organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(6-Methyl-2-pyrid­yl)-2-phenyl-3,4-di­hydro-1,3,2-benzoxaza­phosphinine 2-oxide

aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and cDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com

(Received 9 August 2009; accepted 3 October 2009; online 10 October 2009)

In the title compound, C19H17N2O2P, the six-membered 1,3,2-oxaza­phosphinine ring adopts a boat conformation with the phosphoryl O atom in an equatorial position. The dihedral angle between the 6-methyl-2-pyridyl and phenyl groups is 75.5 (1)°. These substituents are trans to each other, and are oriented at angles of 57.2 (1) and 74.8 (1)°, respectively, to the benzene ring. The crystal structure is stabilized by intra- and inter­molecular hydrogen bonds. The phosphoryl O atom participates in inter­molecular C—H⋯O inter­actions with the neighbouring mol­ecules, forming centrosymmetric R22(14) dimers.

Related literature

For the biological activity of organophospho­rus compounds, see: Hoagland (1988[Hoagland, R. E. (1988). ACS Symp. Ser. 380, 182-210.]); Smith (1983[Smith, J. D. (1983). The Role of Phosphonates in Living Systems, edited by R. L. Hilberland, p. 131. Boca Raton: CRC Press.]); Molodykh et al. (1990[Molodykh, Zh. V., Aleksandrova, I. A., Belyalov, R. U., Gazizov, T. Kh. & Reznik, V. S. (1990). Khim. Farm. Zh. 24, 136-139.]). For P—O and P=O bond lengths in related structures, see: Brzozowski et al. (1990[Brzozowski, A. M., Stępień, A., Dauter, Z. & Misiura, K. (1990). Acta Cryst. C46, 618-621.]); Angelov et al. (2002[Angelov, C. M., Mazzuca, D. A., Heever, J. P., McDonald, R., McEwen, A. J. B. & Mercer, J. R. (2002). Acta Cryst. E58, o399-o401.]); Kant et al. (2009[Kant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003.]). For P—N bond lengths in related structures, see: Radha Krishna et al. (2007[Radha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407-o2409.]); Yang et al. (1988[Yang, J. C., Shah, D. O., Rao, N. U. M., Freeman, W. A., Soenovsky, G. & Gorenstsein, D. G. (1988). Tetrahedron, 44, 6305-6314.]); Subramanian et al. (1989[Subramanian, K., Selladurai, S. & Ponnuswamy, M. N. (1989). Acta Cryst. C45, 1387-1389.]); Selladurai & Subramanian (1990[Selladurai, S. & Subramanian, K. (1990). Acta Cryst. C46, 2221-2223.]); Selladurai et al. (1991[Selladurai, S., Subramanian, K. & Palanichamy, M. (1991). Acta Cryst. C47, 1056-1058.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N2O2P

  • Mr = 336.32

  • Triclinic, [P \overline 1]

  • a = 7.2238 (8) Å

  • b = 8.6573 (8) Å

  • c = 13.7265 (14) Å

  • α = 95.216 (8)°

  • β = 94.397 (9)°

  • γ = 94.330 (9)°

  • V = 849.42 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.28 × 0.18 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 12457 measured reflections

  • 5006 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.173

  • S = 1.14

  • 5006 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O5i 0.93 2.57 3.455 (3) 159
C21—H21⋯O5ii 0.93 2.56 3.445 (3) 159
C18—H18⋯O5 0.93 2.50 3.158 (3) 128
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ZORTEP (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

As organophosphorus compounds are ubiquitous, they have found multifaceted applications in nature. They can be used as insecticides and herbicides (Hoagland et al., 1988), fungicides (Smith et al., 1983), plant growth regulators and present also antifungal activity (Molodykh et al., 1990). The significant activity of all these compounds was accredited to the presence of six membered heterocyclic rings. In view of these activities, the title compound, (I), has been studied, as a part of our ongoing investigation to find out the influence of different substituents on the conformation of the heterocyclic ring.

In the molecular structure (Fig. 1), the oxazaphosphinine ring exhibits a boat conformation where atoms C6/C7/C12/O4 are almost coplanar and atoms P1 and N2 displaced in the same direction by 0.936 (1) and 0.936 (1) Å, respectively. The single and double bond lengths of P and O atoms are in good agreement with the similar structures reported previously (Brzozowski et al., 1990; Angelov et al., 2002; Kant et al., 2009). The P—N bond length, 1.6702 (14) Å, and the P—N—C bond angle, 120.30 (13)°, are comparable with the related structure of [1,3,2]-oxazaphosphorine-6-sulfide (Radha Krishna et al., 2007), but the bond distance shows relatively higher value when compared with the similar benzoxazaphosphorine structures (Yang et al., 1988; Subramanian et al., 1989; Selladurai & Subramanian, 1990; Selladurai et al., 1991). The N3—C13 and N3—C14 bond lengths fall between the expected single bond and double bond distances, showing the partial double bond character at N3.

In the crystal structure, the phosphoryl O atom participates in intermolecular C—H···O interactions with the neighboring molecules, to form centrosymmetric R22(14) dimers, along [011] (Fig. 2).

Related literature top

For the biological activity of organophosphorus compounds, see: Hoagland (1988); Smith (1983); Molodykh et al. (1990). For P—O and PO bond lengths in related structures, see: Brzozowski et al. (1990); Angelov et al. (2002); Kant et al. (2009). For P—N bond lengths in related structures, see: Radha Krishna et al. (2007); Yang et al. (1988); Subramanian et al. (1989); Selladurai & Subramanian (1990); Selladurai et al. (1991).

Experimental top

A solution of phenylphosphonic dichloride (0.002 mol) in 25 ml of dry THF was added dropwise over a period of 20 min. to a stirred solution of 2-{[(6-methyl-2-pyridyl)amino]methyl}phenol (0.002 mol) and triethylamine (0.004 mol) in 30 ml of dry THF. After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and stirred for 30 min. The reaction mixture was then heated to 318–323 K and maintained at that temperature for 3 h. under stirring. Completion of the reaction was monitored by TLC analysis. Triethylamine hydrochloride was filtered from the reaction mixture and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (100–200 mesh, ethyl acetate:hexane) to afford pure product. Transparent, colorless plate-shaped single crystals are obtained by slow evaporation of a 2-proponal solution.

Refinement top

All C-bonded H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 group and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 group.

Structure description top

As organophosphorus compounds are ubiquitous, they have found multifaceted applications in nature. They can be used as insecticides and herbicides (Hoagland et al., 1988), fungicides (Smith et al., 1983), plant growth regulators and present also antifungal activity (Molodykh et al., 1990). The significant activity of all these compounds was accredited to the presence of six membered heterocyclic rings. In view of these activities, the title compound, (I), has been studied, as a part of our ongoing investigation to find out the influence of different substituents on the conformation of the heterocyclic ring.

In the molecular structure (Fig. 1), the oxazaphosphinine ring exhibits a boat conformation where atoms C6/C7/C12/O4 are almost coplanar and atoms P1 and N2 displaced in the same direction by 0.936 (1) and 0.936 (1) Å, respectively. The single and double bond lengths of P and O atoms are in good agreement with the similar structures reported previously (Brzozowski et al., 1990; Angelov et al., 2002; Kant et al., 2009). The P—N bond length, 1.6702 (14) Å, and the P—N—C bond angle, 120.30 (13)°, are comparable with the related structure of [1,3,2]-oxazaphosphorine-6-sulfide (Radha Krishna et al., 2007), but the bond distance shows relatively higher value when compared with the similar benzoxazaphosphorine structures (Yang et al., 1988; Subramanian et al., 1989; Selladurai & Subramanian, 1990; Selladurai et al., 1991). The N3—C13 and N3—C14 bond lengths fall between the expected single bond and double bond distances, showing the partial double bond character at N3.

In the crystal structure, the phosphoryl O atom participates in intermolecular C—H···O interactions with the neighboring molecules, to form centrosymmetric R22(14) dimers, along [011] (Fig. 2).

For the biological activity of organophosphorus compounds, see: Hoagland (1988); Smith (1983); Molodykh et al. (1990). For P—O and PO bond lengths in related structures, see: Brzozowski et al. (1990); Angelov et al. (2002); Kant et al. (2009). For P—N bond lengths in related structures, see: Radha Krishna et al. (2007); Yang et al. (1988); Subramanian et al. (1989); Selladurai & Subramanian (1990); Selladurai et al. (1991).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell.
3-(6-Methyl-2-pyridyl)-2-phenyl-3,4-dihydro-1,3,2-benzoxazaphosphinine 2-oxide top
Crystal data top
C19H17N2O2PZ = 2
Mr = 336.32F(000) = 352
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2238 (8) ÅCell parameters from 5006 reflections
b = 8.6573 (8) Åθ = 3.3–30.1°
c = 13.7265 (14) ŵ = 0.18 mm1
α = 95.216 (8)°T = 293 K
β = 94.397 (9)°Plate, colourless
γ = 94.330 (9)°0.28 × 0.18 × 0.08 mm
V = 849.42 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3069 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 30.1°, θmin = 3.3°
ω–2θ scansh = 1010
12457 measured reflectionsk = 1212
5006 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0909P)2]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.33 e Å3
0 constraints
Crystal data top
C19H17N2O2Pγ = 94.330 (9)°
Mr = 336.32V = 849.42 (15) Å3
Triclinic, P1Z = 2
a = 7.2238 (8) ÅMo Kα radiation
b = 8.6573 (8) ŵ = 0.18 mm1
c = 13.7265 (14) ÅT = 293 K
α = 95.216 (8)°0.28 × 0.18 × 0.08 mm
β = 94.397 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3069 reflections with I > 2σ(I)
12457 measured reflectionsRint = 0.030
5006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.14Δρmax = 0.36 e Å3
5006 reflectionsΔρmin = 0.33 e Å3
217 parameters
Special details top

Refinement. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.38775(0.00078) m2 = 0.69013(0.00101) m3 = -0.61104(0.00092) D = -0.04785(0.00813) Atom d s d/s (d/s)**2 C6 * 0.0033 0.0020 1.652 2.729 C7 * -0.0061 0.0019 - 3.190 10.179 C12 * 0.0060 0.0019 3.207 10.286 O4 * -0.0017 0.0014 - 1.201 1.443 P1 0.9362 0.0005 1909.984 3648038.000 N2 0.9357 0.0015 617.499 381304.969 ============ Sum((d/s)**2) for starred atoms 24.637 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.36501(0.00090) m2 = 0.72088(0.00066) m3 = -0.58915(0.00074) D = 0.19711(0.00721) Atom d s d/s (d/s)**2 C7 * -0.0010 0.0019 - 0.547 0.300 C8 * -0.0022 0.0022 - 1.022 1.044 C9 * 0.0076 0.0024 3.196 10.214 C10 * -0.0077 0.0023 - 3.346 11.194 C11 * 0.0029 0.0021 1.390 1.931 C12 * 0.0007 0.0019 0.353 0.125 ============ Sum((d/s)**2) for starred atoms 24.808 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.45957(0.00079) m2 = 0.86478(0.00046) m3 = -0.20235(0.00092) D = 2.02662(0.00192) Atom d s d/s (d/s)**2 C13 * 0.0050 0.0018 2.731 7.457 N3 * -0.0045 0.0018 - 2.513 6.313 C14 * 0.0033 0.0025 1.334 1.780 C16 * 0.0013 0.0026 0.508 0.258 C17 * -0.0009 0.0027 - 0.328 0.108 C18 * -0.0040 0.0024 - 1.686 2.842 ============ Sum((d/s)**2) for starred atoms 18.758 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 4 m1 = -0.44454(0.00100) m2 = -0.15288(0.00101) m3 = -0.88262(0.00050) D = -4.64491(0.00165) Atom d s d/s (d/s)**2 C19 * 0.0128 0.0022 5.712 32.623 C20 * -0.0095 0.0029 - 3.274 10.717 C21 * -0.0074 0.0031 - 2.395 5.738 C22 * 0.0121 0.0031 3.908 15.276 C23 * 0.0012 0.0025 0.480 0.231 C24 * -0.0084 0.0020 - 4.200 17.636 ============ Sum((d/s)**2) for starred atoms 82.221 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 2.52 (0.07) 177.48 (0.07) 1 3 57.16 (0.06) 122.84 (0.06) 1 4 74.84 (0.08) 105.16 (0.08) 2 3 54.91 (0.06) 125.09 (0.06) 2 4 75.67 (0.07) 104.33 (0.07) 3 4 75.48 (0.08) 104.52 (0.08)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37783 (6)0.42101 (5)0.26648 (4)0.03578 (17)
O40.34114 (19)0.46439 (16)0.37866 (10)0.0459 (4)
N20.16623 (19)0.42897 (18)0.20981 (11)0.0360 (4)
O50.52630 (17)0.51923 (15)0.23013 (11)0.0491 (4)
C240.4304 (3)0.2230 (2)0.26798 (15)0.0399 (4)
C70.0443 (2)0.5645 (2)0.35210 (14)0.0380 (4)
C60.0029 (2)0.4431 (2)0.26737 (15)0.0413 (4)
H6A0.03160.34380.29130.050*
H6B0.10170.47030.22550.050*
N30.0324 (2)0.2849 (2)0.08712 (13)0.0476 (4)
C120.2155 (3)0.5737 (2)0.40604 (14)0.0374 (4)
C130.1314 (2)0.3663 (2)0.10995 (14)0.0367 (4)
C110.2642 (3)0.6790 (2)0.48673 (15)0.0475 (5)
H110.38090.68260.52100.057*
C80.0832 (3)0.6682 (3)0.38261 (16)0.0485 (5)
H80.19990.66490.34840.058*
C90.0374 (4)0.7763 (3)0.46352 (17)0.0574 (6)
H90.12260.84630.48240.069*
C100.1326 (4)0.7804 (3)0.51557 (16)0.0560 (6)
H100.16070.85130.57070.067*
C190.5868 (3)0.1738 (2)0.22629 (17)0.0509 (5)
H190.66310.24280.19590.061*
C140.0738 (3)0.2269 (3)0.00667 (18)0.0579 (6)
C180.2619 (3)0.3908 (3)0.04171 (16)0.0532 (5)
H180.37610.44680.06030.064*
C230.3141 (4)0.1170 (3)0.30964 (18)0.0623 (7)
H230.20760.14870.33700.075*
C200.6295 (4)0.0186 (3)0.2303 (2)0.0683 (8)
H200.73660.01450.20440.082*
C160.0481 (3)0.2471 (3)0.07839 (17)0.0590 (6)
H160.01570.20500.14270.071*
C210.5141 (5)0.0834 (3)0.2720 (2)0.0788 (9)
H210.54240.18610.27430.095*
C170.2164 (4)0.3297 (3)0.05363 (18)0.0643 (6)
H170.29960.34440.10110.077*
C220.3571 (5)0.0350 (3)0.3103 (2)0.0821 (9)
H220.27780.10600.33730.099*
C150.2625 (4)0.1350 (5)0.0295 (2)0.1035 (13)
H15A0.32640.13370.02920.155*
H15B0.24490.03020.05420.155*
H15C0.33520.18300.07800.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0327 (3)0.0325 (3)0.0410 (3)0.00243 (18)0.00086 (19)0.00089 (19)
O40.0493 (8)0.0471 (8)0.0395 (8)0.0155 (6)0.0083 (6)0.0055 (6)
N20.0304 (7)0.0421 (8)0.0352 (9)0.0048 (6)0.0018 (6)0.0017 (6)
O50.0364 (7)0.0426 (8)0.0666 (10)0.0066 (6)0.0011 (6)0.0077 (7)
C240.0403 (9)0.0348 (9)0.0436 (11)0.0058 (8)0.0026 (8)0.0014 (8)
C70.0374 (9)0.0386 (10)0.0375 (10)0.0015 (7)0.0071 (8)0.0011 (8)
C60.0314 (9)0.0468 (11)0.0443 (11)0.0041 (8)0.0008 (8)0.0013 (8)
N30.0411 (9)0.0550 (10)0.0431 (10)0.0014 (8)0.0024 (7)0.0079 (8)
C120.0463 (10)0.0331 (9)0.0334 (10)0.0046 (8)0.0040 (8)0.0050 (7)
C130.0382 (9)0.0363 (9)0.0359 (10)0.0084 (7)0.0000 (8)0.0026 (7)
C110.0627 (13)0.0414 (10)0.0362 (11)0.0036 (9)0.0041 (9)0.0004 (8)
C80.0484 (11)0.0517 (12)0.0457 (12)0.0094 (9)0.0072 (9)0.0001 (9)
C90.0735 (15)0.0510 (12)0.0512 (14)0.0206 (11)0.0170 (12)0.0010 (10)
C100.0829 (16)0.0445 (12)0.0380 (12)0.0049 (11)0.0030 (11)0.0075 (9)
C190.0358 (10)0.0487 (12)0.0645 (15)0.0038 (9)0.0003 (9)0.0105 (10)
C140.0526 (12)0.0661 (15)0.0498 (14)0.0071 (11)0.0090 (10)0.0133 (11)
C180.0495 (12)0.0642 (14)0.0446 (13)0.0043 (10)0.0045 (10)0.0051 (10)
C230.0888 (18)0.0445 (12)0.0616 (16)0.0143 (11)0.0293 (13)0.0215 (10)
C200.0558 (14)0.0600 (15)0.083 (2)0.0210 (12)0.0106 (13)0.0255 (14)
C160.0659 (14)0.0711 (16)0.0373 (12)0.0153 (12)0.0047 (10)0.0099 (11)
C210.115 (2)0.0425 (13)0.076 (2)0.0263 (15)0.0259 (17)0.0016 (13)
C170.0723 (16)0.0806 (17)0.0402 (13)0.0067 (13)0.0116 (11)0.0021 (12)
C220.130 (3)0.0433 (13)0.079 (2)0.0139 (16)0.0199 (19)0.0209 (13)
C150.0665 (17)0.157 (3)0.070 (2)0.0246 (19)0.0090 (15)0.045 (2)
Geometric parameters (Å, º) top
P1—O51.4641 (14)C9—C101.369 (3)
P1—O41.5984 (15)C9—H90.9300
P1—N21.6702 (14)C10—H100.9300
P1—C241.7850 (19)C19—C201.406 (3)
O4—C121.407 (2)C19—H190.9300
N2—C131.424 (2)C14—C161.384 (4)
N2—C61.476 (2)C14—C151.522 (3)
C24—C191.383 (3)C18—C171.372 (3)
C24—C231.388 (3)C18—H180.9300
C7—C121.385 (3)C23—C221.376 (3)
C7—C81.395 (3)C23—H230.9300
C7—C61.491 (3)C20—C211.362 (4)
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C16—C171.366 (3)
N3—C131.331 (2)C16—H160.9300
N3—C141.342 (3)C21—C221.364 (4)
C12—C111.374 (3)C21—H210.9300
C13—C181.397 (3)C17—H170.9300
C11—C101.397 (3)C22—H220.9300
C11—H110.9300C15—H15A0.9600
C8—C91.388 (3)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
O5—P1—O4114.90 (8)C8—C9—H9119.9
O5—P1—N2114.95 (8)C9—C10—C11120.7 (2)
O4—P1—N2101.68 (7)C9—C10—H10119.7
O5—P1—C24112.80 (9)C11—C10—H10119.7
O4—P1—C24101.38 (8)C24—C19—C20119.4 (2)
N2—P1—C24109.81 (8)C24—C19—H19120.3
C12—O4—P1121.93 (12)C20—C19—H19120.3
C13—N2—C6116.96 (14)N3—C14—C16122.4 (2)
C13—N2—P1118.81 (12)N3—C14—C15115.9 (2)
C6—N2—P1120.30 (13)C16—C14—C15121.7 (2)
C19—C24—C23119.55 (19)C17—C18—C13117.9 (2)
C19—C24—P1119.92 (16)C17—C18—H18121.0
C23—C24—P1120.53 (16)C13—C18—H18121.0
C12—C7—C8117.29 (17)C22—C23—C24119.7 (2)
C12—C7—C6119.26 (16)C22—C23—H23120.2
C8—C7—C6123.43 (17)C24—C23—H23120.2
N2—C6—C7110.86 (15)C21—C20—C19120.2 (2)
N2—C6—H6A109.5C21—C20—H20119.9
C7—C6—H6A109.5C19—C20—H20119.9
N2—C6—H6B109.5C17—C16—C14119.3 (2)
C7—C6—H6B109.5C17—C16—H16120.4
H6A—C6—H6B108.1C14—C16—H16120.4
C13—N3—C14117.66 (19)C20—C21—C22120.0 (2)
C11—C12—C7123.37 (18)C20—C21—H21120.0
C11—C12—O4119.00 (17)C22—C21—H21120.0
C7—C12—O4117.56 (16)C16—C17—C18119.5 (2)
N3—C13—C18123.22 (18)C16—C17—H17120.2
N3—C13—N2115.42 (16)C18—C17—H17120.2
C18—C13—N2121.35 (17)C21—C22—C23121.2 (3)
C12—C11—C10117.8 (2)C21—C22—H22119.4
C12—C11—H11121.1C23—C22—H22119.4
C10—C11—H11121.1C14—C15—H15A109.5
C9—C8—C7120.6 (2)C14—C15—H15B109.5
C9—C8—H8119.7H15A—C15—H15B109.5
C7—C8—H8119.7C14—C15—H15C109.5
C10—C9—C8120.3 (2)H15A—C15—H15C109.5
C10—C9—H9119.9H15B—C15—H15C109.5
O5—P1—O4—C1288.83 (15)C6—N2—C13—N319.5 (2)
N2—P1—O4—C1235.98 (15)P1—N2—C13—N3138.32 (15)
C24—P1—O4—C12149.22 (14)C6—N2—C13—C18160.12 (19)
O5—P1—N2—C1367.98 (16)P1—N2—C13—C1842.1 (2)
O4—P1—N2—C13167.24 (13)C7—C12—C11—C100.5 (3)
C24—P1—N2—C1360.47 (16)O4—C12—C11—C10176.41 (18)
O5—P1—N2—C6134.97 (14)C12—C7—C8—C90.4 (3)
O4—P1—N2—C610.20 (16)C6—C7—C8—C9178.5 (2)
C24—P1—N2—C696.57 (15)C7—C8—C9—C101.3 (4)
O5—P1—C24—C197.5 (2)C8—C9—C10—C111.7 (4)
O4—P1—C24—C19130.88 (17)C12—C11—C10—C91.3 (3)
N2—P1—C24—C19122.15 (17)C23—C24—C19—C202.5 (3)
O5—P1—C24—C23173.33 (17)P1—C24—C19—C20178.29 (17)
O4—P1—C24—C2349.93 (19)C13—N3—C14—C160.9 (3)
N2—P1—C24—C2357.0 (2)C13—N3—C14—C15179.9 (2)
C13—N2—C6—C7156.56 (16)N3—C13—C18—C171.1 (3)
P1—N2—C6—C746.0 (2)N2—C13—C18—C17178.50 (19)
C12—C7—C6—N241.6 (3)C19—C24—C23—C220.9 (4)
C8—C7—C6—N2140.36 (19)P1—C24—C23—C22179.9 (2)
C8—C7—C12—C110.1 (3)C24—C19—C20—C212.2 (4)
C6—C7—C12—C11178.27 (19)N3—C14—C16—C170.4 (4)
C8—C7—C12—O4176.88 (18)C15—C14—C16—C17179.5 (3)
C6—C7—C12—O41.3 (3)C19—C20—C21—C220.2 (4)
P1—O4—C12—C11138.17 (16)C14—C16—C17—C180.1 (4)
P1—O4—C12—C744.7 (2)C13—C18—C17—C160.4 (4)
C14—N3—C13—C181.3 (3)C20—C21—C22—C231.4 (4)
C14—N3—C13—N2178.29 (17)C24—C23—C22—C211.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.573.455 (3)159
C21—H21···O5ii0.932.563.445 (3)159
C18—H18···O50.932.503.158 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H17N2O2P
Mr336.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2238 (8), 8.6573 (8), 13.7265 (14)
α, β, γ (°)95.216 (8), 94.397 (9), 94.330 (9)
V3)849.42 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.28 × 0.18 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12457, 5006, 3069
Rint0.030
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.173, 1.14
No. of reflections5006
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEP (Zsolnai, 1997), enCIFer (Allen et al., 2004) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.573.455 (3)159
C21—H21···O5ii0.932.563.445 (3)159
C18—H18···O50.932.503.158 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

MK thanks the University Grants Commission, New Delhi, for sanctioning the major project for this work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAngelov, C. M., Mazzuca, D. A., Heever, J. P., McDonald, R., McEwen, A. J. B. & Mercer, J. R. (2002). Acta Cryst. E58, o399–o401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrzozowski, A. M., Stępień, A., Dauter, Z. & Misiura, K. (1990). Acta Cryst. C46, 618–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoagland, R. E. (1988). ACS Symp. Ser. 380, 182–210.  CrossRef CAS Google Scholar
First citationKant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolodykh, Zh. V., Aleksandrova, I. A., Belyalov, R. U., Gazizov, T. Kh. & Reznik, V. S. (1990). Khim. Farm. Zh. 24, 136–139.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationRadha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407–o2409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelladurai, S. & Subramanian, K. (1990). Acta Cryst. C46, 2221–2223.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelladurai, S., Subramanian, K. & Palanichamy, M. (1991). Acta Cryst. C47, 1056–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. D. (1983). The Role of Phosphonates in Living Systems, edited by R. L. Hilberland, p. 131. Boca Raton: CRC Press.  Google Scholar
First citationSubramanian, K., Selladurai, S. & Ponnuswamy, M. N. (1989). Acta Cryst. C45, 1387–1389.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYang, J. C., Shah, D. O., Rao, N. U. M., Freeman, W. A., Soenovsky, G. & Gorenstsein, D. G. (1988). Tetrahedron, 44, 6305–6314.  CSD CrossRef CAS Web of Science Google Scholar
First citationZsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds