organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(E)-3-(4-Nitro­phen­yl)prop-2-ene-1,1-di­yl]bis­­(3-hy­dr­oxy-5,5-di­methyl­cyclo­hex-2-en-1-one)

aAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, bCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, cCorporate R&D Center, Duksan Hi-Metal Co. Ltd., Cheonan-si 331-821, Republic of Korea, and dApplication Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
*Correspondence e-mail: j9601@kist.re.kr

(Received 14 June 2012; accepted 16 July 2012; online 21 July 2012)

In the title compound, C25H29NO6, each of the cyclo­hexenone rings adopts a half-chair conformation. The hy­droxy and carbonyl O atoms face each other and are oriented to allow for the formation of two intra­molecular O—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds are formed between molecules, generating a two-dimensional supramolecular structure.

Related literature

For related structures, see: Cha et al. (2011[Cha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011). Acta Cryst. E67, o3153.], 2012[Cha, J. H., Kim, Y. H., Lee, J. K. & Cho, Y. S. (2012). Acta Cryst. E68, o245.]); Zhu et al. (2011[Zhu, Y.-L., Xiao, G.-L., Chen, Y.-F., Chen, R.-T. & Zhou, Y. (2011). Acta Cryst. E67, o2398.]).

[Scheme 1]

Experimental

Crystal data
  • C25H29NO6

  • Mr = 439.51

  • Monoclinic, C 2/c

  • a = 25.0742 (13) Å

  • b = 10.2759 (5) Å

  • c = 20.7156 (9) Å

  • β = 119.7359 (13)°

  • V = 4634.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.792, Tmax = 0.991

  • 22032 measured reflections

  • 5269 independent reflections

  • 2991 reflections with F2 > 2σ(F2)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.135

  • S = 1.06

  • 5269 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.80 2.599 (2) 164
O2—H2⋯O3 0.82 1.87 2.658 (2) 162
C20—H20⋯O4i 0.93 2.39 3.248 (3) 154
C22—H22C⋯O5ii 0.96 2.58 3.438 (3) 148
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y-1, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

As part of our ongoing study of the substituent effect on the solid state structures of two cyclohexenone ring derivatives (Cha et al., 2011, 2012), we present here the crystal structure of the title compound (Fig. 1). The bond lengths and angles are normal and correspond to those observed in related structures (Cha et al., 2011, 2012; Zhu et al., 2011). Both cyclohexenone rings display half-chair conformations. The hydroxy and carbonyl O atoms face each other and are oriented to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1). In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) are formed between molecules, generating a 2D supramolecular structure.

Related literature top

For related structures, see: Cha et al. (2011, 2012); Zhu et al. (2011).

Experimental top

To a solution of 5,5-dimethyl-1,3-cyclohexanedione (4.61 mmol), 4-nitrocinnamaldehyde (1.84 mmol) with 4 Å MS, was added small amounts of L-proline (0.47 mmol) under nitrogen atmosphere. Anhydrous ethyl acetate (2 ml) was added to the reaction mixture, and the solution was stirred for 1 day. The reaction mixture was filtered through a pad of celite in order to remove MS, and evaporation of the solvent afforded a mixture. The mixture was purified by flash column chromatography to afford the title product, which was recrystallized from ethanol, to give crystals suitable for X-ray analysis.

Refinement top

All C-bonded H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å. Hydroxyl H atoms, H1 and H2, were found in a difference map. Their positions were however fixed in an ideal geometry in the last refinement cycles, with O—H = 0.82 Å. For all H atoms, isotropic displacement parameters were computed as Uiso(H) = 1.2Ueq(carrier atom).

Structure description top

As part of our ongoing study of the substituent effect on the solid state structures of two cyclohexenone ring derivatives (Cha et al., 2011, 2012), we present here the crystal structure of the title compound (Fig. 1). The bond lengths and angles are normal and correspond to those observed in related structures (Cha et al., 2011, 2012; Zhu et al., 2011). Both cyclohexenone rings display half-chair conformations. The hydroxy and carbonyl O atoms face each other and are oriented to allow for the formation of two intramolecular O—H···O hydrogen bonds (Table 1). In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) are formed between molecules, generating a 2D supramolecular structure.

For related structures, see: Cha et al. (2011, 2012); Zhu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing 50% probability displacement ellipsoids.
2,2'-[(E)-3-(4-Nitrophenyl)prop-2-ene-1,1-diyl]bis(3-hydroxy-5,5- dimethylcyclohex-2-en-1-one) top
Crystal data top
C25H29NO6F(000) = 1872.00
Mr = 439.51Dx = 1.260 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 13620 reflections
a = 25.0742 (13) Åθ = 3.2–27.5°
b = 10.2759 (5) ŵ = 0.09 mm1
c = 20.7156 (9) ÅT = 296 K
β = 119.7359 (13)°Block, colourless
V = 4634.7 (4) Å30.30 × 0.10 × 0.10 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2991 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.032
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 3232
Tmin = 0.792, Tmax = 0.991k = 1313
22032 measured reflectionsl = 2626
5269 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.042Secondary atom site location: difference Fourier map
wR(F2) = 0.135Hydrogen site location: inferred from neighbouring sites
S = 1.06H-atom parameters constrained
5269 reflections w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
303 parameters(Δ/σ)max < 0.001
0 restraintsΔρmax = 0.18 e Å3
0 constraintsΔρmin = 0.22 e Å3
Crystal data top
C25H29NO6V = 4634.7 (4) Å3
Mr = 439.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.0742 (13) ŵ = 0.09 mm1
b = 10.2759 (5) ÅT = 296 K
c = 20.7156 (9) Å0.30 × 0.10 × 0.10 mm
β = 119.7359 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5269 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2991 reflections with F2 > 2σ(F2)
Tmin = 0.792, Tmax = 0.991Rint = 0.032
22032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
5269 reflectionsΔρmin = 0.22 e Å3
303 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02930 (5)0.13724 (12)0.14367 (7)0.0573 (4)
O20.23893 (5)0.11823 (12)0.13709 (7)0.0589 (4)
O30.21928 (5)0.31987 (12)0.20295 (6)0.0603 (4)
O40.05837 (6)0.07857 (13)0.10323 (7)0.0643 (4)
O50.15275 (12)0.42718 (19)0.52346 (12)0.1368 (9)
O60.06819 (10)0.3408 (3)0.50333 (10)0.1206 (8)
N10.11093 (11)0.34889 (18)0.49193 (9)0.0768 (6)
C10.10440 (7)0.07296 (17)0.09272 (8)0.0491 (4)
C20.10272 (8)0.16048 (19)0.03373 (9)0.0578 (5)
C30.16465 (8)0.18324 (17)0.03870 (8)0.0513 (5)
C40.19570 (8)0.05109 (17)0.04924 (9)0.0512 (4)
C50.19625 (7)0.02967 (16)0.10971 (8)0.0446 (4)
C60.15405 (7)0.01186 (15)0.13362 (8)0.0429 (4)
C70.16143 (7)0.08327 (15)0.20220 (7)0.0422 (4)
C80.13044 (7)0.21521 (15)0.18834 (7)0.0422 (4)
C90.06831 (7)0.23269 (16)0.16367 (8)0.0476 (4)
C100.04089 (8)0.36434 (18)0.15737 (10)0.0597 (5)
C110.08671 (9)0.46759 (18)0.20644 (9)0.0571 (5)
C120.14051 (9)0.46117 (17)0.19166 (10)0.0582 (5)
C130.16543 (8)0.32739 (16)0.19520 (8)0.0474 (4)
C140.15201 (7)0.00807 (17)0.25298 (8)0.0458 (4)
C150.12608 (8)0.01416 (17)0.29326 (8)0.0478 (4)
C160.12309 (7)0.08092 (15)0.34496 (7)0.0429 (4)
C170.16846 (8)0.17428 (17)0.38157 (9)0.0536 (5)
C180.16503 (9)0.26281 (17)0.42933 (9)0.0566 (5)
C190.11526 (8)0.25652 (16)0.44083 (8)0.0503 (5)
C200.06988 (8)0.16539 (17)0.40619 (9)0.0536 (5)
C210.07438 (8)0.07802 (17)0.35877 (8)0.0502 (4)
C220.20484 (10)0.27305 (19)0.10411 (10)0.0673 (6)
C230.15459 (10)0.2466 (2)0.03369 (10)0.0694 (6)
C240.10892 (10)0.4410 (2)0.28900 (10)0.0713 (6)
C250.05730 (12)0.6024 (2)0.18634 (14)0.0861 (7)
H10.04490.07120.13800.0688*
H2A0.07490.12320.01450.0694*
H2B0.08600.24400.03660.0694*
H20.23240.16810.16330.0707*
H4A0.23770.06480.06050.0615*
H4B0.17470.00320.00290.0615*
H70.20530.10390.23030.0506*
H10A0.00870.35760.17030.0716*
H10B0.02200.39260.10600.0716*
H12A0.12740.49720.14280.0698*
H12B0.17340.51570.22770.0698*
H140.16910.09140.25540.0635*
H150.10590.09600.28950.0615*
H170.20190.17700.37360.0643*
H180.19550.32530.45330.0680*
H200.03670.16260.41450.0643*
H210.04390.01540.33540.0603*
H22A0.21020.23550.14940.0808*
H22B0.24420.28350.10750.0808*
H22C0.18530.35640.09640.0808*
H23A0.19350.25820.03140.0833*
H23B0.12890.19140.07500.0833*
H23C0.13510.32960.03990.0833*
H24A0.12930.35810.30270.0856*
H24B0.07430.44010.29700.0856*
H24C0.13700.50810.31880.0856*
H25A0.04220.61880.13450.1034*
H25B0.08730.66700.21550.1034*
H25C0.02390.60620.19640.1034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (7)0.0618 (8)0.0668 (7)0.0098 (6)0.0228 (6)0.0031 (7)
O20.0524 (7)0.0634 (8)0.0726 (8)0.0149 (6)0.0397 (6)0.0106 (6)
O30.0472 (8)0.0684 (8)0.0680 (8)0.0200 (6)0.0306 (6)0.0070 (6)
O40.0494 (7)0.0801 (9)0.0723 (8)0.0236 (7)0.0370 (6)0.0191 (7)
O50.213 (3)0.0915 (14)0.1371 (16)0.0556 (15)0.1105 (17)0.0667 (13)
O60.1199 (16)0.1614 (19)0.0983 (12)0.0118 (14)0.0677 (12)0.0483 (12)
N10.1114 (16)0.0632 (11)0.0575 (10)0.0026 (11)0.0432 (11)0.0125 (9)
C10.0442 (10)0.0600 (11)0.0435 (9)0.0092 (8)0.0220 (7)0.0014 (8)
C20.0568 (11)0.0677 (12)0.0465 (9)0.0152 (9)0.0238 (8)0.0105 (9)
C30.0588 (11)0.0542 (10)0.0410 (8)0.0016 (9)0.0247 (8)0.0001 (8)
C40.0555 (11)0.0569 (11)0.0507 (9)0.0006 (9)0.0335 (8)0.0045 (8)
C50.0408 (9)0.0482 (9)0.0448 (8)0.0044 (8)0.0213 (7)0.0032 (7)
C60.0377 (9)0.0525 (10)0.0386 (8)0.0072 (7)0.0191 (7)0.0003 (7)
C70.0350 (8)0.0535 (10)0.0386 (8)0.0079 (7)0.0187 (6)0.0014 (7)
C80.0372 (9)0.0527 (10)0.0350 (8)0.0070 (7)0.0166 (7)0.0004 (7)
C90.0422 (9)0.0573 (10)0.0409 (8)0.0061 (8)0.0187 (7)0.0024 (8)
C100.0501 (11)0.0646 (12)0.0596 (10)0.0049 (9)0.0237 (9)0.0064 (9)
C110.0635 (12)0.0546 (11)0.0538 (10)0.0007 (9)0.0296 (9)0.0021 (8)
C120.0665 (12)0.0533 (11)0.0551 (10)0.0117 (9)0.0305 (9)0.0021 (8)
C130.0474 (10)0.0560 (11)0.0388 (8)0.0128 (8)0.0213 (7)0.0040 (7)
C140.0463 (10)0.0507 (10)0.0422 (8)0.0000 (8)0.0234 (7)0.0017 (7)
C150.0520 (10)0.0490 (10)0.0479 (9)0.0046 (8)0.0289 (8)0.0032 (8)
C160.0466 (9)0.0473 (9)0.0380 (8)0.0043 (8)0.0233 (7)0.0001 (7)
C170.0537 (10)0.0630 (11)0.0550 (9)0.0118 (9)0.0352 (8)0.0002 (9)
C180.0657 (12)0.0516 (10)0.0509 (10)0.0215 (9)0.0275 (9)0.0073 (8)
C190.0658 (12)0.0455 (9)0.0414 (9)0.0016 (9)0.0280 (8)0.0019 (7)
C200.0482 (10)0.0657 (12)0.0531 (9)0.0010 (9)0.0299 (8)0.0060 (9)
C210.0471 (10)0.0577 (10)0.0502 (9)0.0113 (8)0.0274 (8)0.0117 (8)
C220.0855 (15)0.0578 (12)0.0558 (11)0.0031 (10)0.0329 (10)0.0036 (9)
C230.0862 (15)0.0716 (13)0.0548 (11)0.0024 (11)0.0384 (10)0.0098 (9)
C240.0857 (15)0.0758 (14)0.0627 (11)0.0009 (12)0.0445 (11)0.0050 (10)
C250.0941 (17)0.0654 (14)0.0990 (16)0.0138 (12)0.0481 (14)0.0090 (12)
Geometric parameters (Å, º) top
O1—C91.299 (2)C19—C201.370 (3)
O2—C51.301 (2)C20—C211.376 (3)
O3—C131.281 (3)O1—H10.820
O4—C11.278 (3)O2—H20.820
O5—N11.222 (3)C2—H2A0.970
O6—N11.209 (4)C2—H2B0.970
N1—C191.465 (3)C4—H4A0.970
C1—C21.501 (3)C4—H4B0.970
C1—C61.407 (2)C7—H70.980
C2—C31.523 (3)C10—H10A0.970
C3—C41.526 (3)C10—H10B0.970
C3—C221.533 (3)C12—H12A0.970
C3—C231.536 (3)C12—H12B0.970
C4—C51.497 (3)C14—H140.947
C5—C61.385 (3)C15—H150.965
C6—C71.527 (3)C17—H170.930
C7—C81.518 (3)C18—H180.930
C7—C141.513 (3)C20—H200.930
C8—C91.389 (3)C21—H210.930
C8—C131.412 (3)C22—H22A0.960
C9—C101.494 (3)C22—H22B0.960
C10—C111.523 (3)C22—H22C0.960
C11—C121.526 (4)C23—H23A0.960
C11—C241.538 (3)C23—H23B0.960
C11—C251.527 (3)C23—H23C0.960
C12—C131.497 (3)C24—H24A0.960
C14—C151.307 (3)C24—H24B0.960
C15—C161.479 (3)C24—H24C0.960
C16—C171.391 (3)C25—H25A0.960
C16—C211.386 (3)C25—H25B0.960
C17—C181.378 (3)C25—H25C0.960
C18—C191.383 (4)
O5—N1—O6123.3 (3)C3—C2—H2B108.542
O5—N1—C19117.5 (3)H2A—C2—H2B107.531
O6—N1—C19119.2 (2)C3—C4—H4A108.773
O4—C1—C2116.67 (15)C3—C4—H4B108.780
O4—C1—C6121.97 (17)C5—C4—H4A108.765
C2—C1—C6121.36 (18)C5—C4—H4B108.768
C1—C2—C3114.91 (13)H4A—C4—H4B107.669
C2—C3—C4107.69 (16)C6—C7—H7103.784
C2—C3—C22110.71 (18)C8—C7—H7103.783
C2—C3—C23109.32 (14)C14—C7—H7103.786
C4—C3—C22110.14 (13)C9—C10—H10A108.695
C4—C3—C23109.97 (18)C9—C10—H10B108.693
C22—C3—C23109.00 (16)C11—C10—H10A108.702
C3—C4—C5113.91 (18)C11—C10—H10B108.695
O2—C5—C4114.63 (18)H10A—C10—H10B107.630
O2—C5—C6123.06 (17)C11—C12—H12A108.576
C4—C5—C6122.30 (15)C11—C12—H12B108.569
C1—C6—C5118.10 (16)C13—C12—H12A108.568
C1—C6—C7121.38 (18)C13—C12—H12B108.570
C5—C6—C7120.52 (14)H12A—C12—H12B107.553
C6—C7—C8116.04 (11)C7—C14—H14112.040
C6—C7—C14111.11 (14)C15—C14—H14118.601
C8—C7—C14116.35 (17)C14—C15—H15120.557
C7—C8—C9124.09 (15)C16—C15—H15114.895
C7—C8—C13118.42 (16)C16—C17—H17119.287
C9—C8—C13117.30 (15)C18—C17—H17119.274
O1—C9—C8123.30 (16)C17—C18—H18120.800
O1—C9—C10114.50 (15)C19—C18—H18120.787
C8—C9—C10122.19 (15)C19—C20—H20120.693
C9—C10—C11114.23 (14)C21—C20—H20120.686
C10—C11—C12106.57 (17)C16—C21—H21119.148
C10—C11—C24110.82 (18)C20—C21—H21119.119
C10—C11—C25110.34 (15)C3—C22—H22A109.474
C12—C11—C24110.30 (16)C3—C22—H22B109.469
C12—C11—C25109.9 (2)C3—C22—H22C109.474
C24—C11—C25108.9 (2)H22A—C22—H22B109.479
C11—C12—C13114.78 (18)H22A—C22—H22C109.464
O3—C13—C8121.81 (16)H22B—C22—H22C109.468
O3—C13—C12116.75 (17)C3—C23—H23A109.477
C8—C13—C12121.42 (19)C3—C23—H23B109.471
C7—C14—C15129.33 (17)C3—C23—H23C109.481
C14—C15—C16124.52 (17)H23A—C23—H23B109.471
C15—C16—C17121.95 (19)H23A—C23—H23C109.467
C15—C16—C21120.11 (15)H23B—C23—H23C109.459
C17—C16—C21117.94 (17)C11—C24—H24A109.465
C16—C17—C18121.4 (2)C11—C24—H24B109.466
C17—C18—C19118.41 (17)C11—C24—H24C109.468
N1—C19—C18119.38 (17)H24A—C24—H24B109.472
N1—C19—C20118.8 (2)H24A—C24—H24C109.473
C18—C19—C20121.85 (18)H24B—C24—H24C109.484
C19—C20—C21118.6 (2)C11—C25—H25A109.468
C16—C21—C20121.73 (16)C11—C25—H25B109.480
C9—O1—H1109.478C11—C25—H25C109.465
C5—O2—H2109.479H25A—C25—H25B109.484
C1—C2—H2A108.549H25A—C25—H25C109.463
C1—C2—H2B108.544H25B—C25—H25C109.469
C3—C2—H2A108.531
O5—N1—C19—C181.2 (3)C7—C8—C9—O16.3 (3)
O5—N1—C19—C20178.30 (16)C7—C8—C9—C10174.32 (13)
O6—N1—C19—C18178.05 (16)C7—C8—C13—O39.3 (3)
O6—N1—C19—C201.4 (3)C7—C8—C13—C12172.36 (12)
O4—C1—C2—C3161.78 (13)C9—C8—C13—O3165.86 (14)
O4—C1—C6—C5168.20 (13)C9—C8—C13—C1212.4 (3)
O4—C1—C6—C711.5 (3)C13—C8—C9—O1168.61 (15)
C2—C1—C6—C511.1 (2)C13—C8—C9—C1010.8 (3)
C2—C1—C6—C7169.26 (13)O1—C9—C10—C11157.68 (16)
C6—C1—C2—C318.9 (3)C8—C9—C10—C1122.9 (3)
C1—C2—C3—C447.49 (18)C9—C10—C11—C1250.7 (2)
C1—C2—C3—C2272.96 (18)C9—C10—C11—C2469.3 (3)
C1—C2—C3—C23166.95 (14)C9—C10—C11—C25169.98 (17)
C2—C3—C4—C549.48 (15)C10—C11—C12—C1349.23 (17)
C22—C3—C4—C571.3 (2)C24—C11—C12—C1371.13 (18)
C23—C3—C4—C5168.51 (13)C25—C11—C12—C13168.79 (13)
C3—C4—C5—O2157.31 (12)C11—C12—C13—O3162.00 (13)
C3—C4—C5—C623.43 (19)C11—C12—C13—C819.6 (2)
O2—C5—C6—C1170.53 (12)C7—C14—C15—C16175.75 (11)
O2—C5—C6—C79.1 (2)C14—C15—C16—C1730.3 (2)
C4—C5—C6—C18.7 (2)C14—C15—C16—C21150.32 (14)
C4—C5—C6—C7171.66 (12)C15—C16—C17—C18179.66 (12)
C1—C6—C7—C889.53 (18)C15—C16—C21—C20179.62 (12)
C1—C6—C7—C1446.37 (17)C17—C16—C21—C201.0 (2)
C5—C6—C7—C890.12 (17)C21—C16—C17—C181.0 (2)
C5—C6—C7—C14133.98 (14)C16—C17—C18—C190.5 (3)
C6—C7—C8—C980.5 (2)C17—C18—C19—N1179.43 (13)
C6—C7—C8—C1394.32 (15)C17—C18—C19—C200.0 (3)
C6—C7—C14—C15143.57 (14)N1—C19—C20—C21179.40 (13)
C8—C7—C14—C157.82 (19)C18—C19—C20—C210.1 (3)
C14—C7—C8—C953.05 (17)C19—C20—C21—C160.5 (3)
C14—C7—C8—C13132.10 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.802.599 (2)164
O2—H2···O30.821.872.658 (2)162
C20—H20···O4i0.932.393.248 (3)154
C22—H22C···O5ii0.962.583.438 (3)148
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC25H29NO6
Mr439.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.0742 (13), 10.2759 (5), 20.7156 (9)
β (°) 119.7359 (13)
V3)4634.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.792, 0.991
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
22032, 5269, 2991
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.135, 1.06
No. of reflections5269
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: RAPID-AUTO (Rigaku, 2006), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.8201.8012.599 (2)164.1
O2—H2···O30.8201.8662.658 (2)161.8
C20—H20···O4i0.9302.38643.248 (3)154.0
C22—H22C···O5ii0.9602.58313.438 (3)148.0
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z1/2.
 

Acknowledgements

Financial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCha, J. H., Kim, Y. H., Lee, J. K. & Cho, Y. S. (2012). Acta Cryst. E68, o245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011). Acta Cryst. E67, o3153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y.-L., Xiao, G.-L., Chen, Y.-F., Chen, R.-T. & Zhou, Y. (2011). Acta Cryst. E67, o2398.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds