organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-1-methyl­indolin-2-one

aCollege of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China
*Correspondence e-mail: yuanms@nwsuaf.edu.cn

(Received 25 May 2009; accepted 6 June 2009; online 13 June 2009)

The title mol­ecule, C9H8BrNO, approximates a full planar conformation. The inter­planar angle between the benzene and five-membered rings of the indoline system is 1.38 (1)°. There is an obvious π-delocalization involving the N—C=O group in the five-membered ring, which is greater than that involving the N—C C(benzene) group.

Related literature

For the biological activity of indole-2-one derivatives, see: Frohner et al. (2005[Frohner, W., Monse, B., Braxmeier, T. M., Casiraghi, L., Sahagun, H. & Seneci, P. (2005). Org. Lett. 7, 4573-4576.]); Xie et al. (2007[Xie, J., Sun, J., Zhang, G., Houghten, R. A. & Yu, Y. (2007). J. Comb. Chem. 9, 566-568.]). For a related structure, see: Lipkowski et al. (1995[Lipkowski, J., Luboradzki, R., Stefaniak, L. & Wojcik, J. (1995). J. Chem. Crystallogr. 25, 299-308.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8BrNO

  • Mr = 226.07

  • Monoclinic, P 21 /c

  • a = 10.5134 (4) Å

  • b = 11.0926 (4) Å

  • c = 7.7168 (3) Å

  • β = 103.229 (2)°

  • V = 876.06 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.64 mm−1

  • T = 293 K

  • 0.47 × 0.45 × 0.44 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.122, Tmax = 0.130

  • 6684 measured reflections

  • 2012 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.06

  • 2012 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indole-2-one derivatives have been widely explored due to their wide range of biological activities (Frohner et al., 2005; Xie et al., 2007). Indole-2-one may also be used as a precuesor for synthesizing organic lighting compounds because of its perfect planar conformation. In the course of exploring new luminescent compounds, we obtained an intermediate compound 5-bromo-1-methylindolin-2-one (I). Here we report the structure and synthesis of (I).

The molecule lies approximately in a plane (Fig. 1). The interplanar angle between the benzene group and the five-membered ring is 1.38 (1)° and the maximum displacement from the least-squares plane defined by all the 9 atoms of the indoline framework is 0.057 (3) Å for atom C9. The alternating long and short bond lengths are observed in the benzene ring: C1—C2 = 1.386 (3), C2—C3 = 1.370 (3), C3—C4 = 1.398 (3), C4—C5 = 1.377 (3), C5—C6 = 1.393 (3), C1—C6 = 1.375 (4) Å. The difference among the three C—N bond lengths is obvious, C4—N1 = 1.394 (3), C8—N1 = 1.376 (3), C9—N1 = 1.451 (3) Å, and indicates the presence of an appropriate π delocalization involving the C8—N1 and C8—O1 bonds. The structural conformation of the title molecule (I) is similar to that of 1-methylindolin-2-one (Lipkowski et al., 1995).

The molecules are packed in P21/c space group which is different from that of 1-methylindolin-2-one (Pbca). There are no classic hydrogen bonds in this structure. However, the weak intermolecular interaction C7—H7B···O1 (2 - x, -y, 1 - z), is helpful to the stabilization of the packing (Fig. 2). This intermolecular hydrogen bond is characterized by the bond lengths of 0.97 (C7—H7B) and 2.51 Å (H7B···O1).

Related literature top

For the biological activity of indole-2-one derivatives, see: Frohner et al. (2005); Xie et al. (2007). For a related structure, see: Lipkowski et al. (1995)

Experimental top

1-Methylindolin-2-one (0.50 g) was dissolved in acetonitrile (10 ml). After cooling the mixture to 263 K, an acetonitrile solution of NBS (0.60 g) was slowly added. After stirring for 24 h., the mixture was poured into ice water and further stirred for 1 h. The solution was extracted with chloroform and dried over Na2SO4. After removing the solvent, the crude product was purified by recrystallization from ethanol, affording the title compound, (I) (0.58 g, 76%). Then the compound (I) was dissolved in a mixture of solvents, dichloromethane and isopropyl ether, and pink block crystals were formed on slow evaporation at room temperature over one week.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 (aromatic CH), 0.97 (CH2 groups) or 0.96 Å (CH3 group). Their isotropic displacement parameters were set to 1.2 times (1.5 times for the methyl group) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A a axis view of the molecular packing of (I).
5-Bromo-1-methylindolin-2-one top
Crystal data top
C9H8BrNOF(000) = 448
Mr = 226.07Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2899 reflections
a = 10.5134 (4) Åθ = 2.7–27.5°
b = 11.0926 (4) ŵ = 4.64 mm1
c = 7.7168 (3) ÅT = 293 K
β = 103.229 (2)°Block, pink
V = 876.06 (6) Å30.47 × 0.45 × 0.44 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2012 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1310
Tmin = 0.122, Tmax = 0.130k = 1114
6684 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.03P)2 + 0.5204P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2012 reflectionsΔρmax = 0.37 e Å3
111 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0099 (11)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H8BrNOV = 876.06 (6) Å3
Mr = 226.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5134 (4) ŵ = 4.64 mm1
b = 11.0926 (4) ÅT = 293 K
c = 7.7168 (3) Å0.47 × 0.45 × 0.44 mm
β = 103.229 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1655 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 0.130Rint = 0.022
6684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
2012 reflectionsΔρmin = 0.49 e Å3
111 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28547 (2)0.07936 (3)0.20946 (4)0.04945 (13)
C10.4602 (2)0.0991 (2)0.1860 (3)0.0355 (5)
C20.5537 (2)0.0170 (2)0.2694 (3)0.0374 (5)
H20.53160.04600.33660.045*
C30.6793 (2)0.0308 (2)0.2506 (3)0.0329 (5)
C40.7111 (2)0.1265 (2)0.1505 (3)0.0316 (5)
C50.6183 (2)0.2080 (2)0.0666 (3)0.0400 (6)
H50.64010.27100.00060.048*
C60.4907 (2)0.1926 (2)0.0858 (3)0.0399 (6)
H60.42580.24600.03060.048*
C70.8012 (3)0.0418 (2)0.3173 (4)0.0435 (6)
H7A0.79030.12380.27250.052*
H7B0.82440.04380.44640.052*
C80.9037 (2)0.0246 (2)0.2444 (3)0.0404 (6)
C90.9086 (3)0.2039 (3)0.0514 (4)0.0537 (7)
H9A0.99930.18270.07150.081*
H9B0.90060.28500.09080.081*
H9C0.86880.19780.07330.081*
N10.84354 (19)0.12225 (19)0.1502 (3)0.0360 (4)
O11.01834 (18)0.0009 (2)0.2635 (3)0.0580 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03020 (16)0.0645 (2)0.05570 (18)0.00283 (13)0.01405 (11)0.01295 (13)
C10.0260 (11)0.0432 (15)0.0375 (11)0.0013 (10)0.0077 (9)0.0084 (10)
C20.0390 (13)0.0348 (13)0.0409 (12)0.0030 (11)0.0142 (10)0.0002 (10)
C30.0326 (12)0.0315 (12)0.0343 (11)0.0007 (10)0.0068 (9)0.0015 (9)
C40.0315 (12)0.0321 (12)0.0313 (11)0.0028 (10)0.0076 (9)0.0044 (9)
C50.0439 (14)0.0339 (14)0.0441 (13)0.0008 (11)0.0136 (11)0.0049 (10)
C60.0354 (13)0.0387 (14)0.0425 (13)0.0073 (11)0.0027 (10)0.0004 (11)
C70.0353 (14)0.0452 (15)0.0499 (14)0.0056 (11)0.0098 (11)0.0097 (12)
C80.0338 (14)0.0463 (15)0.0415 (13)0.0003 (11)0.0093 (10)0.0034 (11)
C90.0457 (16)0.0552 (18)0.0667 (18)0.0071 (13)0.0263 (14)0.0092 (14)
N10.0329 (11)0.0388 (11)0.0382 (10)0.0035 (9)0.0121 (8)0.0001 (9)
O10.0322 (11)0.0747 (15)0.0686 (12)0.0084 (10)0.0147 (9)0.0060 (11)
Geometric parameters (Å, º) top
Br1—C11.900 (2)C6—H60.9300
C1—C61.375 (4)C7—C81.515 (4)
C1—C21.386 (3)C7—H7A0.9700
C2—C31.370 (3)C7—H7B0.9700
C2—H20.9300C8—O11.214 (3)
C3—C41.398 (3)C8—N11.376 (3)
C3—C71.502 (3)C9—N11.451 (3)
C4—C51.377 (3)C9—H9A0.9600
C4—N11.394 (3)C9—H9B0.9600
C5—C61.393 (3)C9—H9C0.9600
C5—H50.9300
C6—C1—C2121.7 (2)C3—C7—C8103.6 (2)
C6—C1—Br1119.70 (18)C3—C7—H7A111.0
C2—C1—Br1118.56 (18)C8—C7—H7A111.0
C3—C2—C1118.4 (2)C3—C7—H7B111.0
C3—C2—H2120.8C8—C7—H7B111.0
C1—C2—H2120.8H7A—C7—H7B109.0
C2—C3—C4120.1 (2)O1—C8—N1124.9 (2)
C2—C3—C7132.2 (2)O1—C8—C7127.8 (3)
C4—C3—C7107.7 (2)N1—C8—C7107.4 (2)
C5—C4—N1128.4 (2)N1—C9—H9A109.5
C5—C4—C3121.7 (2)N1—C9—H9B109.5
N1—C4—C3109.9 (2)H9A—C9—H9B109.5
C4—C5—C6117.7 (2)N1—C9—H9C109.5
C4—C5—H5121.1H9A—C9—H9C109.5
C6—C5—H5121.1H9B—C9—H9C109.5
C1—C6—C5120.4 (2)C8—N1—C4111.38 (19)
C1—C6—H6119.8C8—N1—C9123.7 (2)
C5—C6—H6119.8C4—N1—C9124.8 (2)
C6—C1—C2—C30.1 (4)C2—C3—C7—C8179.2 (3)
Br1—C1—C2—C3179.31 (18)C4—C3—C7—C80.4 (3)
C1—C2—C3—C40.6 (3)C3—C7—C8—O1179.9 (3)
C1—C2—C3—C7178.2 (2)C3—C7—C8—N10.4 (3)
C2—C3—C4—C50.9 (4)O1—C8—N1—C4179.3 (2)
C7—C3—C4—C5178.1 (2)C7—C8—N1—C41.0 (3)
C2—C3—C4—N1180.0 (2)O1—C8—N1—C94.0 (4)
C7—C3—C4—N11.0 (3)C7—C8—N1—C9176.2 (2)
N1—C4—C5—C6179.5 (2)C5—C4—N1—C8177.7 (2)
C3—C4—C5—C60.5 (3)C3—C4—N1—C81.3 (3)
C2—C1—C6—C50.5 (4)C5—C4—N1—C92.6 (4)
Br1—C1—C6—C5179.67 (18)C3—C4—N1—C9176.5 (2)
C4—C5—C6—C10.2 (4)

Experimental details

Crystal data
Chemical formulaC9H8BrNO
Mr226.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.5134 (4), 11.0926 (4), 7.7168 (3)
β (°) 103.229 (2)
V3)876.06 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.64
Crystal size (mm)0.47 × 0.45 × 0.44
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.122, 0.130
No. of measured, independent and
observed [I > 2σ(I)] reflections
6684, 2012, 1655
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.06
No. of reflections2012
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C3—C41.398 (3)C8—O11.214 (3)
C4—N11.394 (3)C8—N11.376 (3)
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. 2111020828).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrohner, W., Monse, B., Braxmeier, T. M., Casiraghi, L., Sahagun, H. & Seneci, P. (2005). Org. Lett. 7, 4573–4576.  Web of Science CrossRef PubMed Google Scholar
First citationLipkowski, J., Luboradzki, R., Stefaniak, L. & Wojcik, J. (1995). J. Chem. Crystallogr. 25, 299–308.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J., Sun, J., Zhang, G., Houghten, R. A. & Yu, Y. (2007). J. Comb. Chem. 9, 566–568.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds