metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1572-m1573

Bis(μ-4,6-di­methyl­pyrimidine-2-thiol­ato)-κ3N,S:S;κ3S:N,S-bis­­[(tri­phenyl­phosphane-κP)silver(I)]

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 7 November 2012; accepted 24 November 2012; online 30 November 2012)

The dinuclear title complex, [Ag2(C6H7N2S)2(C18H15P)2], comprises two inversion-related [Ag(C6H7N2S)(C18H15P)] units. The pyrimidine­thiol­ate anion acts both as a bridging and a chelating ligand. The AgI ions are linked via two μ2-S donor atoms, which generate a strictly planar Ag2S2 core with an Ag⋯Ag separation of 2.9569 (4) Å. The AgI ion presents a distorted tetra­hedral coordination geometry. In the crystal, weak C—H⋯N and C—H⋯S hydrogen bonds link the complex mol­ecules into a two-dimensional network parallel to (010).

Related literature

For the structures of metal(I) coordination compounds and their potential applications, see: Aslanidis et al. (1997[Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277-284.]); McFarlane et al. (1998[McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121-125.]); Nawaz et al. (2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]); Hameau et al. (2012[Hameau, A., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2012). Inorg. Chim. Acta, 388, 60-70.]); Nimthong et al. (2012[Nimthong, R., Pakawatchai, C. & Wattanakanjana, Y. (2012). Acta Cryst. E68, m645.]); Pakawatchai et al. (2012[Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773-m774.]). For relevant examples of discrete complexes, see: Cox et al. (2000[Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615-1620.]); Lobana et al. (2008[Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008-1016.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251-1256.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H7N2S)2(C18H15P)2]

  • Mr = 1018.67

  • Monoclinic, P 21 /n

  • a = 11.7050 (5) Å

  • b = 15.3084 (7) Å

  • c = 12.5331 (6) Å

  • β = 97.483 (1)°

  • V = 2226.62 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.29 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.909

  • 26686 measured reflections

  • 5568 independent reflections

  • 4798 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.04

  • 5568 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1i 0.93 2.94 3.801 (3) 154
C14—H14⋯N2ii 0.93 2.69 3.471 (4) 143
C35—H35⋯N2iii 0.93 2.93 3.756 (4) 151
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z; (iii) x, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, a large number of structural reports on metal(I) complexes containing heterocyclic thiones as ligands or mixed-ligands with triphenylphosphane have been studied (Aslanidis et al., 1997; McFarlane et al., 1998; Pakawatchai et al., 2012; Nimthong et al., 2012) because of not only their potential applications due to their antimicrobial activities (Nawaz et al., 2011), but also strongly luminescent properties (Hameau et al., 2012).

The structure of the title dinuclear mixed-ligand complex displays the distorted tetrahedral coordination of each AgI center, which exhibits a planar Ag2S2 moiety in which each of the doubly S-bridged AgI centers is surrounded by the one P atom of phosphane ligand and one N atom of the dmpymtH ligands (Fig. 1). The Ag—Ag distance of 2.9569 (4) Å in the four-membered Ag2S2 ring is shorter than in [Ag2X2(l-S-pySH)2(PPh3)2] (X = Cl and Br), 3.8425 (8) and 3.8211 (4) Å, respectively (Lobana et al., 2008) and also shorter than the sum of the covalent radii of two AgI centers (3.44 Å). Focusing on the comparison of bond distances and bond angles around the AgI ion, the Ag—S bond lengths [2.5492 (6)–2.7897 (6) Å] are in good agreement with values reported for other silver(I) complexes with heterocyclic thione ligands, such as 2.5548 (9) Å for [Ag(PPh3)(pymtH)Br]2 (Cox et al., 2000) and 2.537 (2) Å for [Ag(Ph3P)(Diaz)2]2(NO3)2 (Nawaz et al., 2011). The Ag1—P1 bond length of 2.4088 (6) Å is similar to that found in [Ag(PPh3)(thiourea)(NO3)]2.[Ag(PPh3)(thiourea)]2(NO3)2 [2.4029 (10)–2.4157 (10) Å] (Isab et al., 2010). The two S1–Ag1–P1 angles of 116.81 (2) and 123.56 (2)° are larger than the normal tetrahedral value of 109.5°. In the crystal, the intermolecular interactions C14(sp2)—H14···N2 [H14···N2 = 2.686 (4) Å, C14(sp2)···N2 = 3.471 (4) Å and C14(sp2)—H14···N2 = 142.52 (8)°] and C14(sp2)—H14···S1 [H14···S1 = 2.942 (3) Å, C14(sp2)···S1 = 3.801 (3) Å and C14(sp2)—H14···S1 = 154.18 (9)°] form chains (Fig. 2). Moreover, secondary interactions C35(sp2)—H35···N2 [H35···N2 = 2.928 (4) Å, C35(sp2)···N2 = 3.756 (4) Å and C35(sp2)—H35···N2 = 150.48 (7)°] are also observed, which form the two-dimensional layer network (Fig. 3).

Related literature top

For the structures of metal(I) coordination compounds and their potential applications, see: Aslanidis et al. (1997); McFarlane et al. (1998); Nawaz et al. (2011); Hameau et al. (2012); Nimthong et al. (2012); Pakawatchai et al. (2012). For relevant examples of discrete complexes, see: Cox et al. (2000); Lobana et al. (2008); Isab et al. (2010); Nawaz et al. (2011).

Experimental top

Triphenylphosphane (0.31 g, 1.18 mmol) was dissolved in 30 cm3 of ethanol at 335 K. Silver acetate (0.10 g, 0.60 mmol) was added and the mixture was stirred for 3 h. 4,6-Dimethylpyrimidine-2(1H)-thione (0.18 g, 0.46 mmol) was added and the new reaction mixture was refluxed for 2 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for several days, was filtered off and dried under reduced pressure.

Refinement top

The H atoms bonded to C atoms were constrained to ride on their parent atoms with C—H bond lengths of 0.93 Å [aryl CH, Uiso(H) = 1.2Ueq(C)] and 0.96 Å [methyl CH3, Uiso(H) = 1.5Ueq(C)] except for H3, which was located in a difference map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with C—H···N and C—H···S hydrogen bonds interactions showed as dashed lines.
[Figure 3] Fig. 3. The packing diagram viewed down the b axis. The dashed lines represent intermolecular C—H···N and C—H···S interactions.
Bis(µ-4,6-dimethylpyrimidine-2-thiolato)-κ3N,S:S; κ3S:N,S-bis[(triphenylphosphane-κP)silver(I)] top
Crystal data top
[Ag2(C6H7N2S)2(C18H15P)2]F(000) = 1032
Mr = 1018.67Dx = 1.519 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8845 reflections
a = 11.7050 (5) Åθ = 2.2–28.3°
b = 15.3084 (7) ŵ = 1.08 mm1
c = 12.5331 (6) ÅT = 293 K
β = 97.483 (1)°Block, yellow
V = 2226.62 (18) Å30.29 × 0.18 × 0.09 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
5568 independent reflections
Radiation source: fine-focus sealed tube4798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.793, Tmax = 0.909k = 2020
26686 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8969P]
where P = (Fo2 + 2Fc2)/3
5568 reflections(Δ/σ)max = 0.003
266 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.29 e Å3
0 constraints
Crystal data top
[Ag2(C6H7N2S)2(C18H15P)2]V = 2226.62 (18) Å3
Mr = 1018.67Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.7050 (5) ŵ = 1.08 mm1
b = 15.3084 (7) ÅT = 293 K
c = 12.5331 (6) Å0.29 × 0.18 × 0.09 mm
β = 97.483 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4798 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.909Rint = 0.023
26686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
5568 reflectionsΔρmin = 0.29 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64391 (17)0.09032 (14)0.12789 (17)0.0376 (4)
C20.6887 (2)0.20334 (17)0.2336 (2)0.0512 (6)
C30.6524 (3)0.26179 (17)0.1622 (2)0.0578 (7)
C40.6137 (2)0.23054 (15)0.07073 (19)0.0457 (5)
C50.7338 (4)0.2323 (2)0.3350 (3)0.0798 (10)
H5A0.75480.18200.37390.120*
H5B0.80030.26870.31680.120*
H5C0.67520.26470.37900.120*
C60.5799 (3)0.28888 (19)0.0155 (2)0.0673 (8)
H6A0.55560.25400.07210.101*
H6B0.51770.32610.01410.101*
H6C0.64460.32410.04400.101*
C210.69001 (19)0.17384 (14)0.30847 (17)0.0390 (4)
C220.5829 (2)0.21344 (18)0.3033 (2)0.0525 (6)
H220.51740.18450.27120.063*
C230.5735 (3)0.2965 (2)0.3463 (2)0.0662 (8)
H230.50150.32290.34270.079*
C240.6690 (3)0.33977 (17)0.3938 (2)0.0654 (8)
H240.66180.39510.42300.079*
C250.7747 (3)0.30172 (18)0.3984 (2)0.0620 (7)
H250.83960.33140.43040.074*
C260.7861 (2)0.21889 (17)0.3557 (2)0.0533 (6)
H260.85870.19360.35880.064*
C310.66300 (17)0.00663 (15)0.36218 (17)0.0384 (4)
C320.6224 (2)0.08985 (19)0.3347 (2)0.0581 (6)
H320.61120.10700.26300.070*
C330.5986 (3)0.1472 (2)0.4139 (3)0.0799 (10)
H330.57350.20350.39550.096*
C340.6118 (3)0.1213 (3)0.5202 (3)0.0781 (10)
H340.59550.16020.57320.094*
C350.6487 (3)0.0385 (2)0.5481 (2)0.0698 (9)
H350.65590.02070.61960.084*
C360.6751 (2)0.0184 (2)0.4697 (2)0.0530 (6)
H360.70130.07430.48900.064*
N10.60828 (16)0.14406 (12)0.05384 (15)0.0397 (4)
N20.68507 (17)0.11646 (13)0.21745 (15)0.0452 (4)
H30.665 (3)0.318 (2)0.173 (2)0.064 (8)*
C110.84851 (19)0.04687 (14)0.2463 (2)0.0406 (5)
C120.8906 (3)0.0742 (2)0.1534 (2)0.0591 (7)
H120.84250.10180.09870.071*
C131.0069 (3)0.0597 (2)0.1432 (3)0.0782 (11)
H131.03600.07830.08150.094*
C141.0778 (3)0.0188 (2)0.2223 (4)0.0801 (11)
H141.15470.00930.21430.096*
C151.0368 (2)0.0081 (2)0.3123 (3)0.0726 (9)
H151.08580.03620.36580.087*
C160.9221 (2)0.00566 (18)0.3264 (2)0.0531 (6)
H160.89500.01270.38920.064*
Ag10.570898 (16)0.048363 (12)0.086830 (13)0.04660 (8)
P10.69618 (5)0.06407 (4)0.25410 (4)0.03501 (12)
S10.35819 (5)0.02130 (4)0.09946 (5)0.04512 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (9)0.0395 (11)0.0411 (11)0.0003 (8)0.0034 (8)0.0072 (9)
C20.0592 (15)0.0507 (14)0.0446 (12)0.0067 (11)0.0096 (11)0.0118 (11)
C30.083 (2)0.0362 (13)0.0531 (15)0.0049 (12)0.0057 (13)0.0099 (11)
C40.0538 (13)0.0383 (11)0.0436 (12)0.0023 (10)0.0012 (10)0.0032 (9)
C50.113 (3)0.070 (2)0.0621 (18)0.0094 (19)0.0349 (18)0.0209 (16)
C60.097 (2)0.0480 (15)0.0575 (16)0.0074 (15)0.0102 (16)0.0049 (12)
C210.0473 (11)0.0363 (10)0.0345 (10)0.0001 (9)0.0090 (9)0.0024 (8)
C220.0541 (14)0.0543 (14)0.0499 (13)0.0089 (11)0.0103 (11)0.0040 (11)
C230.082 (2)0.0571 (16)0.0636 (17)0.0293 (16)0.0268 (16)0.0113 (14)
C240.108 (2)0.0344 (12)0.0598 (16)0.0041 (14)0.0351 (17)0.0037 (11)
C250.084 (2)0.0435 (14)0.0615 (16)0.0152 (14)0.0203 (15)0.0097 (12)
C260.0585 (15)0.0439 (13)0.0584 (15)0.0052 (11)0.0108 (12)0.0087 (11)
C310.0330 (10)0.0453 (12)0.0378 (10)0.0022 (9)0.0075 (8)0.0037 (9)
C320.0635 (16)0.0516 (15)0.0603 (16)0.0116 (13)0.0116 (13)0.0003 (12)
C330.083 (2)0.0578 (18)0.100 (3)0.0168 (16)0.019 (2)0.0209 (18)
C340.0669 (19)0.090 (2)0.081 (2)0.0028 (17)0.0261 (17)0.041 (2)
C350.0621 (17)0.105 (3)0.0443 (14)0.0128 (17)0.0149 (13)0.0211 (15)
C360.0534 (14)0.0641 (16)0.0412 (12)0.0022 (12)0.0047 (11)0.0015 (11)
N10.0436 (9)0.0373 (9)0.0383 (9)0.0003 (8)0.0061 (7)0.0036 (7)
N20.0486 (10)0.0472 (11)0.0415 (10)0.0010 (9)0.0118 (8)0.0043 (8)
C110.0376 (11)0.0377 (11)0.0481 (12)0.0057 (8)0.0120 (9)0.0107 (9)
C120.0602 (16)0.0659 (16)0.0554 (15)0.0148 (13)0.0236 (13)0.0094 (13)
C130.071 (2)0.087 (2)0.087 (2)0.0274 (18)0.047 (2)0.0282 (19)
C140.0470 (15)0.071 (2)0.129 (3)0.0104 (15)0.036 (2)0.039 (2)
C150.0417 (14)0.0596 (18)0.116 (3)0.0051 (13)0.0075 (16)0.0152 (18)
C160.0423 (12)0.0517 (14)0.0653 (16)0.0035 (11)0.0071 (11)0.0039 (12)
Ag10.05306 (12)0.05106 (12)0.03463 (10)0.01141 (8)0.00173 (8)0.00047 (7)
P10.0351 (3)0.0382 (3)0.0317 (3)0.0029 (2)0.0043 (2)0.0018 (2)
S10.0448 (3)0.0354 (3)0.0576 (3)0.0031 (2)0.0160 (3)0.0063 (2)
Geometric parameters (Å, º) top
C1—N21.339 (3)C31—P11.815 (2)
C1—N11.346 (3)C32—C331.380 (4)
C1—S1i1.746 (2)C32—H320.9300
C2—N21.347 (3)C33—C341.379 (5)
C2—C31.372 (4)C33—H330.9300
C2—C51.505 (3)C34—C351.370 (5)
C3—C41.373 (3)C34—H340.9300
C3—H30.89 (3)C35—C361.377 (4)
C4—N11.343 (3)C35—H350.9300
C4—C61.495 (4)C36—H360.9300
C5—H5A0.9600N1—Ag12.3763 (18)
C5—H5B0.9600C11—C121.386 (3)
C5—H5C0.9600C11—C161.387 (4)
C6—H6A0.9600C11—P11.818 (2)
C6—H6B0.9600C12—C131.401 (4)
C6—H6C0.9600C12—H120.9300
C21—C261.385 (3)C13—C141.360 (6)
C21—C221.387 (3)C13—H130.9300
C21—P11.818 (2)C14—C151.346 (5)
C22—C231.391 (4)C14—H140.9300
C22—H220.9300C15—C161.393 (4)
C23—C241.367 (5)C15—H150.9300
C23—H230.9300C16—H160.9300
C24—C251.362 (5)Ag1—P12.4088 (6)
C24—H240.9300Ag1—S12.5492 (6)
C25—C261.390 (4)Ag1—S1i2.7897 (6)
C25—H250.9300Ag1—Ag1i2.9569 (4)
C26—H260.9300S1—C1i1.746 (2)
C31—C321.387 (4)S1—Ag1i2.7897 (6)
C31—C361.390 (3)
N2—C1—N1125.0 (2)C35—C34—C33120.3 (3)
N2—C1—S1i118.66 (17)C35—C34—H34119.9
N1—C1—S1i116.31 (15)C33—C34—H34119.9
N2—C2—C3121.8 (2)C34—C35—C36119.7 (3)
N2—C2—C5116.1 (3)C34—C35—H35120.2
C3—C2—C5122.1 (3)C36—C35—H35120.2
C2—C3—C4118.8 (2)C35—C36—C31120.9 (3)
C2—C3—H3117.6 (19)C35—C36—H36119.6
C4—C3—H3123 (2)C31—C36—H36119.6
N1—C4—C3120.1 (2)C4—N1—C1117.93 (19)
N1—C4—C6116.9 (2)C4—N1—Ag1137.84 (16)
C3—C4—C6122.9 (2)C1—N1—Ag1103.78 (13)
C2—C5—H5A109.5C1—N2—C2116.3 (2)
C2—C5—H5B109.5C12—C11—C16119.3 (2)
H5A—C5—H5B109.5C12—C11—P1117.4 (2)
C2—C5—H5C109.5C16—C11—P1123.23 (18)
H5A—C5—H5C109.5C11—C12—C13119.0 (3)
H5B—C5—H5C109.5C11—C12—H12120.5
C4—C6—H6A109.5C13—C12—H12120.5
C4—C6—H6B109.5C14—C13—C12120.9 (3)
H6A—C6—H6B109.5C14—C13—H13119.5
C4—C6—H6C109.5C12—C13—H13119.5
H6A—C6—H6C109.5C15—C14—C13120.1 (3)
H6B—C6—H6C109.5C15—C14—H14120.0
C26—C21—C22118.8 (2)C13—C14—H14120.0
C26—C21—P1123.42 (18)C14—C15—C16121.0 (3)
C22—C21—P1117.80 (19)C14—C15—H15119.5
C21—C22—C23119.9 (3)C16—C15—H15119.5
C21—C22—H22120.1C11—C16—C15119.7 (3)
C23—C22—H22120.1C11—C16—H16120.2
C24—C23—C22120.7 (3)C15—C16—H16120.2
C24—C23—H23119.7N1—Ag1—P1115.73 (5)
C22—C23—H23119.7N1—Ag1—S1114.96 (5)
C25—C24—C23119.8 (3)P1—Ag1—S1116.81 (2)
C25—C24—H24120.1N1—Ag1—S1i60.73 (5)
C23—C24—H24120.1P1—Ag1—S1i123.56 (2)
C24—C25—C26120.4 (3)S1—Ag1—S1i112.912 (15)
C24—C25—H25119.8N1—Ag1—Ag1i84.41 (5)
C26—C25—H25119.8P1—Ag1—Ag1i155.550 (17)
C21—C26—C25120.4 (3)S1—Ag1—Ag1i60.342 (16)
C21—C26—H26119.8S1i—Ag1—Ag1i52.570 (14)
C25—C26—H26119.8C31—P1—C11105.11 (10)
C32—C31—C36118.8 (2)C31—P1—C21104.39 (10)
C32—C31—P1117.53 (18)C11—P1—C21103.96 (10)
C36—C31—P1123.68 (19)C31—P1—Ag1115.14 (7)
C33—C32—C31120.0 (3)C11—P1—Ag1115.39 (8)
C33—C32—H32120.0C21—P1—Ag1111.66 (7)
C31—C32—H32120.0C1i—S1—Ag1102.21 (7)
C34—C33—C32120.3 (3)C1i—S1—Ag1i79.07 (7)
C34—C33—H33119.9Ag1—S1—Ag1i67.088 (15)
C32—C33—H33119.9
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1ii0.932.943.801 (3)154
C14—H14···N2iii0.932.693.471 (4)143
C35—H35···N2iv0.932.933.756 (4)151
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C6H7N2S)2(C18H15P)2]
Mr1018.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.7050 (5), 15.3084 (7), 12.5331 (6)
β (°) 97.483 (1)
V3)2226.62 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.29 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.793, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
26686, 5568, 4798
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.04
No. of reflections5568
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.29

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1i0.932.943.801 (3)154.2
C14—H14···N2ii0.932.693.471 (4)142.5
C35—H35···N2iii0.932.933.756 (4)150.5
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x, y, z+1.
 

Acknowledgements

We are grateful to the Department of Chemistry, and the Graduate School, Prince of Songkla University, for financial support of this work.

References

First citationAslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277–284.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620.  Web of Science CSD CrossRef CAS Google Scholar
First citationHameau, A., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2012). Inorg. Chim. Acta, 388, 60–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationNimthong, R., Pakawatchai, C. & Wattanakanjana, Y. (2012). Acta Cryst. E68, m645.  CSD CrossRef IUCr Journals Google Scholar
First citationPakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773–m774.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1572-m1573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds