organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1H-indole-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, Department of Chemistry and Biochemistry, Box 8064, Statesboro, GA 30460, USA
*Correspondence e-mail: wlynch@georgiasouthern.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 3 August 2020; accepted 31 August 2020; online 8 September 2020)

Our work in the area of synthesis of tris indole compounds as a potential chelator led to the synthesis and crystallization of ethyl 1H-indole-2-carboxyl­ate, C11H11NO2, an indole that was synthesized by the thionyl chloride reaction of 1H-indole-2-carb­oxy­lic acid, followed by dissolution in ethanol. The mol­ecular packing exhibits a herringbone pattern with the zigzag running along the b-axis direction; the compound crystallizes as a hydrogen-bonded dimer resulting from O⋯H—N hydrogen bonds, between the indole N—H group and the keto oxygen atom, which build centrosymmetric R22(10) ring motifs in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole esters can easily be prepared from 1H-indole-2-carb­oxy­lic acid via an isolated acyl chloride inter­mediate followed by dissolving the residue in the appropriate alcohol solvent. These indole-type compounds are of inter­est because of their prevalence in nature (Stempel & Gaich, 2016[Stempel, E. & Gaich, T. (2016). Acc. Chem. Res. 49, 2390-2402.]). Derivatives of this type of compound have also been implicated in a number of biological roles including anti­fungal (Kipp et al., 1999[Kipp, C. & Young, A. R. (1999). Photochem. Photobiol. 70, 191-198.]), anti­tumor (Lu et al., 2016[Lu, J.-J., Fu, L., Tang, Z., Zhang, C., Qin, L., Wang, J., Yu, Z., Shi, D., Xiao, X., Xie, F., Huang, W. & Deng, W. (2016). Oncotarget, 7, 2985-3001.]) and anti-inflammatory (Liu et al., 2016[Liu, Z., Tang, L., Zhu, H., Xu, T., Qiu, C., Zheng, S., Gu, Y., Feng, J., Zhang, Y. & Liang, G. (2016). J. Med. Chem. 59, 4637-4650.]) agents. These types of compounds have also been reported as potential cellular inhibitors of kinase (Jobson et al., 2009[Jobson, A. G., Lountos, G. T., Lorenzi, P. L., Llamas, J., Connelly, J., Cerna, D., Tropea, J. E., Onda, A., Zoppoli, G., Kondapaka, S., Zhang, G., Caplen, N. J., Cardellina, J. H., Yoo, S. S., Monks, A., Self, C., Waugh, D. S., Shoemaker, R. H. & Pommier, Y. (2009). J. Pharmacol. Exp. Ther. 331, 816-826.]) as well as an antagonist for glycine-binding sites (Ohtani et al., 2002[Ohtani, K.-I., Tanaka, H., Yoneda, Y., Yasuda, H., Ito, A., Nagata, R. & Nakamura, M. (2002). Brain Res. 944, 165-173.]). Previous reports include the structures of indole-2-carb­oxy­lic acid (Morzyk-Ociepa et al., 2004[Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79-86.]) and methyl 1H-indole-2-carboxyl­ate (Almutairi et al., 2017[Almutairi, M. S., Ghabbour, H. A. & Attia, M. I. (2017). Z. Kristallogr. New Cryst. Struct. 232, 431-432.]).

Herein we report the crystal structure of ethyl 1H-indole-2-carboxyl­ate (Fig. 1[link]), which forms a hydrogen-bonded dimer. The hydrogen bonding occurs between N atoms of the indole ring and the keto oxygen atoms with an R(10) synthon. The hydrogen bond between N1 and O2i is characterized by an N⋯O separation of 2.877 (3) Å [symmetry code: (i) −x + 2, −y + 1, −z + 1; Table 1[link]], and the ring motifs, R22(10), are placed on inversion centres in the space group P21/c (Fig. 2[link]). The crystal structure exhibits a classic herringbone pattern (Fig. 2[link]) with the blocks consisting of the hydrogen-bonded dimers, with the zigzag running along the b-axis direction. The mol­ecule is nearly planar, with a r.m.s.d. of 0.028 Å for the non-hydrogen atoms. There are no other short contacts or ππ inter­actions observed in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.84 (3) 2.08 (3) 2.877 (3) 158 (3)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds are coloured red.

Synthesis and crystallization

The title compound was synthesized by modification of an early method laid out by Terent'ev et al. (1969[Terent'ev, A. P., Yudin, L. G., Smirnova, G. V. & Kost, A. N. (1969). Chem. Heterocycl. Compd. 3, 455-455.]). Indole-2-carb­oxy­lic acid (0.50 g, 3.1 mmol) was dissolved in SOCl2 (19 ml) at 0°C. After stirring for 1 h, the solution was rotary evaporated and to the resulting oil was added absolute ethanol (17 ml) at room temperature. After stirring overnight, the solution was vacuum filtered to yield ethyl 1H-indole-2-carboxyl­ate as a beige solid, which was recrystallized from methanol to yield 0.54 g (2.9 mmol, 93%) of the product. Further recrystallization by slow evaporation from methanol solution resulted in X-ray quality crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H11NO2
Mr 189.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 5.5622 (7), 18.891 (2), 9.6524 (13)
β (°) 104.454 (13)
V3) 982.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.4 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.998, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5586, 1804, 991
Rint 0.047
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.01
No. of reflections 1804
No. of parameters 132
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 1H-indole-2-carboxylate top
Crystal data top
C11H11NO2F(000) = 400
Mr = 189.21Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5622 (7) ÅCell parameters from 611 reflections
b = 18.891 (2) Åθ = 2.4–21.1°
c = 9.6524 (13) ŵ = 0.09 mm1
β = 104.454 (13)°T = 170 K
V = 982.1 (2) Å3Needle, colourless
Z = 40.4 × 0.05 × 0.05 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
1804 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 66
Tmin = 0.998, Tmax = 1.000k = 2222
5586 measured reflectionsl = 611
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
1804 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Refinement. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95, 0.98 or 0.99 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and CH3 groups, respectively. Hydrogen atom of the N—H group was refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4202 (3)0.51968 (8)0.18977 (19)0.0674 (5)
O20.8074 (3)0.53509 (10)0.32447 (19)0.0769 (6)
N10.7445 (4)0.41313 (12)0.4844 (2)0.0618 (6)
C10.6528 (4)0.35476 (13)0.5376 (2)0.0546 (6)
C60.4072 (4)0.34466 (13)0.4568 (2)0.0561 (6)
C90.6121 (5)0.50269 (13)0.2963 (3)0.0603 (7)
C80.5633 (4)0.44041 (13)0.3735 (3)0.0559 (6)
C70.3542 (4)0.39987 (13)0.3545 (3)0.0604 (7)
H70.2015420.4073320.2854920.072*
C20.7649 (5)0.30983 (14)0.6497 (3)0.0667 (7)
H20.9311080.3171260.7033330.080*
C100.4457 (5)0.58135 (13)0.1043 (3)0.0713 (8)
H10A0.5705460.5723180.0490890.086*
H10B0.4993510.6229580.1666980.086*
C50.2734 (5)0.28695 (15)0.4909 (3)0.0713 (8)
H50.1077540.2783840.4376930.086*
C30.6258 (5)0.25482 (14)0.6791 (3)0.0745 (8)
H30.6969460.2235070.7553630.089*
C40.3833 (5)0.24349 (15)0.6006 (3)0.0760 (8)
H40.2925840.2046130.6240280.091*
C110.1971 (5)0.59444 (16)0.0056 (3)0.0935 (10)
H11A0.1498070.5537800.0585080.140*
H11B0.2041010.6370680.0511380.140*
H11C0.0739600.6010630.0614790.140*
H10.879 (5)0.4339 (15)0.520 (3)0.087 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0631 (11)0.0688 (12)0.0625 (11)0.0022 (9)0.0009 (9)0.0064 (9)
O20.0672 (13)0.0828 (13)0.0715 (13)0.0150 (10)0.0001 (10)0.0024 (10)
N10.0537 (14)0.0712 (15)0.0544 (13)0.0052 (12)0.0021 (12)0.0023 (12)
C10.0522 (15)0.0606 (16)0.0496 (14)0.0010 (12)0.0101 (12)0.0062 (13)
C60.0500 (15)0.0628 (15)0.0530 (14)0.0000 (12)0.0082 (12)0.0084 (13)
C90.0573 (17)0.0670 (17)0.0524 (15)0.0007 (14)0.0054 (14)0.0125 (14)
C80.0564 (16)0.0586 (15)0.0486 (14)0.0021 (12)0.0054 (12)0.0056 (13)
C70.0487 (15)0.0709 (17)0.0557 (15)0.0014 (13)0.0021 (12)0.0063 (14)
C20.0571 (16)0.0769 (18)0.0607 (17)0.0033 (14)0.0046 (13)0.0009 (15)
C100.0766 (19)0.0626 (17)0.0715 (18)0.0028 (14)0.0127 (15)0.0068 (14)
C50.0549 (16)0.0793 (18)0.0742 (19)0.0090 (14)0.0056 (14)0.0001 (16)
C30.0708 (19)0.0766 (19)0.0727 (19)0.0011 (15)0.0115 (16)0.0111 (15)
C40.0697 (19)0.0777 (19)0.078 (2)0.0072 (14)0.0136 (16)0.0097 (16)
C110.088 (2)0.089 (2)0.091 (2)0.0041 (17)0.0015 (18)0.0239 (18)
Geometric parameters (Å, º) top
O1—C91.324 (3)C2—H20.9500
O1—C101.455 (3)C2—C31.367 (3)
O2—C91.217 (3)C10—H10A0.9900
N1—C11.368 (3)C10—H10B0.9900
N1—C81.374 (3)C10—C111.491 (3)
N1—H10.84 (3)C5—H50.9500
C1—C61.406 (3)C5—C41.359 (4)
C1—C21.394 (3)C3—H30.9500
C6—C71.416 (3)C3—C41.389 (4)
C6—C51.404 (3)C4—H40.9500
C9—C81.454 (3)C11—H11A0.9800
C8—C71.366 (3)C11—H11B0.9800
C7—H70.9500C11—H11C0.9800
C9—O1—C10117.45 (19)O1—C10—H10A110.4
C1—N1—C8108.9 (2)O1—C10—H10B110.4
C1—N1—H1127 (2)O1—C10—C11106.8 (2)
C8—N1—H1123 (2)H10A—C10—H10B108.6
N1—C1—C6107.6 (2)C11—C10—H10A110.4
N1—C1—C2130.2 (2)C11—C10—H10B110.4
C2—C1—C6122.2 (2)C6—C5—H5120.3
C1—C6—C7106.9 (2)C4—C5—C6119.3 (2)
C5—C6—C1118.3 (2)C4—C5—H5120.3
C5—C6—C7134.8 (2)C2—C3—H3119.1
O1—C9—C8112.1 (2)C2—C3—C4121.8 (3)
O2—C9—O1123.6 (2)C4—C3—H3119.1
O2—C9—C8124.3 (2)C5—C4—C3121.3 (3)
N1—C8—C9120.5 (2)C5—C4—H4119.4
C7—C8—N1109.2 (2)C3—C4—H4119.4
C7—C8—C9130.3 (2)C10—C11—H11A109.5
C6—C7—H7126.4C10—C11—H11B109.5
C8—C7—C6107.3 (2)C10—C11—H11C109.5
C8—C7—H7126.4H11A—C11—H11B109.5
C1—C2—H2121.4H11A—C11—H11C109.5
C3—C2—C1117.2 (2)H11B—C11—H11C109.5
C3—C2—H2121.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.84 (3)2.08 (3)2.877 (3)158 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Funding information

The authors wish to thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X-ray facility, and Georgia Southern College of Science and Mathematics Office of Undergraduate Research for partial support.

References

First citationAlmutairi, M. S., Ghabbour, H. A. & Attia, M. I. (2017). Z. Kristallogr. New Cryst. Struct. 232, 431–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJobson, A. G., Lountos, G. T., Lorenzi, P. L., Llamas, J., Connelly, J., Cerna, D., Tropea, J. E., Onda, A., Zoppoli, G., Kondapaka, S., Zhang, G., Caplen, N. J., Cardellina, J. H., Yoo, S. S., Monks, A., Self, C., Waugh, D. S., Shoemaker, R. H. & Pommier, Y. (2009). J. Pharmacol. Exp. Ther. 331, 816–826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKipp, C. & Young, A. R. (1999). Photochem. Photobiol. 70, 191–198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Z., Tang, L., Zhu, H., Xu, T., Qiu, C., Zheng, S., Gu, Y., Feng, J., Zhang, Y. & Liang, G. (2016). J. Med. Chem. 59, 4637–4650.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLu, J.-J., Fu, L., Tang, Z., Zhang, C., Qin, L., Wang, J., Yu, Z., Shi, D., Xiao, X., Xie, F., Huang, W. & Deng, W. (2016). Oncotarget, 7, 2985–3001.  Web of Science CrossRef PubMed Google Scholar
First citationMorzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhtani, K.-I., Tanaka, H., Yoneda, Y., Yasuda, H., Ito, A., Nagata, R. & Nakamura, M. (2002). Brain Res. 944, 165–173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStempel, E. & Gaich, T. (2016). Acc. Chem. Res. 49, 2390–2402.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTerent'ev, A. P., Yudin, L. G., Smirnova, G. V. & Kost, A. N. (1969). Chem. Heterocycl. Compd. 3, 455–455.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds