20020.46280.067*
C40.22033 (17)0.2931 (3)0.59351 (19)0.0552 (7)
C50.25780 (17)0.3034 (3)0.70101 (19)0.0553 (6)
H50.21890.35500.74290.066*
C60.35140 (17)0.2379 (3)0.74524 (18)0.0500 (6)
H60.37450.24520.81710.060*
N20.56177 (17)0.6596 (2)0.76858 (16)0.0603 (6)
C70.4596 (2)0.5954 (3)0.7160 (3)0.0841 (10)
H7A0.40960.60590.76210.101*
H7B0.46820.48740.70390.101*
C80.4161 (3)0.6719 (5)0.6135 (3)0.1167 (14)
H8A0.41430.78030.62360.175*
H8B0.34630.63530.58760.175*
H8C0.45980.64880.56400.175*
C90.64448 (19)0.6546 (3)0.7037 (2)0.0642 (8)
H9A0.70860.69720.74390.077*
H9B0.62290.71880.64280.077*
C100.6674 (2)0.4968 (3)0.6677 (3)0.0821 (9)
H10A0.68660.43120.72720.123*
H10B0.72410.50180.63020.123*
H10C0.60610.45700.62270.123*
C110.5883 (3)0.5882 (3)0.8744 (3)0.1043 (13)
H11A0.52610.58850.90530.125*
H11B0.60780.48270.86660.125*
C120.6733 (3)0.6642 (5)0.9464 (3)0.1266 (7)
H12A0.73810.64910.92280.190*
H12B0.67880.62181.01510.190*
H12C0.65880.77140.94840.190*
H1A0.0925 (9)0.4126 (17)0.5859 (7)0.072 (8)*
H1B0.1053 (16)0.360 (3)0.4789 (5)0.089 (9)*
H2A0.5441 (14)0.7566 (10)0.7800 (17)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0478 (3)0.0379 (3)0.0537 (3)0.0020 (2)0.0074 (2)0.0007 (3)
O10.0679 (10)0.0462 (9)0.0846 (12)0.0089 (8)0.0168 (9)0.0054 (9)
O20.0696 (9)0.0404 (8)0.0711 (10)0.0057 (8)0.0185 (8)0.0104 (8)
O30.0567 (9)0.0946 (13)0.0660 (10)0.0160 (9)0.0226 (8)0.0002 (10)
N10.0629 (13)0.159 (3)0.0639 (14)0.0444 (15)0.0111 (11)0.0076 (16)
C10.0452 (11)0.0350 (11)0.0460 (11)0.0065 (9)0.0120 (9)0.0001 (9)
C20.0522 (12)0.0486 (12)0.0479 (12)0.0010 (10)0.0168 (10)0.0030 (11)
C30.0544 (12)0.0726 (16)0.0413 (12)0.0036 (12)0.0094 (10)0.0015 (12)
C40.0439 (11)0.0642 (15)0.0577 (14)0.0018 (11)0.0105 (10)0.0094 (12)
C50.0516 (12)0.0622 (14)0.0557 (13)0.0019 (11)0.0194 (10)0.0042 (12)
C60.0552 (12)0.0505 (13)0.0449 (12)0.0002 (11)0.0112 (10)0.0034 (11)
N20.0832 (13)0.0315 (10)0.0681 (13)0.0003 (10)0.0191 (11)0.0016 (10)
C70.0700 (16)0.0589 (16)0.133 (2)0.0122 (14)0.0426 (16)0.0206 (17)
C80.083 (2)0.126 (3)0.128 (3)0.006 (2)0.013 (2)0.041 (3)
C90.0573 (13)0.0461 (13)0.0907 (18)0.0047 (11)0.0178 (13)0.0009 (14)
C100.0773 (17)0.0616 (17)0.112 (2)0.0043 (14)0.0301 (16)0.0158 (17)
C110.167 (3)0.0500 (16)0.097 (2)0.0111 (19)0.026 (2)0.0188 (17)
C120.1284 (9)0.1245 (10)0.1254 (10)0.0019 (7)0.0203 (7)0.0000 (7)
Geometric parameters (Å, º) top
S1—O31.4416 (18)N2—H2A0.901 (8)
S1—O11.4429 (17)C7—C81.505 (4)
S1—O21.4653 (17)C7—H7A0.970
S1—C11.766 (2)C7—H7B0.970
N1—C41.360 (3)C8—H8A0.960
N1—H1A0.883 (8)C8—H8B0.960
N1—H1B0.889 (7)C8—H8C0.960
C1—C61.374 (3)C9—C101.509 (3)
C1—C21.387 (3)C9—H9A0.970
C2—C31.371 (3)C9—H9B0.970
C2—H20.930C10—H10A0.960
C3—C41.403 (3)C10—H10B0.960
C3—H30.930C10—H10C0.960
C4—C51.396 (3)C11—C121.466 (5)
C5—C61.369 (3)C11—H11A0.970
C5—H50.930C11—H11B0.970
C6—H60.930C12—H12A0.960
N2—C71.484 (3)C12—H12B0.960
N2—C91.491 (3)C12—H12C0.960
N2—C111.494 (4)
O3—S1—O1114.48 (12)C8—C7—H7A109.0
O3—S1—O2111.54 (11)N2—C7—H7B109.0
O1—S1—O2110.59 (11)C8—C7—H7B109.0
O3—S1—C1107.70 (10)H7A—C7—H7B107.8
O1—S1—C1106.05 (10)C7—C8—H8A109.5
O2—S1—C1105.92 (10)C7—C8—H8B109.5
C4—N1—H1A119.4 (8)H8A—C8—H8B109.5
C4—N1—H1B122.9 (13)C7—C8—H8C109.5
H1A—N1—H1B116.8 (13)H8A—C8—H8C109.5
C6—C1—C2118.42 (19)H8B—C8—H8C109.5
C6—C1—S1120.70 (16)N2—C9—C10114.2 (2)
C2—C1—S1120.87 (17)N2—C9—H9A108.7
C3—C2—C1120.5 (2)C10—C9—H9A108.7
C3—C2—H2119.8N2—C9—H9B108.7
C1—C2—H2119.8C10—C9—H9B108.7
C2—C3—C4121.3 (2)H9A—C9—H9B107.6
C2—C3—H3119.3C9—C10—H10A109.5
C4—C3—H3119.3C9—C10—H10B109.5
N1—C4—C5121.6 (2)H10A—C10—H10B109.5
N1—C4—C3121.1 (2)C9—C10—H10C109.5
C5—C4—C3117.4 (2)H10A—C10—H10C109.5
C6—C5—C4120.5 (2)H10B—C10—H10C109.5
C6—C5—H5119.8C12—C11—N2114.4 (3)
C4—C5—H5119.8C12—C11—H11A108.7
C5—C6—C1121.9 (2)N2—C11—H11A108.7
C5—C6—H6119.0C12—C11—H11B108.7
C1—C6—H6119.0N2—C11—H11B108.7
C7—N2—C9114.0 (2)H11A—C11—H11B107.6
C7—N2—C11107.2 (2)C11—C12—H12A109.5
C9—N2—C11116.6 (2)C11—C12—H12B109.5
C7—N2—H2A101.6 (12)H12A—C12—H12B109.5
C9—N2—H2A110.8 (13)C11—C12—H12C109.5
C11—N2—H2A105.3 (15)H12A—C12—H12C109.5
N2—C7—C8113.1 (3)H12B—C12—H12C109.5
N2—C7—H7A109.0
O3—S1—C1—C6170.54 (18)N1—C4—C5—C6179.9 (3)
O1—S1—C1—C647.6 (2)C3—C4—C5—C61.1 (4)
O2—S1—C1—C670.00 (19)C4—C5—C6—C10.7 (4)
O3—S1—C1—C28.8 (2)C2—C1—C6—C51.7 (3)
O1—S1—C1—C2131.77 (19)S1—C1—C6—C5177.65 (18)
O2—S1—C1—C2110.67 (19)C9—N2—C7—C856.8 (3)
C6—C1—C2—C30.9 (3)C11—N2—C7—C8172.6 (3)
S1—C1—C2—C3178.47 (18)C7—N2—C9—C1057.7 (3)
C1—C2—C3—C41.0 (4)C11—N2—C9—C1068.1 (3)
C2—C3—C4—N1179.1 (3)C7—N2—C11—C12166.1 (3)
C2—C3—C4—C51.9 (4)C9—N2—C11—C1264.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.88 (1)2.14 (1)2.970 (3)157 (2)
N1—H1B···O1ii0.89 (1)2.23 (1)3.078 (3)160 (2)
N2—H2A···O2iii0.90 (1)1.85 (1)2.752 (2)178 (2)
N2—H2A···S1iii0.90 (1)2.91 (1)3.750 (2)156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C6H6NO3S
Mr274.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.003 (3), 8.7648 (19), 13.041 (3)
β (°) 101.053 (4)
V3)1458.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.956, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
5906, 2575, 1770
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.171, 1.04
No. of reflections2575
No. of parameters178
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.883 (8)2.137 (9)2.970 (3)157.0 (15)
N1—H1B···O1ii0.889 (7)2.229 (8)3.078 (3)159.5 (18)
N2—H2A···O2iii0.901 (8)1.852 (9)2.752 (2)178 (2)
N2—H2A···S1iii0.901 (8)2.910 (10)3.750 (2)155.8 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds