organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Conformation and absolute configuration of (1S,2S)-2-(phenyl­selan­yl)cyclo­hexyl (R)-2-meth­­oxy-2-(1-naphth­yl)propionate

aDepartment of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan, and bInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-2-1 Katahira, Aoba, Sendai 980-8577, Japan
*Correspondence e-mail: kijima@yz.yamagata-u.ac.jp

(Received 31 May 2010; accepted 10 June 2010; online 16 June 2010)

The relative and absolute configurations of the title compound, C26H28O3Se, were assigned from the known configuration of (R)-(−)-2-meth­oxy-2-(1-naphth­yl)propionic acid used as starting material, and by examination of the Bijvoet (Friedel) pairs, using the anomalous dispersion data collected with Mo Kα radiation at low temperature. The geometry around the carbonyl group exists in the syn conformation, as reflected in torsion angles involving this group, and the stability of the structure is affected by weak bifurcated intra­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to the crystalline-state analysis of 2-meth­oxy-2-(1-naphth­yl)propionic acid ester, see: Kuwahara et al. (2007[Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem. 11, 1827-1840.]). For synthetic details, see: Detty (1980[Detty, M. R. (1980). J. Org. Chem. 45, 274-279.]); Izumi et al. (1993[Izumi, T., Nakamura, T. & Eda, Y. (1993). J. Chem. Technol. Biotechnol. 57, 175-180.]); Harada et al. (2000[Harada, N., Watanabe, M., Kuwahara, S., Sugio, A., Kasai, Y. & Ichikawa, A. (2000). Tetrahedron Asymmetry, 11, 1249-1253.]). For Bijvoet pairs analysis, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O3Se

  • Mr = 467.44

  • Orthorhombic, P 21 21 21

  • a = 7.5714 (3) Å

  • b = 15.9740 (7) Å

  • c = 18.2994 (8) Å

  • V = 2213.23 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 115 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.827, Tmax = 1.000

  • 21509 measured reflections

  • 5060 independent reflections

  • 4749 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.055

  • S = 1.06

  • 5060 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2178 Friedel pairs

  • Flack parameter: −0.015 (6)

Table 1
Selected torsion angles (°)

O1—C1—C3—O2 −17.1 (2)
O2—C3—O3—C14 −2.8 (2)
C1—C3—O3—C14 174.70 (13)
H14—C14—O3—C3 −27

Table 2
Geometry of the weak bifurcated intra­molecular C—H⋯O hydrogen bonds (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.95 2.42 3.000 (1) 119
C12—H12⋯O2 0.95 2.65 3.405 (2) 137

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

Previously, Izumi group presented a chemoenzymatic synthesis of optically pure (R)- and (S)-2-cyclohexen-1-ols (Izumi et al., 1993). However, the preparation and determination of the absolute configurations of such kind of aliphatic alcohols still has been difficult and important topic. The MαNP [2-methoxy-2-(1-naphthyl)- propionic] acid method is an attractive approach for the preparation of enantiopure alcohols and the determination of their absolute configurations by 1H NMR anisotropy or X-ray crystallography (Harada et al., 2000). Recent systematic X-ray crystallographic analysis of MαNP acid esters with various alcohols has shown that most prefer the syn/syn conformation (the so-called "syn" conformation) (Kuwahara et al., 2007). On the other hand, although selenium has a large f"-value (Δf"=2.223 for Mo Kα radiation), which promises a large anomalous scattering effect, MαNP acid esters including a Se atom have not been investigated by X-ray analysis. The structural properties and determination of the absolute configuration of such compounds are important for the development of this methodology.

We report here the conformation and absolute configuration of (R)-2-methoxy-2-(1-naphthyl)-propionic acid (1S,2S)-2-(phenylseleno)-cyclohexyl ester. Hydrolysis of this compound gives (+)-trans-2-(phenylseleno)-cyclohexan-1-ol, in which an olefin-forming syn elimination of phenyl selenoxide forms 2-cyclohexen-1-ol, whose optically active forms are especially useful in the asymmetric synthesis of terpenes and other natural products.

The crystal structure of the title compound (Fig. 1) showed the following torsion angles: O1—C1—C3—O2, -17.1 (2)°; O2—C3—O3—C14, -2.8 (2)°; C1—C3—O3—O14, 174.70 (13)°; and H14—C14—O3—C3, -27°. These angles indicate that the geometry around the carbonyl group takes the syn conformation (Table 1, Fig. 2). Moreover, weak bifurcated intramolecular hydrogen bonds in O1···H12···O2 showed a triangular shape (Table 2, Fig. 3). These structural properties are similar to those of most MαNP acid esters (Kuwahara et al., 2007). The absolute structure was determined from the known configuration of MαNP, as supported by the refined Flack χ parameter and the Bijvoet pairs analysis of Hooft et al. (2008) performed with the PLATON program (Spek, 2009). The P2 parameter was 1.000 and the Hooft y parameter was -0.013. The plot of 1927 Bijvoet pairs in Fig. 4 suggests that the absolute configuration could be determined with a high confidence.

Related literature top

For general background to the crystalline-state analysis of 2-methoxy-2-(1-naphthyl)-propionic acid ester, see: Kuwahara et al. (2007). For related literature, see: Detty (1980); Harada et al. (2000); Hooft et al. (2008); Izumi et al. (1993).

Experimental top

To a mixture of enantiopure (R)-(–)-MαNP acid (4.04 mmol), 4-dimethylaminopyridine (DMAP, 2.45 mmol), (±)-trans-2-(phenylseleno)-cyclohexan-1-ol (Detty, 1980) (2.96 mmol), and N,N'-diisopropyl-carbodiimide guanidine (DIC, 8.23 mmol) in CH2Cl2 (6.4 ml) cooled at 273 K was added 10-camphorsulfonic acid (CSA, 0.49 mmol), and the mixture was stirred at room temperature overnight. After addition of water (0.5 ml), the mixture was stirred for 1 h, diluted with EtOAc, and filtered with Celite, which was washed with EtOAc. The organic layer was evaporated under reduced pressure, and the residue was subjected to short column chromatography on silica gel (EtOAc). The crude diastereomeric esters obtained were separated by HPLC on silica gel (hexane/EtOAc = 30:1) giving the title compound as a second-eluted ester in 48.5% yield (colorless). [α]D22 67.746 (c 1.42, CHCl3), mp = 405–406 K. Crystals suitable for X-ray diffraction were grown by slow solvent/solvent diffusion of hexane into ethyl acetate. IR (KBr): ν[cm-1] 2941, 1447 (alkane), 1739 (ester CO), 1136, 1055, 1022, 785 (mono substituted benzene) 1H NMR (400 MHz, CDCl3): δ [p.p.m.] 0.67–1.96 (m, 8H) 2.03 (s, 3H) 2.90(ddd, 1H, J = 10.07, 10.07 and 4.12 Hz) 3.07 (s, 3H) 4.78 (ddd, 1H, J = 9.62, 9.62 and 4.12 Hz) 7.22–7.30 (m, 1H) 7.44–7.49 (m, 5H) 7.57–7.59 (m, 3H) 7.83–7.87(m, 1H) 8.42–8.46 (m, 2H). 13C NMR (100 MHz, CDCl3): δ [p.p.m.] 21.5, 23.1, 25.4, 30.6, 32.5, 45.5, 50.8, 75.3, 81.4, 124.5, 125.4, 125.7, 125.9, 126.4, 127.5, 128.9, 129.4, 131.4, 134.0, 134.9, 135.0, 173.5 Anal. Calcd. for C26H28O3Se: C 66.8, H 5.99%. Found: C 66.71, H 6.08%.

Refinement top

In the refinement of the title compound, the H atoms were calculated geometrically and refined as riding, with C—H bond lengths of 0.95–1.00 Å, and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. H atoms are shown as spheres.
[Figure 2] Fig. 2. The preferred conformation of (R)-MαNP acid ester, adopting syn/syn conformation (i.e., the so-called syn conformation).
[Figure 3] Fig. 3. The weak bifurcated intramolecular C—H···O hydrogen bonds, stabilizing the syn conformation.
[Figure 4] Fig. 4. A scatter plot of Bijvoet differences, prepared using the program PLATON (Spek, 2009). Shown are 1927 pairs where Δobs > 0.25σobs). 1750 reflections confirming the absolute structure are shown in black. 177 reflections with the wrong sign are shown in red.
(1S,2S)-2-(phenylselanyl)cyclohexyl (R)-2-methoxy-2-(1-naphthyl)propionate top
Crystal data top
C26H28O3SeDx = 1.403 Mg m3
Mr = 467.44Melting point: 405 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 19734 reflections
a = 7.5714 (3) Åθ = 3.2–27.5°
b = 15.9740 (7) ŵ = 1.72 mm1
c = 18.2994 (8) ÅT = 115 K
V = 2213.23 (16) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.08 mm
F(000) = 968
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5060 independent reflections
Radiation source: rotating anode4749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.827, Tmax = 1.000k = 2020
21509 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.3422P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.47 e Å3
5060 reflectionsΔρmin = 0.31 e Å3
274 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0023 (4)
0 constraintsAbsolute structure: Flack (1983), 2178 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (6)
Secondary atom site location: difference Fourier map
Crystal data top
C26H28O3SeV = 2213.23 (16) Å3
Mr = 467.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5714 (3) ŵ = 1.72 mm1
b = 15.9740 (7) ÅT = 115 K
c = 18.2994 (8) Å0.30 × 0.10 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5060 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4749 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 1.000Rint = 0.032
21509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.47 e Å3
S = 1.06Δρmin = 0.31 e Å3
5060 reflectionsAbsolute structure: Flack (1983), 2178 Friedel pairs
274 parametersAbsolute structure parameter: 0.015 (6)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1779 (2)0.23902 (10)0.24894 (9)0.0192 (3)
O10.33156 (17)0.20184 (7)0.21696 (7)0.0228 (3)
C20.4470 (2)0.25838 (13)0.18042 (10)0.0287 (4)
H20.50340.29520.21630.043*
H2A0.53780.22670.15420.043*
H2B0.37920.29220.14560.043*
C30.0844 (2)0.16503 (11)0.28614 (9)0.0186 (4)
O20.15312 (17)0.09919 (8)0.29975 (7)0.0268 (3)
O30.08202 (16)0.18555 (8)0.30378 (7)0.0188 (3)
C40.0564 (2)0.27792 (10)0.19115 (9)0.0174 (3)
C50.0072 (2)0.36005 (11)0.19467 (10)0.0216 (4)
H50.05320.39390.23290.026*
C60.1098 (3)0.39644 (12)0.14346 (11)0.0243 (4)
H60.14050.45390.14720.029*
C70.1782 (3)0.34865 (11)0.08873 (10)0.0236 (4)
H70.25700.37300.05440.028*
C80.1328 (2)0.26292 (12)0.08248 (9)0.0204 (4)
C90.2077 (2)0.21244 (13)0.02694 (10)0.0264 (4)
H90.28790.23670.00690.032*
C100.1665 (3)0.12967 (13)0.02130 (10)0.0308 (4)
H100.21970.09630.01560.037*
C110.0448 (3)0.09373 (12)0.07026 (11)0.0286 (4)
H110.01490.03620.06570.034*
C120.0308 (3)0.14082 (11)0.12443 (10)0.0227 (4)
H120.11330.11550.15670.027*
C130.0117 (2)0.22675 (10)0.13327 (9)0.0181 (4)
C140.1779 (3)0.12243 (10)0.34533 (9)0.0174 (3)
H140.09140.08800.37360.021*
C150.2795 (3)0.06561 (11)0.29373 (10)0.0241 (4)
H150.36700.09880.26590.029*
H15A0.19720.03930.25850.029*
C160.3739 (3)0.00205 (12)0.33817 (11)0.0259 (4)
H160.28520.03820.36240.031*
H16A0.44510.03750.30500.031*
C170.4935 (2)0.03679 (11)0.39562 (12)0.0262 (4)
H170.59160.06670.37120.031*
H17A0.54510.00810.42620.031*
C180.3924 (2)0.09780 (11)0.44410 (10)0.0225 (4)
H180.47500.12440.47900.027*
H18A0.30240.06680.47260.027*
C190.3018 (2)0.16562 (10)0.39842 (10)0.0190 (4)
H190.39370.19660.37000.023*
Se10.17856 (2)0.245122 (11)0.462912 (9)0.02078 (6)
C200.2786 (2)0.34792 (11)0.42811 (11)0.0191 (4)
C210.2687 (3)0.37120 (12)0.35488 (11)0.0246 (4)
H210.21710.33450.32010.030*
C220.3347 (3)0.44831 (12)0.33294 (11)0.0305 (4)
H220.32820.46400.28290.037*
C230.4096 (3)0.50226 (12)0.38291 (14)0.0335 (5)
H230.45540.55470.36740.040*
C240.4177 (3)0.47954 (12)0.45598 (13)0.0324 (5)
H240.46830.51680.49060.039*
C250.3522 (2)0.40256 (12)0.47872 (11)0.0251 (4)
H250.35770.38730.52880.030*
C260.2293 (2)0.29874 (12)0.31135 (11)0.0251 (4)
H260.29460.34650.29140.038*
H26A0.12230.31880.33590.038*
H26B0.30380.26900.34660.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (7)0.0183 (8)0.0218 (7)0.0003 (8)0.0016 (7)0.0013 (7)
O10.0186 (6)0.0210 (6)0.0289 (7)0.0014 (5)0.0043 (6)0.0050 (5)
C20.0237 (8)0.0292 (10)0.0333 (10)0.0021 (9)0.0057 (8)0.0075 (9)
C30.0207 (9)0.0206 (9)0.0143 (8)0.0009 (7)0.0011 (7)0.0005 (7)
O20.0241 (7)0.0237 (6)0.0325 (7)0.0049 (6)0.0031 (6)0.0113 (6)
O30.0201 (6)0.0158 (6)0.0205 (6)0.0010 (5)0.0023 (5)0.0041 (5)
C40.0175 (8)0.0175 (8)0.0172 (8)0.0013 (6)0.0035 (7)0.0027 (6)
C50.0244 (9)0.0185 (8)0.0220 (9)0.0014 (7)0.0036 (7)0.0006 (7)
C60.0274 (10)0.0155 (8)0.0301 (10)0.0036 (7)0.0042 (8)0.0065 (8)
C70.0209 (8)0.0261 (9)0.0239 (9)0.0056 (8)0.0013 (8)0.0068 (7)
C80.0187 (7)0.0240 (9)0.0184 (8)0.0009 (7)0.0033 (6)0.0032 (7)
C90.0225 (9)0.0364 (10)0.0202 (9)0.0006 (8)0.0012 (8)0.0004 (8)
C100.0321 (10)0.0375 (11)0.0227 (10)0.0045 (9)0.0012 (9)0.0100 (8)
C110.0377 (11)0.0210 (9)0.0271 (10)0.0006 (9)0.0027 (9)0.0054 (8)
C120.0261 (9)0.0201 (9)0.0219 (9)0.0001 (7)0.0019 (8)0.0012 (7)
C130.0184 (8)0.0194 (9)0.0164 (8)0.0007 (6)0.0049 (6)0.0017 (6)
C140.0208 (8)0.0137 (7)0.0176 (8)0.0009 (8)0.0005 (8)0.0029 (6)
C150.0333 (11)0.0176 (8)0.0214 (9)0.0015 (7)0.0042 (8)0.0011 (7)
C160.0321 (10)0.0177 (9)0.0278 (10)0.0050 (8)0.0063 (8)0.0016 (8)
C170.0210 (9)0.0188 (9)0.0388 (11)0.0035 (7)0.0008 (8)0.0032 (8)
C180.0216 (9)0.0194 (9)0.0266 (10)0.0011 (7)0.0058 (8)0.0002 (7)
C190.0180 (8)0.0169 (8)0.0220 (9)0.0021 (7)0.0002 (8)0.0001 (7)
Se10.02435 (9)0.01706 (8)0.02093 (8)0.00017 (8)0.00258 (7)0.00066 (8)
C200.0170 (9)0.0138 (8)0.0266 (10)0.0032 (6)0.0016 (7)0.0002 (7)
C210.0245 (10)0.0234 (9)0.0259 (10)0.0015 (7)0.0009 (8)0.0025 (8)
C220.0319 (11)0.0271 (9)0.0326 (11)0.0027 (9)0.0080 (10)0.0058 (8)
C230.0301 (10)0.0173 (9)0.0530 (14)0.0004 (8)0.0083 (11)0.0021 (9)
C240.0274 (10)0.0197 (9)0.0500 (14)0.0010 (7)0.0004 (10)0.0113 (9)
C250.0232 (9)0.0230 (9)0.0289 (11)0.0030 (7)0.0027 (8)0.0043 (7)
C260.0246 (9)0.0261 (10)0.0246 (10)0.0028 (7)0.0032 (8)0.0010 (8)
Geometric parameters (Å, º) top
C1—O11.431 (2)C14—H141.0000
C1—C41.533 (2)C15—C161.530 (3)
C1—C31.537 (2)C15—H150.9900
C1—C261.538 (2)C15—H15A0.9900
O1—C21.424 (2)C16—C171.520 (3)
C2—H20.9800C16—H160.9900
C2—H2A0.9800C16—H16A0.9900
C2—H2B0.9800C17—C181.524 (3)
C3—O21.199 (2)C17—H170.9900
C3—O31.341 (2)C17—H17A0.9900
O3—C141.457 (2)C18—C191.531 (2)
C4—C51.365 (2)C18—H180.9900
C4—C131.434 (2)C18—H18A0.9900
C5—C61.415 (3)C19—Se11.9688 (17)
C5—H50.9500C19—H191.0000
C6—C71.362 (3)Se1—C201.9172 (18)
C6—H60.9500C20—C251.389 (3)
C7—C81.416 (2)C20—C211.393 (3)
C7—H70.9500C21—C221.389 (3)
C8—C91.416 (3)C21—H210.9500
C8—C131.428 (2)C22—C231.378 (3)
C9—C101.362 (3)C22—H220.9500
C9—H90.9500C23—C241.387 (3)
C10—C111.407 (3)C23—H230.9500
C10—H100.9500C24—C251.390 (3)
C11—C121.370 (3)C24—H240.9500
C11—H110.9500C25—H250.9500
C12—C131.419 (2)C26—H260.9800
C12—H120.9500C26—H26A0.9800
C14—C191.516 (2)C26—H26B0.9800
C14—C151.519 (2)
O1—C1—C4111.94 (13)C14—C15—H15109.8
O1—C1—C3103.67 (13)C16—C15—H15109.8
C4—C1—C3109.94 (13)C14—C15—H15A109.8
O1—C1—C26110.80 (13)C16—C15—H15A109.8
C4—C1—C26114.38 (14)H15—C15—H15A108.3
C3—C1—C26105.35 (14)C17—C16—C15110.95 (15)
C2—O1—C1115.32 (13)C17—C16—H16109.4
O1—C2—H2109.5C15—C16—H16109.4
O1—C2—H2A109.5C17—C16—H16A109.4
H2—C2—H2A109.5C15—C16—H16A109.4
O1—C2—H2B109.5H16—C16—H16A108.0
H2—C2—H2B109.5C16—C17—C18111.37 (15)
H2A—C2—H2B109.5C16—C17—H17109.4
O2—C3—O3124.87 (16)C18—C17—H17109.4
O2—C3—C1124.52 (16)C16—C17—H17A109.4
O3—C3—C1110.56 (14)C18—C17—H17A109.4
C3—O3—C14115.12 (13)H17—C17—H17A108.0
C5—C4—C13118.98 (16)C17—C18—C19111.08 (16)
C5—C4—C1121.36 (16)C17—C18—H18109.4
C13—C4—C1119.63 (15)C19—C18—H18109.4
C4—C5—C6122.31 (18)C17—C18—H18A109.4
C4—C5—H5118.8C19—C18—H18A109.4
C6—C5—H5118.8H18—C18—H18A108.0
C7—C6—C5119.67 (17)C14—C19—C18107.76 (14)
C7—C6—H6120.2C14—C19—Se1112.61 (12)
C5—C6—H6120.2C18—C19—Se1109.97 (12)
C6—C7—C8120.62 (17)C14—C19—H19108.8
C6—C7—H7119.7C18—C19—H19108.8
C8—C7—H7119.7Se1—C19—H19108.8
C9—C8—C7120.77 (16)C20—Se1—C1999.56 (8)
C9—C8—C13119.60 (17)C25—C20—C21119.68 (18)
C7—C8—C13119.63 (17)C25—C20—Se1118.37 (15)
C10—C9—C8121.02 (18)C21—C20—Se1121.81 (14)
C10—C9—H9119.5C22—C21—C20119.72 (19)
C8—C9—H9119.5C22—C21—H21120.1
C9—C10—C11119.84 (18)C20—C21—H21120.1
C9—C10—H10120.1C23—C22—C21120.7 (2)
C11—C10—H10120.1C23—C22—H22119.6
C12—C11—C10120.69 (18)C21—C22—H22119.6
C12—C11—H11119.7C22—C23—C24119.61 (19)
C10—C11—H11119.7C22—C23—H23120.2
C11—C12—C13121.24 (18)C24—C23—H23120.2
C11—C12—H12119.4C23—C24—C25120.29 (19)
C13—C12—H12119.4C23—C24—H24119.9
C12—C13—C8117.59 (16)C25—C24—H24119.9
C12—C13—C4123.63 (16)C20—C25—C24119.97 (19)
C8—C13—C4118.76 (16)C20—C25—H25120.0
O3—C14—C19109.13 (13)C24—C25—H25120.0
O3—C14—C15109.97 (14)C1—C26—H26109.5
C19—C14—C15110.91 (16)C1—C26—H26A109.5
O3—C14—H14108.9H26—C26—H26A109.5
C19—C14—H14108.9C1—C26—H26B109.5
C15—C14—H14108.9H26—C26—H26B109.5
C14—C15—C16109.16 (15)H26A—C26—H26B109.5
C4—C1—O1—C263.60 (18)C9—C8—C13—C4177.18 (15)
C3—C1—O1—C2177.95 (14)C7—C8—C13—C42.1 (2)
C26—C1—O1—C265.38 (19)C5—C4—C13—C12179.93 (17)
O1—C1—C3—O217.1 (2)C1—C4—C13—C121.9 (2)
C4—C1—C3—O2136.89 (18)C5—C4—C13—C81.8 (2)
C26—C1—C3—O299.4 (2)C1—C4—C13—C8176.35 (14)
O1—C1—C3—O3165.38 (13)C3—O3—C14—C19145.77 (15)
C4—C1—C3—O345.56 (18)C3—O3—C14—C1592.36 (17)
C26—C1—C3—O378.15 (17)O3—C14—C15—C16178.00 (14)
O2—C3—O3—C142.8 (2)C19—C14—C15—C1661.19 (19)
C1—C3—O3—C14174.70 (13)C14—C15—C16—C1756.3 (2)
O1—C1—C4—C5124.21 (17)C15—C16—C17—C1854.3 (2)
C3—C1—C4—C5121.13 (18)C16—C17—C18—C1955.9 (2)
C26—C1—C4—C52.9 (2)O3—C14—C19—C18176.81 (14)
O1—C1—C4—C1357.72 (19)C15—C14—C19—C1861.88 (19)
C3—C1—C4—C1356.94 (19)O3—C14—C19—Se155.36 (16)
C26—C1—C4—C13175.21 (15)C15—C14—C19—Se1176.66 (11)
C13—C4—C5—C60.4 (3)C17—C18—C19—C1458.60 (19)
C1—C4—C5—C6177.64 (16)C17—C18—C19—Se1178.31 (12)
C4—C5—C6—C70.5 (3)C14—C19—Se1—C20113.12 (12)
C5—C6—C7—C80.2 (3)C18—C19—Se1—C20126.70 (13)
C6—C7—C8—C9178.12 (17)C19—Se1—C20—C25128.14 (14)
C6—C7—C8—C131.2 (3)C19—Se1—C20—C2156.15 (16)
C7—C8—C9—C10179.07 (18)C25—C20—C21—C220.9 (3)
C13—C8—C9—C100.2 (3)Se1—C20—C21—C22176.54 (15)
C8—C9—C10—C111.4 (3)C20—C21—C22—C230.2 (3)
C9—C10—C11—C121.0 (3)C21—C22—C23—C240.5 (3)
C10—C11—C12—C130.5 (3)C22—C23—C24—C250.5 (3)
C11—C12—C13—C81.6 (3)C21—C20—C25—C240.9 (3)
C11—C12—C13—C4176.73 (17)Se1—C20—C25—C24176.69 (14)
C9—C8—C13—C121.2 (2)C23—C24—C25—C200.2 (3)
C7—C8—C13—C12179.46 (16)H14—C14—O3—C327
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.417 (2)158
C12—H12···O10.952.423.001 (2)119
C14—H14···O21.002.302.667 (3)100
C17—H17···O2ii0.992.393.351 (2)163
C18—H18···Se1iii0.992.803.7264 (17)156
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H28O3Se
Mr467.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)115
a, b, c (Å)7.5714 (3), 15.9740 (7), 18.2994 (8)
V3)2213.23 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.827, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21509, 5060, 4749
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 1.06
No. of reflections5060
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.31
Absolute structureFlack (1983), 2178 Friedel pairs
Absolute structure parameter0.015 (6)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Selected torsion angles (º) top
O1—C1—C3—O217.1 (2)C1—C3—O3—C14174.70 (13)
O2—C3—O3—C142.8 (2)H14—C14—O3—C327
Geometry of the weak bifurcated intramolecular C—H···O hydrogen bonds (Å, °) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.423.000 (1)119
C12—H12···O20.952.653.405 (2)137
 

Acknowledgements

The authors thank Dr Masataka Watanabe and Emeritus Professor Taeko Izumi for professional support.

References

First citationDetty, M. R. (1980). J. Org. Chem. 45, 274–279.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarada, N., Watanabe, M., Kuwahara, S., Sugio, A., Kasai, Y. & Ichikawa, A. (2000). Tetrahedron Asymmetry, 11, 1249–1253.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIzumi, T., Nakamura, T. & Eda, Y. (1993). J. Chem. Technol. Biotechnol. 57, 175–180.  CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem. 11, 1827–1840.  CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds