metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[4,4,5,5-tetra­methyl-2-(5-methyl-1H-imidazol-4-yl-κN3)-2-imidazoline-1-oxyl 3-oxide-κO]copper(II)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 16 September 2011; accepted 1 October 2011; online 8 October 2011)

In the title complex, [CuCl2(C11H17N4O2)2], the CuII ion, lying on an inversion center, is six-coordinated in a distorted octa­hedral [Cu(N2O2Cl2)] environment by two N,O-bidentate nitronyl nitroxide radical ligands and two trans-chloride anions. In the imidazoline-1-oxyl-3-oxide unit of the ligand, the four methyl groups and the C atoms to which they are bonded are disordered over two sets of sites, with a refined occupancy ratio of 0.737 (5):0.263 (5).

Related literature

For general background to mol­ecular magnetic materials, see: Stroh et al. (2003[Stroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem. 42, 2938-2949.]); Kahn et al. (2000[Kahn, M. L., Sutter, J.-P., Golhen, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413-3421.]); Fursova et al. (2003[Fursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett. 44, 6397-6399.]). For complexes including nitronyl nitroxide ligands, see: Muppidi & Pal (2006[Muppidi, V. K. & Pal, S. (2006). Eur. J. Inorg. Chem. pp. 2871-2877.]); Wang et al. (2005[Wang, L.-Y., Ma, L.-F., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2005). Inorg. Chim. Acta, 358, 820-823.]); Gao et al. (2010[Gao, Z. Y., Guo, H. J. & Zhang, W. B. (2010). Acta Cryst. E66, m19.]). For the synthesis of the ligand of the title complex, see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osiecki, J. H. (1970). J. Org. Chem. 35, 3623-3631.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C11H17N4O2)2]

  • Mr = 609.01

  • Monoclinic, P 21 /c

  • a = 7.9966 (10) Å

  • b = 14.1981 (18) Å

  • c = 12.9266 (17) Å

  • β = 94.169 (3)°

  • V = 1463.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.43 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.855

  • 12447 measured reflections

  • 3359 independent reflections

  • 2607 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.202

  • S = 1.06

  • 3359 reflections

  • 138 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −1.07 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of molecule-based magnetic materials is one of the major subjects of material sciences (Stroh et al., 2003; Kahn et al., 2000; Fursova et al., 2003). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials due to their donor atoms and their ability to assemble extended arrangement with changing magnetic coupling (Muppidi et al., 2006; Wang et al., 2005; Gao et al., 2010). In this article, we report the synthesis and crystal structure of a novel CuII complex with nitronyl nitroxide radical.

The crystal structure of the title complex is shown in Figures 1 and 2. The copper(II) ion is six-coordinated in a slightly distorted octahedral CuN2O2Cl2 environment. Two nitronyl nitroxide radicals, acting as bidentate chelating ligands, coordinate the CuII ion leading to two six-membered chelate rings, and the copper coordination is completed by two trans-arranged chloride anions.

Related literature top

For general background to molecular magnetic materials, see: Stroh et al. (2003); Kahn et al. (2000); Fursova et al. (2003). For complexes including nitronyl nitroxide ligands, see: Muppidi & Pal (2006); Wang et al. (2005); Gao et al. (2010). For the synthesis of the ligand of the title complex, see: Ullman et al. (1970, 1972).

Experimental top

The nitronyl nitroxide radical 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2-imidazoline-1-oxyl-3-oxide was prepared according to the literature method (Ullman et al., 1970, 1972). The complex was synthesized by mixing 3 ml of an ethanol solution of the radical ligand (0.6 mmol) and 5 ml of an ethanol solution of CuCl2.2H2O (0.3 mmol). After stirring for two hours at room temperature, the mixture solution was filtered. The clear deep purple filtrate was diffused with diethyl ether vapor at room temperature. Deep purple crystals suitable for X-ray analysis were obtained after a week.

Refinement top

All H atoms attached to C atoms were geometrically fixed and allowed to ride on the corresponding parent atom with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups or Uiso(H) = 1.2Ueq(C) for other H atoms. Two C atoms in one cycle and the four methyl groups bonded to these atoms (C5, C6, C7, C8, C9, C10) are disordered over two sites. Site occupancies were refined and converged to 0.737 (5) and 0.263 (5). The pair of C—C, C—N 1,2-distances and corresponding 1,3-distances were restrained to be equal within 0.01 Å of each other. The displacement parameters for C5 and C5', C6 and C6', C7 and C7', C8 and C8', C9 and C9', C10 and C10', were constrained to be the same using the EADP constraint (Sheldrick, 2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of title compound, showing 30% probability displacement ellipsoids. (H atoms are omitted for clarity) [symmetry code A: -x, -y, -z +1]. All disordered atoms are present.
[Figure 2] Fig. 2. ORTEP drawing of the title compound omitting one set of disordered sites. Other features are as in Fig. 1.
Dichloridobis[4,4,5,5-tetramethyl-2-(5-methyl-1H-imidazol-4-yl- κN3)-2-imidazoline-1-oxyl 3-oxide-κO]copper(II) top
Crystal data top
[CuCl2(C11H17N4O2)2]F(000) = 634
Mr = 609.01Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5379 reflections
a = 7.9966 (10) Åθ = 2.6–28.0°
b = 14.1981 (18) ŵ = 0.97 mm1
c = 12.9266 (17) ÅT = 295 K
β = 94.169 (3)°Block, deep purple
V = 1463.8 (3) Å30.43 × 0.27 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube2607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.682, Tmax = 0.855k = 1818
12447 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.116P)2 + 1.4099P]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 1.09 e Å3
63 restraintsΔρmin = 1.07 e Å3
Crystal data top
[CuCl2(C11H17N4O2)2]V = 1463.8 (3) Å3
Mr = 609.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9966 (10) ŵ = 0.97 mm1
b = 14.1981 (18) ÅT = 295 K
c = 12.9266 (17) Å0.43 × 0.27 × 0.17 mm
β = 94.169 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2607 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.855Rint = 0.027
12447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06063 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.06Δρmax = 1.09 e Å3
3359 reflectionsΔρmin = 1.07 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.0161 (3)0.2896 (2)0.4252 (2)0.0550 (10)0.737 (5)
C60.1823 (3)0.3180 (2)0.3766 (3)0.0604 (15)0.737 (5)
C70.1329 (4)0.2749 (4)0.3473 (4)0.093 (3)0.737 (5)
H7A0.10870.22480.30080.140*0.737 (5)
H7B0.15450.33180.30850.140*0.737 (5)
H7C0.22970.25870.38340.140*0.737 (5)
C80.0353 (6)0.3521 (3)0.5121 (3)0.086 (2)0.737 (5)
H8A0.12450.32250.54600.130*0.737 (5)
H8B0.07300.41170.48430.130*0.737 (5)
H8C0.05890.36170.56140.130*0.737 (5)
C90.1879 (7)0.2920 (4)0.2629 (3)0.107 (3)0.737 (5)
H9A0.30070.29770.24300.161*0.737 (5)
H9B0.11600.33350.22140.161*0.737 (5)
H9C0.15030.22820.25260.161*0.737 (5)
C100.2323 (6)0.4199 (3)0.3906 (5)0.108 (3)0.737 (5)
H10A0.25380.43330.46320.162*0.737 (5)
H10B0.14310.45960.36220.162*0.737 (5)
H10C0.33170.43190.35530.162*0.737 (5)
C5'0.02011 (18)0.28092 (9)0.40266 (12)0.0550 (10)0.263 (5)
C6'0.1900 (2)0.33754 (9)0.41609 (13)0.0604 (15)0.263 (5)
C7'0.02440 (19)0.24924 (10)0.29180 (12)0.093 (3)0.263 (5)
H7'10.03960.18220.29030.140*0.263 (5)
H7'20.06460.26600.24930.140*0.263 (5)
H7'30.12630.27950.26570.140*0.263 (5)
C8'0.1284 (2)0.33251 (12)0.44123 (15)0.086 (2)0.263 (5)
H8'10.22210.29030.44200.130*0.263 (5)
H8'20.15740.38460.39600.130*0.263 (5)
H8'30.10020.35550.51010.130*0.263 (5)
C9'0.2417 (3)0.38454 (12)0.31841 (15)0.107 (3)0.263 (5)
H9'10.34290.41980.33390.161*0.263 (5)
H9'20.15430.42620.29190.161*0.263 (5)
H9'30.26100.33740.26740.161*0.263 (5)
C10'0.2082 (2)0.40044 (10)0.51042 (16)0.108 (3)0.263 (5)
H10D0.29930.37840.55660.162*0.263 (5)
H10E0.10630.39910.54530.162*0.263 (5)
H10F0.23050.46380.48930.162*0.263 (5)
Cu10.00000 (14)0.00000 (9)0.50000 (9)0.0509 (3)
Cl10.13233 (14)0.02450 (8)0.29756 (8)0.0751 (4)
O10.04541 (13)0.13931 (9)0.50405 (9)0.0500 (6)
O20.46321 (17)0.25885 (10)0.42078 (12)0.0957 (12)
C10.31257 (11)0.10914 (7)0.54255 (7)0.0410 (7)
C20.46835 (14)0.10640 (9)0.59493 (10)0.0482 (8)
C30.34150 (18)0.02968 (9)0.60589 (10)0.0512 (8)
H30.32250.09230.62250.061*
C40.23128 (11)0.18575 (6)0.48583 (8)0.0423 (7)
C110.60017 (17)0.17812 (12)0.62182 (14)0.0716 (12)
H11A0.59630.19600.69320.107*
H11B0.58090.23250.57850.107*
H11C0.70840.15210.61100.107*
N10.23258 (13)0.02450 (7)0.55218 (8)0.0426 (6)
N20.48285 (17)0.01743 (10)0.63320 (11)0.0541 (8)
H20.56860.00490.66900.065*
N30.06688 (12)0.19728 (7)0.47178 (9)0.0416 (6)
N40.30710 (15)0.25572 (8)0.43551 (10)0.0597 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0462 (19)0.047 (2)0.071 (3)0.0043 (16)0.0012 (18)0.016 (2)
C60.054 (2)0.061 (3)0.068 (4)0.004 (2)0.018 (2)0.021 (3)
C70.064 (4)0.103 (5)0.109 (5)0.009 (4)0.024 (3)0.058 (5)
C80.098 (5)0.047 (3)0.120 (6)0.018 (3)0.044 (4)0.005 (3)
C90.105 (6)0.152 (8)0.069 (4)0.021 (6)0.026 (4)0.039 (5)
C100.078 (4)0.055 (4)0.192 (10)0.011 (3)0.017 (5)0.020 (5)
C5'0.0462 (19)0.047 (2)0.071 (3)0.0043 (16)0.0012 (18)0.016 (2)
C6'0.054 (2)0.061 (3)0.068 (4)0.004 (2)0.018 (2)0.021 (3)
C7'0.064 (4)0.103 (5)0.109 (5)0.009 (4)0.024 (3)0.058 (5)
C8'0.098 (5)0.047 (3)0.120 (6)0.018 (3)0.044 (4)0.005 (3)
C9'0.105 (6)0.152 (8)0.069 (4)0.021 (6)0.026 (4)0.039 (5)
C10'0.078 (4)0.055 (4)0.192 (10)0.011 (3)0.017 (5)0.020 (5)
Cu10.0331 (3)0.0363 (3)0.0801 (5)0.0035 (2)0.0172 (3)0.0026 (3)
Cl10.0686 (7)0.0770 (7)0.0762 (7)0.0088 (6)0.0188 (5)0.0067 (6)
O10.0322 (10)0.0401 (13)0.0783 (17)0.0028 (9)0.0084 (10)0.0069 (11)
O20.0425 (16)0.109 (3)0.139 (3)0.0008 (17)0.0273 (18)0.035 (2)
C10.0298 (13)0.0457 (17)0.0472 (16)0.0054 (12)0.0004 (11)0.0064 (13)
C20.0319 (14)0.056 (2)0.0561 (19)0.0057 (14)0.0002 (13)0.0122 (15)
C30.0409 (18)0.0487 (18)0.062 (2)0.0061 (15)0.0105 (15)0.0021 (16)
C40.0337 (14)0.0451 (17)0.0485 (17)0.0016 (12)0.0051 (12)0.0008 (13)
C110.0376 (18)0.077 (3)0.099 (3)0.0072 (19)0.0075 (19)0.019 (2)
N10.0354 (14)0.0420 (13)0.0493 (15)0.0050 (11)0.0047 (11)0.0029 (11)
N20.0406 (15)0.0618 (19)0.0573 (17)0.0129 (13)0.0132 (13)0.0074 (14)
N30.0324 (12)0.0394 (14)0.0533 (15)0.0035 (10)0.0057 (11)0.0036 (11)
N40.0390 (15)0.066 (2)0.076 (2)0.0025 (14)0.0132 (14)0.0146 (17)
Geometric parameters (Å, º) top
C5—N31.487 (3)C8'—H8'20.9600
C5—C81.5121C8'—H8'30.9600
C5—C71.5170C9'—H9'10.9600
C5—C61.5639C9'—H9'20.9600
C6—N41.499 (3)C9'—H9'30.9600
C6—C101.5086C10'—H10D0.9600
C6—C91.5189C10'—H10E0.9600
C7—H7A0.9600C10'—H10F0.9600
C7—H7B0.9600Cu1—N11.9628
C7—H7C0.9600Cu1—N1i1.963 (3)
C8—H8A0.9600Cu1—O12.0123
C8—H8B0.9600Cu1—O1i2.012 (3)
C8—H8C0.9600Cu1—Cl12.9140
C9—H9A0.9600O1—N31.3086
C9—H9B0.9600O2—N41.2772
C9—H9C0.9600C1—N11.3713
C10—H10A0.9600C1—C21.3745
C10—H10B0.9600C1—C41.4401
C10—H10C0.9600C2—N21.3584
C5'—C8'1.5106C2—C111.4885
C5'—N31.5165C3—N11.3208
C5'—C7'1.5193C3—N21.3385
C5'—C6'1.5773C3—H30.9300
C6'—N41.5016C4—N31.3241
C6'—C10'1.5099C4—N41.3547
C6'—C9'1.5121C11—H11A0.9600
C7'—H7'10.9600C11—H11B0.9600
C7'—H7'20.9600C11—H11C0.9600
C7'—H7'30.9600N2—H20.8600
C8'—H8'10.9600
N3—C5—C8107.3 (2)H10E—C10'—H10F109.5
N3—C5—C7109.0 (2)N1—Cu1—N1i180.00 (11)
C8—C5—C7109.3N1—Cu1—O189.1
N3—C5—C6100.09 (17)N1i—Cu1—O190.85 (11)
C8—C5—C6115.6N1—Cu1—O1i90.85 (9)
C7—C5—C6114.7N1i—Cu1—O1i89.15 (9)
N4—C6—C10110.1 (2)O1—Cu1—O1i180.00 (13)
N4—C6—C9106.4 (2)N1—Cu1—Cl183.7
C10—C6—C9108.9N1i—Cu1—Cl196.28 (10)
N4—C6—C5101.38 (18)O1—Cu1—Cl189.1
C10—C6—C5115.1O1i—Cu1—Cl190.91 (10)
C9—C6—C5114.3N3—O1—Cu1118.7
C8'—C5'—N3110.6N1—C1—C2110.0
C8'—C5'—C7'108.6N1—C1—C4120.8
N3—C5'—C7'110.8C2—C1—C4129.2
C8'—C5'—C6'114.1N2—C2—C1104.8
N3—C5'—C6'99.2N2—C2—C11120.7
C7'—C5'—C6'113.3C1—C2—C11134.2
N4—C6'—C10'107.5N1—C3—N2111.1
N4—C6'—C9'106.0N1—C3—H3124.5
C10'—C6'—C9'113.4N2—C3—H3124.5
N4—C6'—C5'98.4N3—C4—N4108.5
C10'—C6'—C5'115.0N3—C4—C1124.8
C9'—C6'—C5'114.8N4—C4—C1126.7
C5'—C7'—H7'1109.5C2—C11—H11A109.5
C5'—C7'—H7'2109.5C2—C11—H11B109.5
H7'1—C7'—H7'2109.5H11A—C11—H11B109.5
C5'—C7'—H7'3109.5C2—C11—H11C109.5
H7'1—C7'—H7'3109.5H11A—C11—H11C109.5
H7'2—C7'—H7'3109.5H11B—C11—H11C109.5
C5'—C8'—H8'1109.5C3—N1—C1105.3
C5'—C8'—H8'2109.5C3—N1—Cu1130.5
H8'1—C8'—H8'2109.5C1—N1—Cu1124.1
C5'—C8'—H8'3109.5C3—N2—C2108.7
H8'1—C8'—H8'3109.5C3—N2—H2125.7
H8'2—C8'—H8'3109.5C2—N2—H2125.7
C6'—C9'—H9'1109.5O1—N3—C4125.2
C6'—C9'—H9'2109.5O1—N3—C5120.67 (12)
H9'1—C9'—H9'2109.5C4—N3—C5113.83 (12)
C6'—C9'—H9'3109.5O1—N3—C5'122.3
H9'1—C9'—H9'3109.5C4—N3—C5'112.2
H9'2—C9'—H9'3109.5O2—N4—C4125.0
C6'—C10'—H10D109.5O2—N4—C6121.70 (12)
C6'—C10'—H10E109.5C4—N4—C6111.83 (12)
H10D—C10'—H10E109.5O2—N4—C6'123.5
C6'—C10'—H10F109.5C4—N4—C6'110.6
H10D—C10'—H10F109.5
N3—C5—C6—N419.0 (2)C1—C4—N3—O12.6
C8—C5—C6—N495.9 (3)N4—C4—N3—C511.16 (16)
C7—C5—C6—N4135.5 (3)C1—C4—N3—C5170.75 (16)
N3—C5—C6—C10137.8 (2)N4—C4—N3—C5'2.0
C8—C5—C6—C1023.0C1—C4—N3—C5'176.1
C7—C5—C6—C10105.7C8—C5—N3—O172.32 (16)
N3—C5—C6—C995.0 (2)C7—C5—N3—O145.98 (16)
C8—C5—C6—C9150.1C6—C5—N3—O1166.68 (13)
C7—C5—C6—C921.4C8—C5—N3—C4101.31 (18)
C8'—C5'—C6'—N4146.8C7—C5—N3—C4140.39 (17)
N3—C5'—C6'—N429.3C6—C5—N3—C419.68 (19)
C7'—C5'—C6'—N488.2C8—C5—N3—C5'173.9 (6)
C8'—C5'—C6'—C10'33.0C7—C5—N3—C5'55.6 (5)
N3—C5'—C6'—C10'84.5C6—C5—N3—C5'65.2 (5)
C7'—C5'—C6'—C10'158.0C8'—C5'—N3—O144.7
C8'—C5'—C6'—C9'101.1C7'—C5'—N3—O175.8
N3—C5'—C6'—C9'141.3C6'—C5'—N3—O1164.9
C7'—C5'—C6'—C9'23.8C8'—C5'—N3—C4141.5
N1—Cu1—O1—N342.2C7'—C5'—N3—C498.0
N1i—Cu1—O1—N3137.83 (10)C6'—C5'—N3—C421.3
Cl1—Cu1—O1—N341.6C8'—C5'—N3—C541.2 (6)
N1—C1—C2—N22.1C7'—C5'—N3—C5161.7 (6)
C4—C1—C2—N2179.4C6'—C5'—N3—C579.0 (6)
N1—C1—C2—C11171.6N3—C4—N4—O2169.8
C4—C1—C2—C116.9C1—C4—N4—O28.3
N1—C1—C4—N325.7N3—C4—N4—C63.46 (17)
C2—C1—C4—N3152.7C1—C4—N4—C6174.59 (17)
N1—C1—C4—N4152.0N3—C4—N4—C6'20.5
C2—C1—C4—N429.5C1—C4—N4—C6'161.5
N2—C3—N1—C12.0C10—C6—N4—O255.76 (15)
N2—C3—N1—Cu1174.8C9—C6—N4—O262.09 (14)
C2—C1—N1—C32.5C5—C6—N4—O2178.12 (12)
C4—C1—N1—C3178.8C10—C6—N4—C4137.42 (16)
C2—C1—N1—Cu1174.6C9—C6—N4—C4104.73 (17)
C4—C1—N1—Cu14.1C5—C6—N4—C415.1 (2)
O1—Cu1—N1—C3153.7C10—C6—N4—C6'46.1 (3)
O1i—Cu1—N1—C326.25 (10)C9—C6—N4—C6'163.9 (3)
Cl1—Cu1—N1—C3117.1C5—C6—N4—C6'76.3 (3)
O1—Cu1—N1—C122.6C10'—C6'—N4—O282.5
O1i—Cu1—N1—C1157.41 (10)C9'—C6'—N4—O239.1
Cl1—Cu1—N1—C166.6C5'—C6'—N4—O2157.9
N1—C3—N2—C20.8C10'—C6'—N4—C487.5
C1—C2—N2—C30.8C9'—C6'—N4—C4151.0
C11—C2—N2—C3174.0C5'—C6'—N4—C432.1
Cu1—O1—N3—C436.8C10'—C6'—N4—C6175.1 (3)
Cu1—O1—N3—C5150.33 (17)C9'—C6'—N4—C653.5 (3)
Cu1—O1—N3—C5'136.2C5'—C6'—N4—C665.3 (3)
N4—C4—N3—O1175.5
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CuCl2(C11H17N4O2)2]
Mr609.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.9966 (10), 14.1981 (18), 12.9266 (17)
β (°) 94.169 (3)
V3)1463.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.43 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.682, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
12447, 3359, 2607
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.202, 1.06
No. of reflections3359
No. of parameters138
No. of restraints63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 1.07

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Natural Science Foundation and Basic Research Program of Henan Province (Nos. 092300410195 and 092300410240).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFursova, E. Y., Ovcharenko, V. I., Romanenko, G. V. & Tretyakov, E. V. (2003). Tetrahedron Lett. 44, 6397–6399.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, Z. Y., Guo, H. J. & Zhang, W. B. (2010). Acta Cryst. E66, m19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahn, M. L., Sutter, J.-P., Golhen, S., Guionneau, P., Ouahab, L., Kahn, O. & Chasseau, D. (2000). J. Am. Chem. Soc. 122, 3413–3421.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuppidi, V. K. & Pal, S. (2006). Eur. J. Inorg. Chem. pp. 2871–2877.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStroh, C., Belorizky, E., Turek, P., Bolvin, H. & Ziessel, R. (2003). Inorg. Chem. 42, 2938–2949.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUllman, E. F., Call, L. & Osiecki, J. H. (1970). J. Org. Chem. 35, 3623–3631.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationWang, L.-Y., Ma, L.-F., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2005). Inorg. Chim. Acta, 358, 820–823.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds