organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-acetyl­amino-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 6 July 2006; accepted 1 August 2006; online 9 August 2006)

The geometrical parameters for the title compound, C13H17NO3S, are normal. The planar mol­ecular conformation is reinforced by an intra­molecular N—H⋯O inter­action.

Comment

Thio­phene derivatives are known to exhibit an array of biological effects, including analgesic and anti-inflammatory activities (Ramanathan & Namboothiri, 1978[Ramanathan, J. C. D. G. & Namboothiri, D. G. (1978). J. Indian Chem. Soc. 55, 822-823.]; Cannito et al., 1990[Cannito, A., Perrisin, M., LuuDuc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]). As part of our own research in this area, the structure of the title compound, (I)[link] (Fig. 1[link]), is presented.

[Scheme 1]

The geometric parameters for (I)[link] are normal. The five-membered C1/C2/C6/C7/S1 ring is almost planar (r.m.s. deviation from the mean plane = 0.013 Å). The C1–C6 ring is in a half-chair conformation (Table 1[link]), with atoms C1, C2, C5 and C6 almost co-planar (r.m.s. deviation = 0.003 Å) and atoms C3 and C4 displaced from this plane by −0.480 (3) and 0.277 (3) Å, respectively. An intra­molecular N—H⋯O bond (Table 2[link]) helps to establish the mol­ecular conformation. Overall, the mol­ecule of (I)[link] is approximately planar.

The mol­ecular packing for (I)[link] comprises undulating sheets lying parallel to the (10[\overline{1}]) plane (Fig. 2[link]). Within these sheets, the shortest inter­molecular contacts are C—H⋯O inter­actions (Table 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. The intra­molecular hydrogen bond is indicated by a dashed line.
[Figure 2]
Figure 2
A view of the unit-cell contents of (I)[link], with H atoms (except H1) omitted for clarity.

Experimental

Ethyl-2-amino-4,5,6,7-tetra­hydro-1-benzothio­phene-3-carboxyl­ate, (II), was prepared from cyclo­hexa­none, sulfur and ethyl cyano­acetate by a one-pot thiol­ation-heterocyclization reaction (Gewald et al., 1966[Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 94-100.]). A mixture of (II) (3.5 g, 0.015 mol), acetic anhydride (14 ml) and zinc dust (0.883 g, 0.015 mol) was refluxed for 2 h. The reaction mixture was cooled to room temperature and the solid product was recovered. The crude product was dissolved in warm (318 K) methanol (35 ml) and filtered. The product was recrystallized from acetone to yield colourless crystals of (I)[link] (yield 84.3%; m.p. 388 K). IR (KBr, cm−1): 3436 and 3244 (—NH—), 2931 and 2873 (—CH—), 1666 and 1546 (C=O) and 1250 (C—O). Elemental analysis, found: C 58.18, H 6.32, N 5.16%; calculated: C58.40, H 6.41, N 5.24%.

Crystal data
  • C13H17NO3S

  • Mr = 267.34

  • Monoclinic, P 21 /c

  • a = 10.2987 (4) Å

  • b = 16.6174 (5) Å

  • c = 7.8510 (3) Å

  • β = 108.4381 (18)°

  • V = 1274.63 (8) Å3

  • Z = 4

  • Dx = 1.393 Mg m−3

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Cut block, colourless

  • 0.44 × 0.30 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.958

  • 16538 measured reflections

  • 2917 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.05

  • 2917 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0407P)2 + 0.574P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected torsion angles (°)

C1—C2—C3—C4 48.83 (16)
C2—C3—C4—C5 −63.48 (17)
C3—C4—C5—C6 42.28 (18)
C4—C5—C6—C1 −10.54 (19)
C5—C6—C1—C2 −0.9 (2)
C6—C1—C2—C3 −18.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.858 (18) 1.979 (18) 2.6798 (17) 138.1 (16)
C2—H2A⋯O2i 0.99 2.44 3.370 (2) 157
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The N-bound H atom was located in a difference map and its position was refined freely, with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in idealised locations (C—H = 0.98–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes to fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Ethyl 2-(acetylamino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate top
Crystal data top
C13H17NO3SF(000) = 568
Mr = 267.34Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3015 reflections
a = 10.2987 (4) Åθ = 1.0–27.5°
b = 16.6174 (5) ŵ = 0.25 mm1
c = 7.8510 (3) ÅT = 120 K
β = 108.4381 (18)°Cut block, colourless
V = 1274.63 (8) Å30.44 × 0.30 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2917 independent reflections
Radiation source: fine-focus sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.897, Tmax = 0.958k = 2120
16538 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.574P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. IR (KBr, cm-1): 3436 and 3244 (—NH—), 2931 and 2873 (—CH—), 1666 and 1546 (CO) and 1250 (C—O). Elemental analysis, found: C 58.18, H 6.32, N 5.16%; calculated: C58.40, H 6.41, N 5.24%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42025 (15)0.34938 (9)0.5719 (2)0.0190 (3)
C20.36910 (16)0.27403 (9)0.4663 (2)0.0232 (3)
H2A0.39340.22660.54640.028*
H2B0.41260.26790.37120.028*
C30.21396 (16)0.27903 (9)0.3819 (2)0.0232 (3)
H3A0.18170.23470.29440.028*
H3B0.16960.27310.47620.028*
C40.17450 (16)0.35977 (9)0.2872 (2)0.0229 (3)
H4A0.07460.36050.22460.028*
H4B0.22140.36580.19560.028*
C50.21240 (15)0.43102 (9)0.41786 (19)0.0194 (3)
H5A0.21080.48120.34930.023*
H5B0.14330.43620.48080.023*
C60.35228 (15)0.42071 (9)0.55453 (19)0.0178 (3)
C70.43107 (14)0.48049 (9)0.67846 (19)0.0175 (3)
C80.55668 (15)0.45085 (9)0.78253 (19)0.0189 (3)
C90.78203 (16)0.46767 (10)1.0084 (2)0.0232 (3)
C100.86975 (16)0.52769 (10)1.1382 (2)0.0276 (4)
H10A0.81190.57101.15920.041*
H10B0.93750.55041.08780.041*
H10C0.91690.50081.25210.041*
C110.39415 (15)0.56423 (9)0.6996 (2)0.0191 (3)
C120.23372 (17)0.66948 (9)0.5971 (2)0.0261 (4)
H12A0.30780.70410.58290.031*
H12B0.21980.68250.71310.031*
C130.10391 (17)0.68309 (10)0.4450 (3)0.0323 (4)
H13A0.07750.73980.44230.048*
H13B0.03090.64940.46210.048*
H13C0.11860.66890.33130.048*
N10.65371 (13)0.49412 (8)0.91396 (17)0.0208 (3)
H10.6261 (17)0.5419 (11)0.925 (2)0.025*
O10.82149 (11)0.40043 (7)0.98601 (16)0.0315 (3)
O20.46870 (11)0.61218 (6)0.80471 (15)0.0253 (3)
O30.26963 (11)0.58460 (6)0.59197 (14)0.0220 (2)
S10.58051 (4)0.35234 (2)0.73354 (5)0.02108 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0201 (7)0.0197 (7)0.0179 (7)0.0006 (6)0.0067 (6)0.0014 (6)
C20.0301 (8)0.0172 (8)0.0221 (8)0.0028 (6)0.0077 (6)0.0015 (6)
C30.0293 (8)0.0183 (8)0.0211 (7)0.0028 (6)0.0068 (6)0.0020 (6)
C40.0257 (8)0.0202 (8)0.0205 (8)0.0008 (6)0.0038 (6)0.0008 (6)
C50.0199 (7)0.0177 (7)0.0195 (7)0.0006 (6)0.0048 (6)0.0009 (6)
C60.0213 (7)0.0178 (7)0.0161 (7)0.0009 (6)0.0087 (6)0.0012 (6)
C70.0187 (7)0.0185 (7)0.0170 (7)0.0008 (6)0.0082 (6)0.0010 (6)
C80.0214 (7)0.0193 (7)0.0180 (7)0.0010 (6)0.0092 (6)0.0016 (6)
C90.0212 (8)0.0291 (9)0.0199 (7)0.0011 (6)0.0072 (6)0.0039 (7)
C100.0228 (8)0.0335 (9)0.0232 (8)0.0022 (7)0.0025 (6)0.0028 (7)
C110.0200 (7)0.0196 (7)0.0194 (7)0.0020 (6)0.0088 (6)0.0003 (6)
C120.0299 (9)0.0138 (7)0.0353 (9)0.0028 (6)0.0114 (7)0.0025 (7)
C130.0251 (9)0.0219 (8)0.0483 (11)0.0033 (7)0.0094 (8)0.0038 (8)
N10.0194 (6)0.0211 (7)0.0213 (6)0.0016 (5)0.0056 (5)0.0002 (5)
O10.0251 (6)0.0326 (7)0.0322 (7)0.0046 (5)0.0024 (5)0.0019 (5)
O20.0264 (6)0.0203 (6)0.0274 (6)0.0029 (5)0.0057 (5)0.0048 (5)
O30.0213 (5)0.0155 (5)0.0279 (6)0.0020 (4)0.0061 (4)0.0008 (4)
S10.0205 (2)0.0197 (2)0.0226 (2)0.00291 (15)0.00611 (14)0.00109 (15)
Geometric parameters (Å, º) top
C1—C61.361 (2)C8—N11.3884 (19)
C1—C21.502 (2)C8—S11.7170 (15)
C1—S11.7356 (15)C9—O11.221 (2)
C2—C31.526 (2)C9—N11.3674 (19)
C2—H2A0.990C9—C101.505 (2)
C2—H2B0.990C10—H10A0.980
C3—C41.525 (2)C10—H10B0.980
C3—H3A0.990C10—H10C0.980
C3—H3B0.990C11—O21.2266 (18)
C4—C51.534 (2)C11—O31.3370 (18)
C4—H4A0.990C12—O31.4619 (17)
C4—H4B0.990C12—C131.502 (2)
C5—C61.509 (2)C12—H12A0.990
C5—H5A0.990C12—H12B0.990
C5—H5B0.990C13—H13A0.980
C6—C71.446 (2)C13—H13B0.980
C7—C81.384 (2)C13—H13C0.980
C7—C111.466 (2)N1—H10.858 (18)
C6—C1—C2126.24 (14)C7—C8—N1124.98 (14)
C6—C1—S1112.86 (11)C7—C8—S1112.34 (11)
C2—C1—S1120.90 (11)N1—C8—S1122.68 (11)
C1—C2—C3109.31 (12)O1—C9—N1121.65 (15)
C1—C2—H2A109.8O1—C9—C10123.24 (14)
C3—C2—H2A109.8N1—C9—C10115.11 (14)
C1—C2—H2B109.8C9—C10—H10A109.5
C3—C2—H2B109.8C9—C10—H10B109.5
H2A—C2—H2B108.3H10A—C10—H10B109.5
C4—C3—C2109.91 (13)C9—C10—H10C109.5
C4—C3—H3A109.7H10A—C10—H10C109.5
C2—C3—H3A109.7H10B—C10—H10C109.5
C4—C3—H3B109.7O2—C11—O3122.13 (14)
C2—C3—H3B109.7O2—C11—C7124.28 (14)
H3A—C3—H3B108.2O3—C11—C7113.59 (12)
C3—C4—C5112.40 (12)O3—C12—C13107.03 (13)
C3—C4—H4A109.1O3—C12—H12A110.3
C5—C4—H4A109.1C13—C12—H12A110.3
C3—C4—H4B109.1O3—C12—H12B110.3
C5—C4—H4B109.1C13—C12—H12B110.3
H4A—C4—H4B107.9H12A—C12—H12B108.6
C6—C5—C4111.81 (12)C12—C13—H13A109.5
C6—C5—H5A109.3C12—C13—H13B109.5
C4—C5—H5A109.3H13A—C13—H13B109.5
C6—C5—H5B109.3C12—C13—H13C109.5
C4—C5—H5B109.3H13A—C13—H13C109.5
H5A—C5—H5B107.9H13B—C13—H13C109.5
C1—C6—C7111.67 (13)C9—N1—C8125.56 (14)
C1—C6—C5120.99 (13)C9—N1—H1122.4 (12)
C7—C6—C5127.33 (13)C8—N1—H1111.9 (12)
C8—C7—C6111.94 (13)C11—O3—C12115.31 (12)
C8—C7—C11119.90 (13)C8—S1—C191.18 (7)
C6—C7—C11128.15 (13)
C1—C2—C3—C448.83 (16)C6—C7—C8—S10.19 (16)
C2—C3—C4—C563.48 (17)C11—C7—C8—S1178.84 (11)
C3—C4—C5—C642.28 (18)C8—C7—C11—O20.7 (2)
C4—C5—C6—C110.54 (19)C6—C7—C11—O2177.70 (14)
C5—C6—C1—C20.9 (2)C8—C7—C11—O3179.44 (12)
C6—C1—C2—C318.7 (2)C6—C7—C11—O32.1 (2)
S1—C1—C2—C3161.76 (11)O1—C9—N1—C81.7 (2)
C2—C1—C6—C7179.52 (14)C10—C9—N1—C8177.50 (13)
S1—C1—C6—C70.95 (16)C7—C8—N1—C9174.86 (14)
S1—C1—C6—C5178.59 (11)S1—C8—N1—C95.9 (2)
C4—C5—C6—C7168.93 (14)O2—C11—O3—C125.2 (2)
C1—C6—C7—C80.73 (18)C7—C11—O3—C12174.69 (12)
C5—C6—C7—C8178.78 (13)C13—C12—O3—C11169.63 (13)
C1—C6—C7—C11179.25 (14)C7—C8—S1—C10.29 (12)
C5—C6—C7—C110.3 (2)N1—C8—S1—C1179.02 (13)
C6—C7—C8—N1179.48 (13)C6—C1—S1—C80.73 (12)
C11—C7—C8—N11.9 (2)C2—C1—S1—C8179.71 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.858 (18)1.979 (18)2.6798 (17)138.1 (16)
C2—H2A···O2i0.992.443.370 (2)157
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service, University of Southampton, for data collection. ABV thanks Mangalore University for the provision of research facilities.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannito, A., Perrisin, M., LuuDuc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 94–100.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRamanathan, J. C. D. G. & Namboothiri, D. G. (1978). J. Indian Chem. Soc. 55, 822–823.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds