organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Phenyl­iodos­yl)benzene tosyl­ate dihydrate

crossmark logo

aSchool of Math and Science, Walsh University, 2020 East Maple Street, North Canton, OH 44720, USA, bDepartment of Chemistry, University of Akron, 190 E. Buchtel Ave, Akron, OH 44304, USA, and cDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907-2084, USA
*Correspondence e-mail: tsmith@walsh.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 22 April 2022; accepted 16 May 2022; online 20 May 2022)

The structure of the title salt (systematic name: oxodiphenyl-λ5-iodanylium 4-methyl­benzene­sulfonate dihydrate), C12H10IO+·C7H7O3S·2H2O, at 150 K, has monoclinic (P21/c) symmetry. The mol­ecular structure features an angular (phenyl­iodos­yl)benzene cation, the geometry of which was hitherto undescribed in the literature: in the cation, both I—C bonds are approximately normal to the I=O bond, forming a C—I—C angle of 95.36 (4)°. The crystal structure displays O—H⋯O, O—H⋯I and O—H⋯S hydrogen bonding.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The crystal structure of (phenyl­iodos­yl)benzene tosyl­ate dihydrate (1) is shown in Fig. 1[link]. A partial packing structure is shown in Fig. 2[link]. The title compound 1 crystallizes from water via slow cooling to 293 K to the monoclinic crystal system with space group P21/c. This iodosyl salt arose from the reaction of iodoxybenzene with sodium hydroxide (Fig. 3[link]). The inter­mediate formed was captured with p-toluene sulfonic acid, generating 1.

[Figure 1]
Figure 1
The title compound 1 with 50% displacement ellipsoids. All hydrogen labels are omitted for clarity.
[Figure 2]
Figure 2
The unit cell as viewed down the a axis showing inter­molecular hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
The synthetic route to obtain the title compound 1.

In compound 1 there are two phenyl rings connected to the iodine centre, C1—I1— C7, with a bond angle of 95.36 (4)°. The bond lengths of C1—I1 and C7—I1 are 2.1289 (11) and 2.1370 (12) Å, respectively. These values are comparable to the sum of the van der Waals radii (2.05 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). These bond lengths are comparable to those found in 1,1,1-tri­acetoxy1,1-di­hydro-1,2-benzo­iodoxol-3(1H)-one, i.e. the Dess–Martin periodinane, with a C—I bond length between the phenyl and iodine of 2.1025 (16) Å (Schröckeneder et al., 2012[Schröckeneder, A., Stichnoth, D., Mayer, P. & Trauner, D. (2012). Beilstein J. Org. Chem. 8, 1523-1527.]). A secondary bonding inter­action with the p-toluene sulfonate anion, O4⋯I1 [2.7076 (10) Å], resides nearly perpendicular at 77.55 (4)° to the I1—O1 bond. This bond length is shorter than the sum (3.05 Å) of the covalent radii, and this is analogous to secondary bonding that was observed by Rentzeperis in his bis­(di­phenyl­iodo­nium I-oxide) di­acetate trihydrate, between the acetate anion and the iodo­nium I-oxide centre (Bozopoulos & Rentzeperis, 1987[Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.]). Zhdankin found similar bond lengths of coordination between the tri­fluoro­methane­sulfonate oxygen anion and the cationic iodo­nium centre (2.797 Å) in [(aryl­sulfon­yl)meth­yl](phen­yl)iodo­nium tri­fluoro­methane­sulfonate (Zhdankin et al., 1997[Zhdankin, V. V., Erickson, S. A. & Hanson, K. J. (1997). J. Am. Chem. Soc. 119, 4775-4776.]). Additionally, Rentzeperis found similar coordinating distances with this acetate ion [2.449 (7) Å] and the oxygen atoms of the three water mol­ecules, at 2.449 (7), 2.732 (9) and 2.732 (7) Å, respectively (Bozopoulos & Rentzeperis, 1987[Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.]). In the title compound, the I1—O1 bond of 1.8108 (9) Å indicates double-bond character, as the computed double-bond length via van der Waals radii predicts 1.86 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Rentzeperis found a similar bond length, 1.842 (6) Å, in bis­(di­phenyl­iodo­nium I-oxide) di­acetate trihydrate (Bozopoulos & Rentzeperis, 1987[Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.]).

Zhdankin synthesized a tosyl­ate derivative of 2-iodoxybenzoic acid. Crystals of the final product could not be isolated, but the inter­mediate mixed tosyl­ate-acetate derivative was analysed. The I—O bond lengths in this iodine(V) compound had distances of 2.080 (2), 2.213 (2), 2.027 (2) and 1.998 (2) Å (Yusubov et al., 2013[Yusubov, M. S., Svitich, D. Y., Yoshimura, A., Nemykin, V. N. & Zhdankin, V. V. (2013). Chem. Commun. 49, 11269-11271.]). These values are in accordance with a single-bond inter­action of iodine with oxygen, further indicating that the I—O bond distance in 1 is of a double-bond nature. Additionally, bond lengths being shorter than predicted in hypervalent iodine compounds have been studied previously (Koser et al., 1976[Koser, G. F., Wettach, R. H., Troup, J. M. & Frenz, B. A. (1976). J. Org. Chem. 41, 3609-3611.]). Koser confirmed the I—O single bond length was shorter (1.91 Å) than the computed distance (1.96 Å) in his seminal work on hy­droxy(tos­yloxy)iodo­benzene. Additionally, in 1, secondary coordination of the iodo­nium I-oxide centre with neighbouring water mol­ecules indicates a close contact via the I1⋯O2 and I1⋯O3 with bond distances of 2.5674 (10) and 2.8118 (10) Å, respectively.

The title compound forms a distorted octa­hedral geometry in accordance with comparison to a VSEPR model. The O1—I1—O2 bond angle of 175.27 (4)°, the C7—I1—O3 angle of 176.33 (4)°, the O1—I1—O4 angle of 77.55 (4)° with the coordinating tosyl­ate anion and the C1—I1—C7 angle of 95.36 (4)° complete the distorted octa­hedral geometry. The accompanying tosyl­ate anion and water mol­ecules occupy apical and equatorial positions to stabilize the monomeric complex. Bis(di­phenyl­iodo­nium I-oxide) di­acetate trihydrate also adopted a distorted octa­hedral geometry, albeit via a dimeric coordinating structure (Bozopoulos & Rentzeperis, 1987[Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.]). In this complex, the asymmetric units form distorted trigonal–pyramidal arrangements, where the iodine atoms occupy the apices, resembling the IO3 iodate anion. Secondary I⋯O inter­actions complete the distorted octa­hedral geometry around each individual iodine atom. The title complex 1 does not dimerize like the Rentzeperis compound, most likely due to the bulky nature of the coordinating tosyl­ate anion, along with additional hydrogen bonding of the sulfone O atoms and water O atoms with neighbouring water mol­ecules.

Examination of the mol­ecular packing as illustrated in Fig. 2[link] shows O3i⋯H2A and O6iii⋯H3B contacts, with O⋯H distances of 1.92 (2) and 1.99 (2) Å, respectively, as viewed down the a axis (Fig. 2[link] and Table 1[link]). These two coordinations inhibit aggregation of the iodo­nium centres as seen in bis­(di­phenyl­iodo­nium I-oxide) di­acetate trihydrate (Bozopoulos & Rentzeperis, 1987[Bozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142-144.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.86 (2) 1.92 (2) 2.7563 (14) 165 (2)
O2—H2B⋯I1ii 0.85 (2) 3.14 (2) 3.9397 (10) 158.1 (18)
O2—H2B⋯O1ii 0.85 (2) 1.91 (2) 2.7443 (14) 169 (2)
O3—H3A⋯S1i 0.84 (2) 3.00 (2) 3.7847 (11) 155.7 (17)
O3—H3A⋯O5i 0.84 (2) 1.92 (2) 2.7625 (15) 174.6 (19)
O3—H3B⋯S1iii 0.79 (2) 2.89 (2) 3.5812 (10) 147.5 (18)
O3—H3B⋯O6iii 0.79 (2) 1.99 (2) 2.7776 (14) 171 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+2, -y+1, -z+1].

Synthesis and crystallization

(Phenyl­iodos­yl)benzene tosyl­ate dihydrate was synthesized according to a modified procedure by Chen (2007[Chen, Y. (2007). PhD thesis, The University of Akron, Akron, Ohio, United States.]) and is illustrated in Fig. 3[link]. Iodo­benzene (2.04 g, 10 mmol) was added to a water solution (20 ml) of sodium metaperiodate (4.7 g, 22 mmol) with a small amount of toluene (0.3 ml) to minimize steam distillation. The reaction was heated to reflux for 18 h and then cooled to room temperature. To the cooled reaction flask were added 50 ml of ice-cold water, and the white crystals that formed were filtered, washed with cold water (20 ml), cold chloro­form (10 ml), and air-dried in a dark room until a constant weight was found (2.08 g, 8.81 mmol, 88% yield). The crude material was used in the next step without further purification. The iodoxybenzene (2.08 g, 8.81 mmol) was added to a stirred solution of 1 N NaOH (18.7 ml) pre-cooled to 277 K. The reaction was stirred for 1 h maintaining the temperature of the reaction below 281 K. The NaIO3 that formed was filtered off. The filtrate was poured into a round-bottomed flask equipped with a magnetic stir bar and cooled to 277 K. With vigorous stirring p-toluene sulfonic acid monohydrate (2.87 g, 15.08 mmol) was added to the cooled filtrate and a white precipitate formed. The suspension was stirred for an additional 30 min and then filtered. The compound was washed with a minimal amount of diethyl ether (10 ml) and ice-cold water (10 ml). The product (1.75 g, 3.47 mmol, 47.5% yield) matched known 1H, 13C and FTIR data (Chen, 2007[Chen, Y. (2007). PhD thesis, The University of Akron, Akron, Ohio, United States.]). A sample for crystallographic analysis was prepared by dissolving the sample in a minimal amount of boiling water and allowing for slow cooling in an insulated thermal bath, insuring that the temperature took at least two days to return to room temperature. After additional cooling at room temperature for four days, the crystals that formed were suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H10IO+·C7H7O3S·2H2O
Mr 504.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.1823 (3), 24.9509 (11), 12.7606 (6)
β (°) 100.257 (2)
V3) 1936.92 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.79
Crystal size (mm) 0.23 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SADABS and SAINT, Bruker Nano Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.644, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 55248, 7429, 6815
Rint 0.033
(sin θ/λ)max−1) 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.09
No. of reflections 7429
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.39
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4, SADABS and SAINT, Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Oxodiphenyl-λ5-iodanylium 4-methylbenzenesulfonate dihydrate top
Crystal data top
C12H10IO+·C7H7O3S·2H2OF(000) = 1008
Mr = 504.32Dx = 1.729 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1823 (3) ÅCell parameters from 9659 reflections
b = 24.9509 (11) Åθ = 3.4–33.2°
c = 12.7606 (6) ŵ = 1.79 mm1
β = 100.257 (2)°T = 150 K
V = 1936.92 (16) Å3Fragment, colourless
Z = 40.23 × 0.18 × 0.15 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
7429 independent reflections
Radiation source: fine focus sealed tube X-ray source6815 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.033
Detector resolution: 7.4074 pixels mm-1θmax = 33.3°, θmin = 2.9°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
k = 3838
Tmin = 0.644, Tmax = 0.747l = 1919
55248 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0115P)2 + 1.2666P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.004
7429 reflectionsΔρmax = 0.49 e Å3
258 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00186 (16)
Special details top

Refinement. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic CH moieties, and to 0.98 Å for the CH3 group, respectively. Water H atom positions were freely refined. Uiso(H) values were set to a multiple of Ueq(carrier C/O), with 1.5 for CH3 and OH, and 1.2 for CH units, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.68788 (2)0.46909 (2)0.68867 (2)0.01154 (3)
S10.78701 (5)0.36098 (2)0.47914 (2)0.01522 (5)
O10.97764 (14)0.46950 (4)0.74614 (8)0.01780 (17)
O20.27627 (16)0.47673 (4)0.61133 (8)0.01981 (18)
H2A0.242 (3)0.4622 (8)0.5495 (17)0.030*
H2B0.173 (3)0.4724 (8)0.6458 (17)0.030*
O30.75786 (17)0.56665 (4)0.58959 (8)0.01987 (18)
H3A0.665 (3)0.5916 (8)0.5781 (16)0.030*
H3B0.869 (4)0.5829 (8)0.6024 (16)0.030*
O40.86090 (18)0.40372 (4)0.55568 (8)0.02297 (19)
O50.55011 (16)0.35301 (5)0.46211 (10)0.0294 (2)
O60.87304 (16)0.36783 (4)0.38086 (7)0.02007 (18)
C10.5945 (2)0.51811 (5)0.80971 (9)0.0142 (2)
C20.7369 (2)0.51635 (6)0.90699 (11)0.0212 (2)
H20.8622880.4936680.9173640.025*
C30.6902 (3)0.54883 (6)0.98885 (11)0.0249 (3)
H30.7836200.5482371.0565620.030*
C40.5077 (3)0.58201 (6)0.97162 (11)0.0236 (3)
H40.4770500.6042231.0276450.028*
C50.3694 (2)0.58310 (6)0.87349 (12)0.0229 (3)
H50.2447300.6060190.8628710.027*
C60.4115 (2)0.55088 (5)0.79013 (10)0.0182 (2)
H60.3179670.5514290.7224560.022*
C70.6142 (2)0.39479 (5)0.75784 (9)0.0139 (2)
C80.7930 (2)0.37027 (5)0.82033 (10)0.0187 (2)
H80.9344730.3863500.8307390.022*
C90.7592 (3)0.32126 (6)0.86755 (11)0.0235 (3)
H90.8787880.3036930.9112110.028*
C100.5521 (3)0.29802 (5)0.85114 (11)0.0231 (3)
H100.5304160.2646220.8835000.028*
C110.3762 (2)0.32346 (5)0.78748 (11)0.0217 (2)
H110.2348670.3072590.7765810.026*
C120.4048 (2)0.37264 (5)0.73933 (10)0.0178 (2)
H120.2855340.3902490.6955600.021*
C130.90551 (19)0.30148 (5)0.53950 (9)0.0143 (2)
C141.1068 (2)0.28329 (5)0.51879 (10)0.0166 (2)
H141.1776970.3014150.4688240.020*
C151.2027 (2)0.23823 (5)0.57228 (10)0.0180 (2)
H151.3392930.2255490.5578270.022*
C161.1023 (2)0.21125 (5)0.64677 (10)0.0180 (2)
C170.8999 (2)0.23004 (5)0.66564 (11)0.0195 (2)
H170.8285250.2119580.7154830.023*
C180.8014 (2)0.27479 (5)0.61256 (10)0.0172 (2)
H180.6635860.2871430.6260240.021*
C191.2112 (3)0.16377 (6)0.70690 (13)0.0283 (3)
H19A1.1377020.1557300.7670740.042*
H19B1.3662660.1719820.7334550.042*
H19C1.2005110.1326710.6593620.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.00981 (3)0.01211 (4)0.01291 (4)0.00066 (2)0.00260 (2)0.00161 (2)
S10.01308 (12)0.01470 (12)0.01821 (13)0.00026 (10)0.00368 (10)0.00096 (10)
O10.0086 (3)0.0232 (4)0.0211 (4)0.0009 (3)0.0013 (3)0.0040 (3)
O20.0141 (4)0.0254 (5)0.0199 (4)0.0026 (4)0.0030 (3)0.0025 (4)
O30.0179 (4)0.0171 (4)0.0250 (5)0.0021 (4)0.0049 (4)0.0001 (3)
O40.0306 (5)0.0158 (4)0.0245 (5)0.0005 (4)0.0104 (4)0.0040 (4)
O50.0127 (4)0.0304 (6)0.0440 (6)0.0006 (4)0.0024 (4)0.0130 (5)
O60.0234 (4)0.0212 (4)0.0160 (4)0.0004 (4)0.0045 (3)0.0021 (3)
C10.0147 (5)0.0131 (5)0.0153 (5)0.0004 (4)0.0040 (4)0.0032 (4)
C20.0196 (6)0.0242 (6)0.0186 (6)0.0043 (5)0.0000 (4)0.0052 (5)
C30.0286 (7)0.0280 (7)0.0170 (6)0.0019 (6)0.0013 (5)0.0069 (5)
C40.0305 (7)0.0209 (6)0.0216 (6)0.0003 (5)0.0108 (5)0.0067 (5)
C50.0238 (6)0.0192 (6)0.0270 (6)0.0055 (5)0.0080 (5)0.0035 (5)
C60.0177 (5)0.0174 (5)0.0192 (5)0.0029 (4)0.0026 (4)0.0014 (4)
C70.0162 (5)0.0127 (5)0.0132 (5)0.0003 (4)0.0036 (4)0.0007 (4)
C80.0184 (5)0.0180 (5)0.0194 (6)0.0027 (4)0.0027 (4)0.0006 (4)
C90.0288 (7)0.0201 (6)0.0214 (6)0.0073 (5)0.0037 (5)0.0040 (5)
C100.0350 (7)0.0162 (5)0.0204 (6)0.0015 (5)0.0110 (5)0.0022 (4)
C110.0252 (6)0.0170 (6)0.0242 (6)0.0047 (5)0.0084 (5)0.0009 (5)
C120.0174 (5)0.0161 (5)0.0199 (5)0.0015 (4)0.0033 (4)0.0000 (4)
C130.0140 (5)0.0130 (5)0.0160 (5)0.0011 (4)0.0028 (4)0.0010 (4)
C140.0152 (5)0.0169 (5)0.0187 (5)0.0009 (4)0.0055 (4)0.0002 (4)
C150.0150 (5)0.0193 (6)0.0201 (6)0.0022 (4)0.0046 (4)0.0005 (4)
C160.0208 (6)0.0152 (5)0.0181 (5)0.0013 (4)0.0037 (4)0.0003 (4)
C170.0225 (6)0.0170 (5)0.0208 (6)0.0004 (5)0.0092 (5)0.0010 (4)
C180.0159 (5)0.0168 (5)0.0203 (5)0.0001 (4)0.0069 (4)0.0001 (4)
C190.0334 (8)0.0234 (7)0.0292 (7)0.0094 (6)0.0090 (6)0.0083 (5)
Geometric parameters (Å, º) top
I1—O11.8108 (9)C7—C81.3849 (17)
I1—C12.1289 (11)C7—C121.3883 (17)
I1—C72.1370 (12)C8—C91.3954 (19)
I1—O22.5674 (10)C8—H80.9500
I1—O42.7076 (10)C9—C101.387 (2)
I1—O32.8118 (10)C9—H90.9500
S1—O51.4555 (10)C10—C111.390 (2)
S1—O61.4568 (10)C10—H100.9500
S1—O41.4631 (10)C11—C121.3975 (18)
S1—C131.7702 (12)C11—H110.9500
O2—H2A0.86 (2)C12—H120.9500
O2—H2B0.85 (2)C13—C181.3931 (17)
O3—H3A0.84 (2)C13—C141.3935 (17)
O3—H3B0.79 (2)C14—C151.3919 (18)
C1—C61.3819 (17)C14—H140.9500
C1—C21.3888 (18)C15—C161.3973 (18)
C2—C31.3923 (19)C15—H150.9500
C2—H20.9500C16—C171.3970 (18)
C3—C41.385 (2)C16—C191.5037 (19)
C3—H30.9500C17—C181.3888 (18)
C4—C51.385 (2)C17—H170.9500
C4—H40.9500C18—H180.9500
C5—C61.3942 (18)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C6—H60.9500C19—H19C0.9800
O1—I1—C194.57 (4)C1—C6—H6121.3
O1—I1—C796.08 (5)C5—C6—H6121.3
C1—I1—C795.36 (4)C8—C7—C12123.12 (12)
O1—I1—O2175.27 (4)C8—C7—I1114.46 (9)
C1—I1—O281.83 (4)C12—C7—I1122.41 (9)
C7—I1—O287.34 (4)C7—C8—C9118.05 (12)
O1—I1—O477.55 (4)C7—C8—H8121.0
C1—I1—O4171.59 (4)C9—C8—H8121.0
C7—I1—O482.72 (4)C10—C9—C8120.41 (13)
O2—I1—O4106.19 (3)C10—C9—H9119.8
O1—I1—O387.53 (4)C8—C9—H9119.8
C1—I1—O384.96 (4)C9—C10—C11120.17 (13)
C7—I1—O3176.33 (4)C9—C10—H10119.9
O2—I1—O389.09 (3)C11—C10—H10119.9
O4—I1—O397.47 (3)C10—C11—C12120.71 (13)
O5—S1—O6113.54 (7)C10—C11—H11119.6
O5—S1—O4112.68 (7)C12—C11—H11119.6
O6—S1—O4111.76 (6)C7—C12—C11117.53 (12)
O5—S1—C13106.12 (6)C7—C12—H12121.2
O6—S1—C13106.66 (6)C11—C12—H12121.2
O4—S1—C13105.37 (6)C18—C13—C14120.40 (11)
I1—O2—H2A112.9 (14)C18—C13—S1119.17 (9)
I1—O2—H2B125.5 (14)C14—C13—S1120.33 (9)
H2A—O2—H2B110 (2)C15—C14—C13119.13 (11)
I1—O3—H3A124.2 (14)C15—C14—H14120.4
I1—O3—H3B123.4 (15)C13—C14—H14120.4
H3A—O3—H3B101.5 (19)C14—C15—C16121.38 (12)
S1—O4—I1138.26 (6)C14—C15—H15119.3
C6—C1—C2123.26 (11)C16—C15—H15119.3
C6—C1—I1121.86 (9)C17—C16—C15118.41 (12)
C2—C1—I1114.81 (9)C17—C16—C19120.65 (12)
C1—C2—C3117.98 (13)C15—C16—C19120.93 (12)
C1—C2—H2121.0C18—C17—C16120.94 (12)
C3—C2—H2121.0C18—C17—H17119.5
C4—C3—C2120.03 (13)C16—C17—H17119.5
C4—C3—H3120.0C17—C18—C13119.73 (12)
C2—C3—H3120.0C17—C18—H18120.1
C5—C4—C3120.63 (12)C13—C18—H18120.1
C5—C4—H4119.7C16—C19—H19A109.5
C3—C4—H4119.7C16—C19—H19B109.5
C4—C5—C6120.63 (13)H19A—C19—H19B109.5
C4—C5—H5119.7C16—C19—H19C109.5
C6—C5—H5119.7H19A—C19—H19C109.5
C1—C6—C5117.46 (12)H19B—C19—H19C109.5
O5—S1—O4—I15.82 (11)C10—C11—C12—C70.16 (19)
O6—S1—O4—I1135.08 (8)O5—S1—C13—C1836.61 (12)
C13—S1—O4—I1109.46 (9)O6—S1—C13—C18157.97 (10)
C6—C1—C2—C30.8 (2)O4—S1—C13—C1883.11 (11)
I1—C1—C2—C3177.82 (11)O5—S1—C13—C14147.06 (11)
C1—C2—C3—C40.7 (2)O6—S1—C13—C1425.70 (12)
C2—C3—C4—C50.3 (2)O4—S1—C13—C1493.22 (11)
C3—C4—C5—C60.1 (2)C18—C13—C14—C150.18 (19)
C2—C1—C6—C50.6 (2)S1—C13—C14—C15176.11 (10)
I1—C1—C6—C5177.39 (10)C13—C14—C15—C160.6 (2)
C4—C5—C6—C10.2 (2)C14—C15—C16—C171.0 (2)
C12—C7—C8—C90.70 (19)C14—C15—C16—C19177.83 (13)
I1—C7—C8—C9179.34 (10)C15—C16—C17—C180.7 (2)
C7—C8—C9—C100.4 (2)C19—C16—C17—C18178.17 (13)
C8—C9—C10—C110.1 (2)C16—C17—C18—C130.1 (2)
C9—C10—C11—C120.1 (2)C14—C13—C18—C170.51 (19)
C8—C7—C12—C110.56 (19)S1—C13—C18—C17175.82 (10)
I1—C7—C12—C11179.10 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.86 (2)1.92 (2)2.7563 (14)165 (2)
O2—H2B···I1ii0.85 (2)3.14 (2)3.9397 (10)158.1 (18)
O2—H2B···O1ii0.85 (2)1.91 (2)2.7443 (14)169 (2)
O3—H3A···S1i0.84 (2)3.00 (2)3.7847 (11)155.7 (17)
O3—H3A···O5i0.84 (2)1.92 (2)2.7625 (15)174.6 (19)
O3—H3B···S1iii0.79 (2)2.89 (2)3.5812 (10)147.5 (18)
O3—H3B···O6iii0.79 (2)1.99 (2)2.7776 (14)171 (2)
C2—H2···O10.952.492.9805 (16)112
C6—H6···O20.952.332.9408 (17)122
C6—H6···O6i0.952.583.2562 (16)129
C8—H8···O10.952.382.9521 (17)119
C12—H12···O20.952.413.0957 (17)129
C14—H14···O5iv0.952.653.4301 (16)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer).

Funding information

Funding for this research was provided by: Walsh University (grant No. 2019 Faculty Scholars to TJ Smith).

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBozopoulos, A. P. & Rentzeperis, P. J. (1987). Acta Cryst. C43, 142–144.  CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2021). APEX4, SADABS and SAINT, Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. (2007). PhD thesis, The University of Akron, Akron, Ohio, United States.  Google Scholar
First citationKoser, G. F., Wettach, R. H., Troup, J. M. & Frenz, B. A. (1976). J. Org. Chem. 41, 3609–3611.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchröckeneder, A., Stichnoth, D., Mayer, P. & Trauner, D. (2012). Beilstein J. Org. Chem. 8, 1523–1527.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusubov, M. S., Svitich, D. Y., Yoshimura, A., Nemykin, V. N. & Zhdankin, V. V. (2013). Chem. Commun. 49, 11269–11271.  CrossRef CAS Google Scholar
First citationZhdankin, V. V., Erickson, S. A. & Hanson, K. J. (1997). J. Am. Chem. Soc. 119, 4775–4776.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds