organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2-Methyl­phen­yl)-4,4′-bipyridin-1-ium tetra­fluorido­borate

crossmark logo

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bUniversity of North Texas, 1155 Union Circle, Denton, TX 76203-5070, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 12 January 2022; accepted 3 March 2022; online 10 March 2022)

Crystals of the title compound, C17H15N2+·BF4, were unexpectedly grown from crystallization attempts of [Pt(4,4′-bpy)4](BF4)2 [Smith et al. (2019[Smith, J. B., Otten, B. M., Derry, P. J., Browning, C., Bodenstedt, K. W., Sandridge, J. H., Satumtira, N. T., Zilaie, M., Payne, J., Nuti, R., Omary, M. A. & Smucker, B. W. (2019). Comments Inorg. Chem. 39, 188-215.]). Comments Inorg. Chem. 39, 188–215] using toluene and aceto­nitrile. The tetra­fluoro­borate anion and the central pyridinium ring of the cation are disordered, with atomic site occupancies close to ½. The tolyl group of the cation has a 75.31 (11)° twist relative to the unsubstituted pyridyl group. This rotation allows for a centrosymmetric dimer of cations with weak hydrogen bonding between the pyridyl nitro­gen atom and a methyl H atom on the neighbouring cation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

For each cation of the title structure, the ring of the tolyl group is twisted relative to the monosubstituted 4,4′-bipyridinium with a 75.31 (11)° rotation between planes (comprised of the tolyl ring (C11–C16) versus the unsubstituted pyrid­yl ring (N1/C1–C5) (Fig. 1[link]) ; the central pyridinium ring (C6, C7, C9, C10) is disordered over two orientations with refined occupancies of 0.507 (6) and 0.493 (6). This twist is similar to the 78.12° between corresponding planes of a N-naphthyl monosubstituted 4,4′-bipyridinium cation (Lin & Zhao, 2015[Lin, F. & Zhao, X. (2015). Tetrahedron, 71, 1124-1131.]). The twisted conformation in the title compound allows for head-to-tail packing between two cations (Fig. 2[link]). The mol­ecules in this dimer are slightly offset, which enables inter­molecular hydrogen bonding (H⋯N = 2.613 Å) between one cation's methyl hydrogen, H17A, and N1 (1 − x, 2 − y, 1 − z) on the pyridyl group of the other cation (Table 1[link]). The offset bipyridinium rings results in an inter­molecular C9⋯C1 (1 − x, 2 − y, 1 − z) distance of 3.363 (10) Å (Fig. 2[link]). The twisted tolyl ring is face-to-face with a pyridyl group of another dimer (−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) at a distance (centroids of each ring) of 3.712 Å. The position of this adjacent dimer results in an N1⋯H10 (−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) distance of 2.369 Å between the pyridyl nitro­gen atom and the hydrogen atom on the other pyridinium ring (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯N1i 0.96 2.61 3.450 (6) 146
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
Ellipsoid (50% probability level) representation of the cation with disordered atoms omitted for clarity.
[Figure 2]
Figure 2
Ellipsoid (50% probability level) representation of the packing of the cations with the distances (Å) between the ring centroids of pyridyl-tolyl groups, N1⋯H10(−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z), H17A⋯N1(1 − x, 2 − y, 1 − z), and C9⋯C1(1 − x, 2 − y, 1 − z). Disordered atoms are omitted.

The C—N distance between the pyridinium and tolyl group is 1.487 (4) Å. This is longer than the C—N bond lengths observed in N-aryl structures of monosubstituted 4,4′-bipyridinium in: N-phenyl [1.460 (2) Å; Coe et al., 1998[Coe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts, S. & Persoons, A. (1998). Inorg. Chem. 37, 3391-3399.]], N-naphthyl [1.455 (2) Å; Lin & Zhao, 2015[Lin, F. & Zhao, X. (2015). Tetrahedron, 71, 1124-1131.]], or N-biphenyl [1.449 (5) Å; Schoder et al., 2019[Schoder, S., Schröder, H. V., Cera, L., Puttreddy, R., Güttler, A., Resch-Genger, U., Rissanen, K. & Schalley, C. A. (2019). Chem. Eur. J. 25, 3257-3261.]]. The adjacent methyl group of the tolyl group is a likely factor for this longer C—N bond length, which is corroborated by the longer C—N bond distances of 1.463 (9) and 1.482 (9) Å resulting from an ortho-methyl group in the structure of the disubstituted N,N′-bis­(3-methyl-4-carboxyl­atophen­yl)-4,4′-bipyridinium bridging ligand (Wang et al., 2020[Wang, S., Li, S., Xiong, J., Lin, Z., Wei, W. & Xu, Y. (2020). Chem. Commun. 56, 7399-7402.]).

Synthesis and crystallization

Colourless plate-shaped crystals of the title compound grew as a product from crystallization attempts using liquid diffusion of toluene into an aceto­nitrile solution of [Pt(4,4′-bpy)4](BF4)2 (Smith et al., 2019[Smith, J. B., Otten, B. M., Derry, P. J., Browning, C., Bodenstedt, K. W., Sandridge, J. H., Satumtira, N. T., Zilaie, M., Payne, J., Nuti, R., Omary, M. A. & Smucker, B. W. (2019). Comments Inorg. Chem. 39, 188-215.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the crystal structure, both the BF4 anion and four atoms of the central pyridinium ring (C6, C7, C9, C10) in the cation are disordered over two sets of sites, with a ratio of occupancies at ca 51 and 49%. These two occupancies of the pyridinium ring form a dihedral angle of about 30°. All our attempts to improve the quality of the refinement, such as disordering of the entire cation or only some of its rings, gave us similar results.

Table 2
Experimental details

Crystal data
Chemical formula C17H15N2+·BF4
Mr 334.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 11.4260 (5), 9.0735 (3), 15.5434 (5)
β (°) 102.118 (4)
V3) 1575.54 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.10 × 0.09 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.845, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16394, 2786, 2296
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.108, 0.378, 1.63
No. of reflections 2786
No. of parameters 240
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(2-Methylphenyl)-4,4'-bipyridin-1-ium tetrafluoridoborate top
Crystal data top
C17H15N2+·BF4F(000) = 688
Mr = 334.12Dx = 1.409 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.4260 (5) ÅCell parameters from 4873 reflections
b = 9.0735 (3) Åθ = 4.4–74.8°
c = 15.5434 (5) ŵ = 1.00 mm1
β = 102.118 (4)°T = 200 K
V = 1575.54 (10) Å3Plate, colourless
Z = 40.10 × 0.09 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2786 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2296 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.0000 pixels mm-1θmax = 66.6°, θmin = 5.4°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlis Pro; Rigaku OD, 2019)
k = 810
Tmin = 0.845, Tmax = 1.000l = 1818
16394 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.108Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.378H-atom parameters constrained
S = 1.63 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.45 e Å3
30 restraintsΔρmin = 0.24 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.3153 (14)0.3155 (13)0.6447 (8)0.164 (4)0.493 (6)
F20.4760 (14)0.312 (2)0.7610 (8)0.169 (6)0.493 (6)
F30.3583 (14)0.524 (2)0.7352 (10)0.152 (5)0.493 (6)
F40.4860 (11)0.4406 (9)0.6437 (8)0.155 (4)0.493 (6)
B10.415 (3)0.402 (3)0.6907 (18)0.113 (3)0.493 (6)
F1A0.3290 (16)0.530 (2)0.7158 (11)0.145 (5)0.507 (6)
F2A0.4771 (16)0.372 (2)0.7621 (12)0.202 (8)0.507 (6)
F3A0.4091 (17)0.418 (2)0.6267 (7)0.214 (9)0.507 (6)
F4A0.2994 (13)0.3047 (13)0.7003 (10)0.193 (5)0.507 (6)
B1A0.380 (2)0.409 (3)0.7088 (17)0.113 (3)0.507 (6)
N10.2687 (4)0.9335 (5)0.3262 (2)0.1134 (9)
N20.4946 (2)0.8531 (3)0.78218 (17)0.0764 (8)
C10.2431 (4)1.0258 (6)0.3851 (3)0.1134 (9)
H10.1909621.1026690.3643880.136*
C20.2866 (4)1.0187 (5)0.4745 (3)0.0982 (12)
H20.2643801.0883520.5119200.118*
C30.3641 (3)0.9056 (4)0.5073 (2)0.0768 (9)
C40.3920 (4)0.8102 (5)0.4469 (2)0.0979 (12)
H40.4439700.7321640.4654460.118*
C50.3441 (4)0.8285 (6)0.3586 (3)0.1134 (9)
H50.3665170.7621000.3194780.136*
C60.3935 (8)0.9217 (10)0.7527 (5)0.0836 (12)0.493 (6)
H60.3495470.9579450.7920950.100*0.493 (6)
C70.3526 (8)0.9402 (9)0.6654 (5)0.0836 (12)0.493 (6)
H70.2812580.9912860.6463570.100*0.493 (6)
C80.4113 (3)0.8872 (3)0.60354 (19)0.0694 (8)
C90.5101 (8)0.7906 (12)0.6389 (7)0.0836 (12)0.493 (6)
H90.5470250.7370020.6010390.100*0.493 (6)
C100.5484 (9)0.7783 (13)0.7254 (8)0.0836 (12)0.493 (6)
H100.6132770.7174120.7474700.100*0.493 (6)
C110.5354 (3)0.8302 (4)0.8786 (2)0.0833 (10)
C120.6227 (3)0.9222 (4)0.9257 (2)0.0893 (11)
C130.6571 (4)0.8949 (5)1.0169 (2)0.0947 (11)
H130.7163730.9525821.0511490.114*
C140.6053 (4)0.7857 (5)1.0553 (2)0.1002 (13)
H140.6292120.7702621.1156080.120*
C150.5208 (5)0.7005 (5)1.0085 (3)0.1115 (14)
H150.4868850.6259351.0362540.134*
C160.4823 (4)0.7217 (5)0.9174 (2)0.1013 (12)
H160.4222340.6633870.8845520.122*
C170.6795 (5)1.0384 (6)0.8840 (3)0.1146 (14)
H17A0.6990611.0011500.8309010.172*
H17B0.7513171.0702520.9234320.172*
H17C0.6255511.1201840.8700800.172*
C6A0.5156 (8)0.7563 (13)0.7254 (8)0.0836 (12)0.507 (6)
H6A0.5609010.6731870.7452380.100*0.507 (6)
C7A0.4714 (8)0.7748 (12)0.6354 (7)0.0836 (12)0.507 (6)
H7A0.4866380.7019030.5971200.100*0.507 (6)
C9A0.3999 (7)1.0067 (10)0.6624 (5)0.0836 (12)0.507 (6)
H9A0.3673881.0967310.6409580.100*0.507 (6)
C10A0.4385 (7)0.9833 (9)0.7510 (5)0.0836 (12)0.507 (6)
H10A0.4268441.0559660.7905970.100*0.507 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.204 (9)0.136 (6)0.124 (7)0.009 (5)0.031 (7)0.010 (6)
F20.148 (7)0.277 (17)0.081 (5)0.003 (8)0.023 (4)0.057 (7)
F30.141 (8)0.197 (11)0.134 (10)0.064 (7)0.068 (8)0.078 (8)
F40.212 (9)0.108 (4)0.184 (9)0.036 (5)0.129 (8)0.021 (4)
B10.133 (14)0.138 (5)0.064 (10)0.010 (7)0.013 (5)0.003 (5)
F1A0.168 (10)0.168 (9)0.093 (5)0.019 (8)0.011 (5)0.007 (6)
F2A0.160 (9)0.250 (16)0.165 (11)0.061 (10)0.038 (7)0.008 (9)
F3A0.270 (15)0.282 (17)0.102 (5)0.184 (15)0.066 (8)0.042 (7)
F4A0.208 (9)0.140 (6)0.200 (12)0.022 (5)0.026 (11)0.006 (8)
B1A0.133 (14)0.138 (5)0.064 (10)0.010 (7)0.013 (5)0.003 (5)
N10.1264 (19)0.146 (2)0.0661 (14)0.0230 (14)0.0169 (12)0.0021 (12)
N20.0827 (15)0.0889 (17)0.0585 (15)0.0092 (12)0.0171 (11)0.0079 (11)
C10.1264 (19)0.146 (2)0.0661 (14)0.0230 (14)0.0169 (12)0.0021 (12)
C20.114 (3)0.110 (3)0.067 (2)0.004 (2)0.0120 (18)0.0072 (18)
C30.0793 (17)0.093 (2)0.0607 (18)0.0261 (15)0.0203 (13)0.0015 (14)
C40.112 (3)0.119 (3)0.065 (2)0.007 (2)0.0234 (19)0.0141 (18)
C50.1264 (19)0.146 (2)0.0661 (14)0.0230 (14)0.0169 (12)0.0021 (12)
C60.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C70.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C80.0727 (15)0.0772 (17)0.0618 (18)0.0103 (12)0.0219 (12)0.0022 (12)
C90.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C100.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C110.0872 (19)0.095 (2)0.068 (2)0.0171 (16)0.0167 (15)0.0106 (15)
C120.099 (2)0.102 (2)0.069 (2)0.0096 (18)0.0222 (17)0.0071 (16)
C130.106 (2)0.116 (3)0.061 (2)0.027 (2)0.0174 (17)0.0113 (18)
C140.126 (3)0.113 (3)0.063 (2)0.032 (2)0.023 (2)0.0025 (19)
C150.140 (3)0.121 (3)0.078 (2)0.009 (3)0.031 (2)0.008 (2)
C160.129 (3)0.115 (3)0.063 (2)0.000 (2)0.029 (2)0.0048 (18)
C170.128 (3)0.137 (4)0.074 (2)0.015 (3)0.011 (2)0.004 (2)
C6A0.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C7A0.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C9A0.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
C10A0.096 (3)0.093 (2)0.0613 (12)0.0127 (19)0.0175 (19)0.0097 (14)
Geometric parameters (Å, º) top
F1—B11.44 (3)C7—C81.369 (8)
F2—B11.42 (3)C8—C91.444 (11)
F3—B11.52 (3)C8—C7A1.271 (11)
F4—B11.248 (19)C8—C9A1.442 (8)
F1A—B1A1.26 (3)C9—H90.9300
F2A—B1A1.28 (4)C9—C101.329 (12)
F3A—B1A1.39 (2)C10—H100.9300
F4A—B1A1.31 (3)C11—C121.387 (5)
N1—C11.319 (6)C11—C161.362 (5)
N1—C51.312 (7)C12—C131.411 (5)
N2—C61.307 (8)C12—C171.460 (6)
N2—C101.359 (11)C13—H130.9300
N2—C111.487 (4)C13—C141.356 (6)
N2—C6A1.303 (11)C14—H140.9300
N2—C10A1.382 (8)C14—C151.328 (6)
C1—H10.9300C15—H150.9300
C1—C21.375 (6)C15—C161.405 (5)
C2—H20.9300C16—H160.9300
C2—C31.381 (5)C17—H17A0.9600
C3—C41.363 (5)C17—H17B0.9600
C3—C81.489 (4)C17—H17C0.9600
C4—H40.9300C6A—C7A1.393 (12)
C4—C51.376 (6)C6A—H6A0.9300
C5—H50.9300C7A—H7A0.9300
C6—H60.9300C9A—C10A1.372 (9)
C6—C71.350 (9)C9A—H9A0.9300
C7—H70.9300C10A—H10A0.9300
F2—B1—F1106.1 (19)C7A—C8—C9A118.0 (6)
F2—B1—F3104.7 (18)C9A—C8—C3119.5 (4)
F4—B1—F2110 (2)C8—C9—H9119.9
F4—B1—F1114 (2)C10—C9—C8120.1 (7)
F4—B1—F3117 (2)C10—C9—H9119.9
F1—B1—F3104.4 (19)N2—C10—H10119.4
F1A—B1A—F2A122 (3)C9—C10—N2121.1 (8)
F1A—B1A—F3A103 (2)C9—C10—H10119.4
F1A—B1A—F4A108 (2)C12—C11—N2119.2 (3)
F2A—B1A—F3A105.7 (17)C16—C11—N2118.2 (3)
F2A—B1A—F4A112 (2)C16—C11—C12122.6 (3)
F4A—B1A—F3A105 (2)C11—C12—C13116.3 (4)
C5—N1—C1114.6 (4)C11—C12—C17122.5 (3)
C6—N2—C10119.8 (6)C13—C12—C17121.2 (4)
C6—N2—C11119.1 (4)C12—C13—H13119.5
C10—N2—C11119.7 (6)C14—C13—C12121.1 (4)
C6A—N2—C11121.7 (6)C14—C13—H13119.5
C6A—N2—C10A118.5 (6)C13—C14—H14119.4
C10A—N2—C11119.8 (4)C15—C14—C13121.2 (4)
N1—C1—H1117.0C15—C14—H14119.4
N1—C1—C2125.9 (5)C14—C15—H15119.6
C2—C1—H1117.0C14—C15—C16120.7 (4)
C1—C2—H2120.8C16—C15—H15119.6
C1—C2—C3118.4 (4)C11—C16—C15118.1 (4)
C3—C2—H2120.8C11—C16—H16120.9
C2—C3—C8121.5 (3)C15—C16—H16120.9
C4—C3—C2116.2 (3)C12—C17—H17A109.5
C4—C3—C8122.2 (3)C12—C17—H17B109.5
C3—C4—H4119.7C12—C17—H17C109.5
C3—C4—C5120.5 (4)H17A—C17—H17B109.5
C5—C4—H4119.7H17A—C17—H17C109.5
N1—C5—C4124.3 (4)H17B—C17—H17C109.5
N1—C5—H5117.9C8—C7A—H7A118.7
C4—C5—H5117.9C8—C7A—C6A122.7 (8)
N2—C6—H6119.8N2—C6A—C7A121.3 (9)
N2—C6—C7120.4 (6)N2—C6A—H6A119.4
C7—C6—H6119.8N2—C10A—H10A119.6
C6—C7—H7118.5C8—C9A—H9A121.0
C6—C7—C8123.0 (6)C6A—C7A—H7A118.7
C8—C7—H7118.5C7A—C6A—H6A119.4
C7—C8—C3122.6 (4)C9A—C10A—N2120.8 (6)
C7—C8—C9113.9 (5)C9A—C10A—H10A119.6
C9—C8—C3122.6 (5)C10A—C9A—C8117.9 (6)
C7A—C8—C3122.2 (5)C10A—C9A—H9A121.0
N1—C1—C2—C30.1 (6)C7—C8—C9—C1010.3 (10)
N2—C6—C7—C81.4 (12)C8—C3—C4—C5178.2 (3)
N2—C11—C12—C13179.8 (3)C8—C9—C10—N21.4 (11)
N2—C11—C12—C172.1 (5)C8—C7A—C6A—N21.7 (11)
N2—C11—C16—C15179.9 (3)C10—N2—C6—C711.3 (11)
N2—C10A—C9A—C84.7 (11)C10—N2—C11—C1292.2 (6)
C1—N1—C5—C41.6 (7)C10—N2—C11—C1689.8 (6)
C1—C2—C3—C40.7 (5)C11—N2—C6—C7178.1 (6)
C1—C2—C3—C8177.6 (3)C11—N2—C10—C9176.6 (6)
C2—C3—C4—C50.1 (5)C11—N2—C6A—C7A176.5 (5)
C2—C3—C8—C724.5 (6)C11—N2—C10A—C9A179.9 (6)
C2—C3—C8—C9166.9 (6)C11—C12—C13—C141.1 (5)
C2—C3—C8—C7A171.8 (6)C12—C11—C16—C151.9 (6)
C2—C3—C8—C9A14.9 (6)C12—C13—C14—C150.4 (6)
C3—C4—C5—N11.1 (7)C13—C14—C15—C160.4 (6)
C3—C8—C9—C10179.9 (5)C14—C15—C16—C111.1 (6)
C3—C8—C7A—C6A179.7 (5)C16—C11—C12—C131.9 (5)
C3—C8—C9A—C10A176.6 (5)C16—C11—C12—C17180.0 (4)
C4—C3—C8—C7153.7 (6)C17—C12—C13—C14179.2 (4)
C4—C3—C8—C914.9 (6)C7A—C8—C9A—C10A9.8 (10)
C4—C3—C8—C7A6.4 (7)C6A—N2—C11—C12113.3 (6)
C4—C3—C8—C9A166.9 (5)C6A—N2—C11—C1668.7 (6)
C5—N1—C1—C21.0 (7)C6A—N2—C10A—C9A3.6 (10)
C6—N2—C10—C99.9 (11)C10A—N2—C11—C1263.2 (6)
C6—N2—C11—C12101.0 (6)C10A—N2—C11—C16114.9 (5)
C6—N2—C11—C1677.0 (6)C10A—N2—C6A—C7A7.0 (9)
C6—C7—C8—C3178.7 (6)C9A—C8—C7A—C6A6.9 (10)
C6—C7—C8—C99.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···N1i0.962.613.450 (6)146
Symmetry code: (i) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT); Welch Foundation (grant No. AD-0007 to Austin College).

References

First citationCoe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts, S. & Persoons, A. (1998). Inorg. Chem. 37, 3391–3399.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, F. & Zhao, X. (2015). Tetrahedron, 71, 1124–1131.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchoder, S., Schröder, H. V., Cera, L., Puttreddy, R., Güttler, A., Resch-Genger, U., Rissanen, K. & Schalley, C. A. (2019). Chem. Eur. J. 25, 3257–3261.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. B., Otten, B. M., Derry, P. J., Browning, C., Bodenstedt, K. W., Sandridge, J. H., Satumtira, N. T., Zilaie, M., Payne, J., Nuti, R., Omary, M. A. & Smucker, B. W. (2019). Comments Inorg. Chem. 39, 188–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S., Li, S., Xiong, J., Lin, Z., Wei, W. & Xu, Y. (2020). Chem. Commun. 56, 7399–7402.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds