organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o946-o947

Bispuupehenone from the South Chinese Sea sponge Dysidea sp.

aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China, and bChinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
*Correspondence e-mail: ywguo@mail.shcnc.ac.cn

(Received 28 February 2008; accepted 25 April 2008; online 30 April 2008)

Bispuupehenone, C42H54O6, formally results from dimerization of puupehenone, which is constructed of sesquiterpene and benzene units. Bispuupehenone was isolated from the South China Sea sponge Dysidea sp. and the single-crystal X-ray diffraction analysis confirmed the previously reported structure. The mol­ecule is located on a twofold axis and the dimerization forms two fused dibenzopyran systems related by symmetry. In the asymmetric unit, the two cyclohexane rings adopt chair conformations, while the two pyran rings adopt half-chair conformations. The relative stereochemistry and configurations for the ring junctions are in agreement with the structure reported previously.

Related literature

The title compound was first isolated from the Pacific marine sponge Heteronema sp., see Amade et al. (1983[Amade, P., Chevelot, L., Perzanowski, H. P. & Scheuer, P. J. (1983). Helv. Chim. Acta, 66, 1672-1675.]). For the biological and pharmaceutical activity of puupehenone, see: Barrero et al. (1998[Barrero, A. F., Alvarez-Manzaneda, E. J., Herrador, M. M., Valdivia, M. V. & Chahboun, R. (1998). Tetrahedron, 39, 2425-2428.], 1999[Barrero, A. F., Alvarez-Miranda, E. J., Chahboun, R., Cortés, M. & Armstrong, V. (1999). Tetrahedron, 55, 15181-15208.]); Castro et al. (2004[Castro, M. E., González-Iriarte, M., Barrero, A. F., Salvador-Tormo, N., Muñoz-Chápuli, R., Medina, M. A. & Quesada, A. R. (2004). Int. J. Cancer, 20, 31-38.]); Ciavatta et al. (2007[Ciavatta, M. L., Lopez Gresa, M. P., Gavagnin, M., Romero, V., Melck, D., Manzo, E., Guo, Y.-W., van Soest, R. & Cimino, G. (2007). Tetrahedron, 63, 1380-1384.]); Longley et al. (1993[Longley, R. E., McConnell, O. J., Essich, E. & Harmody, D. (1993). J. Nat. Prod. 56, 915-920.]); Kohmoto et al. (1987[Kohmoto, S., McConnell, O. J., Wright, A., Koehn, F., Thompson, W., Lui, M. & Snader, K. M. (1987). J. Nat. Prod. 50, 336-336.]); Takamatsu et al. (2003[Takamatsu, S., Hodges, T. W., Rajbhandari, I., Gerwick, W. H., Hamann, M. T. & Nagle, D. G. (2003). J. Nat. Prod. 66, 605-608.]). For the synthesis and semi-synthesis of puupehenone and its derivatives, see: Hamann (2003[Hamann, M. T. (2003). Curr. Pharm. Des. 9, 879-889.]); Alvarez-Manzaneda et al. (2005[Alvarez-Manzaneda, E. J., Chahboun, R., Barranco Pérez, I., Cabrera, E., Alvarez, E. & Alvarez-Manzaneda, R. (2005). Org. Lett. 7, 1477-1480.], 2007[Alvarez-Manzaneda, E. J., Chahboun, R., Cabrera, E., Alvarez, E., Haidour, A., Ramos, J. M., Alvarez-Manzaneda, R., Hmamouchi, M. & Bouanou, H. (2007). J. Org. Chem. 72, 3332-3339.]).

[Scheme 1]

Experimental

Crystal data
  • C42H54O6

  • Mr = 654.85

  • Tetragonal, P 41 21 2

  • a = 13.5981 (10) Å

  • c = 18.7260 (19) Å

  • V = 3462.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.39 × 0.24 × 0.14 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.990

  • 20532 measured reflections

  • 2219 independent reflections

  • 1644 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 0.94

  • 2219 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bispuupehenone (I) was firstly isolated from Pacific marine sponge Heteronema sp. (Amade et al., 1983), and was considered to be generated from co-occurring puupehenone (II) (Fig. 1) by in vitro oxidative coupling. The benzopyrane structure for the dimer is deduced by the comparison of its UV spectrum data with those of a simple dibenzofuran and a simple benzopyran. Although compound (II) and its derivatives have been reported to display a wide range of important biological activities, including antiviral, antifungal, antimalarial, and antitumor activities (Barrero et al., 1998, 1999; Longley et al., 1993; Castro et al., 2004; Ciavatta et al., 2007; Kohmoto et al., 1987; Takamatsu et al., 2003), the biological properties of (I) have been seldom reported. Synthesis and semi-synthesis of puupehenone and its derivatives have been published (Hamann, 2003); Alvarez-Manzaneda et al., 2005, 2007).

As part of our research project on the study of the South China Sea marine organisms, a sample of the sponge Dysidea sp. was collected off the Lingshui Bay, Hainan Province, China, and was chemically investigated. Bispuupehenone, (I), was isolated and crystallized from the Et2O-soluble fraction of the acetone extract of the animal, and the structure of (I) was firstly elucidated by spectroscopic methods, NMR, UV and MS, and eventually confirmed through X-ray diffraction analysis. Herein, we report the X-ray structure of (I).

The projection of bispuupehenone is shown in Figure 2. In the structure, two puupehenone moieties are connected through two O atoms and a C—C bond between benzene rings, forming a benzopyran moiety at the midpoint of the axial symmetric molecule. Rings A and B of (I) are in chair conformations, while rings C and D adopt half-chair conformations. Moreover, the trans junction between rings A/B and the cis junction between rings B/C are in agreement with the structure reported previously.

Bispuupehenone was tested for the inhibitory activities against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of Type-II diabetes and obesity, and showed excellent inhibitory effect with IC50 value of 0.98 mg ml-1. Other bioassays, such as antibacterial and anti-inflammatory, are currently ongoing.

Related literature top

The title compound was first isolated from the Pacific marine sponge Heteronema sp., see Amade et al. (1983). For the biological and pharmaceutical activity of puupehenone, see: Barrero et al. (1998, 1999); Castro et al. (2004); Ciavatta et al. (2007); Longley et al. (1993); Kohmoto et al. (1987); Takamatsu et al. (2003). For the synthesis and semi-synthesis of puupehenone and its derivatives, see: Hamann (2003); Alvarez-Manzaneda et al. (2005, 2007).

Experimental top

The specimens of sponge were collected from Lingshui Bay, Hainan Province, China, in July 2004, and identified as Dysidea sp. by Professor J.-H. Li of the Institute of Oceanology, Chinese Academy of Sciences. A voucher specimen (LS-210) is available for inspection at the Herbarium of Shanghai Institute of Materia Medica, CAS. The frozen animals (dry weight 96.3 g) were cut into small pieces and exhaustively extracted with acetone (3×3 L). The organic extract was evaporated to give a residue, which was partitioned between Et2O and H2O. The Et2O solution was concentrated under reduced pressure to give a dark brown residue (4.7 g), which was fractionated by gradient silica gel column chromatography [0–100% acetone in light petroleum ether (PE)], yielding seven fractions (A···G). The fraction C eluted by PE/Me2CO (95:5) was further purified on a second silica gel column chromatography eluting with PE—Et2O (90:10) to afford (I) (14.3 mg). Crystals suitable for X-ray analysis were obtained by slow evaporation from a chloroform solution.

Refinement top

The non-H atoms were located in successive difference Fourier syntheses. The final refinements were performed by full-matrix least-squares methods with isotropic thermal parameters for all non-H atoms. Hydroxyl H atom H2 was found in a difference map and freely refined with an isotropic displacement parameter. Other H atoms were placed in calculated positions and included in the final refinement in the riding model approximation, with displacement parameters derived from the parent atoms to which they are bonded. In the absence of significant anomalous dispersion effects, 1571 measured Friedel pairs were merged and the absolute configuration was arbitrarily assigned.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structures of bispuupehenone (I) and puupehenone (II).
[Figure 2] Fig. 2. The projection of (I) showing the atom-labeling scheme.
Bispuupehenone top
Crystal data top
C42H54O6Dx = 1.256 Mg m3
Mr = 654.85Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 4034 reflections
Hall symbol: P 4abw 2nwθ = 4.8–54.2°
a = 13.5981 (10) ŵ = 0.08 mm1
c = 18.7260 (19) ÅT = 293 K
V = 3462.6 (5) Å3Prismatic, colourless
Z = 40.39 × 0.24 × 0.14 mm
F(000) = 1416
Data collection top
Bruker APEX CCD area-detector
diffractometer
2219 independent reflections
Radiation source: fine-focus sealed tube1644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1617
Tmin = 0.743, Tmax = 0.990k = 1717
20532 measured reflectionsl = 1123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
2219 reflections(Δ/σ)max = 0.007
225 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C42H54O6Z = 4
Mr = 654.85Mo Kα radiation
Tetragonal, P41212µ = 0.08 mm1
a = 13.5981 (10) ÅT = 293 K
c = 18.7260 (19) Å0.39 × 0.24 × 0.14 mm
V = 3462.6 (5) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2219 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1644 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.990Rint = 0.110
20532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.23 e Å3
2219 reflectionsΔρmin = 0.20 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15743 (13)0.55657 (12)0.08619 (8)0.0429 (5)
O20.12262 (16)0.48461 (14)0.33312 (11)0.0530 (5)
O30.34879 (12)0.77308 (13)0.13171 (8)0.0415 (4)
C10.1684 (2)0.87117 (19)0.00763 (14)0.0499 (7)
H1A0.16940.90340.03860.060*
H1B0.23400.87570.02770.060*
C20.0968 (3)0.9254 (2)0.05633 (14)0.0637 (9)
H2A0.03220.92610.03450.076*
H2B0.11830.99300.06190.076*
C30.0904 (3)0.8771 (2)0.12908 (15)0.0681 (9)
H3A0.15380.88200.15250.082*
H3B0.04300.91260.15800.082*
C40.0601 (3)0.7683 (2)0.12559 (14)0.0573 (8)
C50.1302 (2)0.71542 (19)0.07258 (12)0.0431 (6)
H50.19540.72170.09440.052*
C60.1141 (2)0.6044 (2)0.06599 (13)0.0474 (7)
H6A0.05770.59150.03560.057*
H6B0.10100.57650.11270.057*
C70.2055 (2)0.5575 (2)0.03409 (13)0.0484 (7)
H7A0.19500.48710.03030.058*
H7B0.26040.56790.06640.058*
C80.2325 (2)0.59716 (19)0.03840 (13)0.0411 (6)
C90.23190 (19)0.71109 (17)0.04069 (12)0.0371 (6)
H90.29050.73230.01450.045*
C100.14213 (18)0.76213 (18)0.00287 (13)0.0389 (6)
C110.0747 (3)0.7242 (3)0.20075 (15)0.0850 (12)
H11A0.04220.76490.23540.127*
H11B0.04720.65920.20220.127*
H11C0.14360.72110.21150.127*
C120.0502 (2)0.7571 (3)0.10853 (18)0.0746 (10)
H12A0.06620.79560.06720.112*
H12B0.06470.68920.09930.112*
H12C0.08840.77950.14850.112*
C130.0492 (2)0.7539 (2)0.04922 (13)0.0462 (6)
H13A0.06460.77220.09750.069*
H13B0.02570.68730.04830.069*
H13C0.00060.79690.03080.069*
C140.24566 (18)0.74743 (19)0.11748 (12)0.0365 (5)
H140.20650.80740.12310.044*
C150.3325 (2)0.5555 (2)0.06039 (15)0.0539 (7)
H15A0.34550.57210.10930.081*
H15B0.38290.58290.03050.081*
H15C0.33190.48520.05510.081*
C160.21009 (17)0.67425 (18)0.17229 (12)0.0355 (6)
C170.22961 (17)0.69613 (18)0.24324 (13)0.0351 (5)
C180.20089 (17)0.63566 (18)0.29797 (12)0.0359 (5)
C190.15135 (18)0.54863 (18)0.28072 (13)0.0384 (6)
C200.13528 (19)0.52376 (18)0.21062 (13)0.0401 (6)
H200.10290.46550.19970.048*
C210.16728 (18)0.58544 (18)0.15546 (13)0.0367 (6)
H20.149 (3)0.513 (3)0.3750 (19)0.086 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0538 (11)0.0380 (9)0.0370 (9)0.0081 (8)0.0003 (8)0.0055 (8)
O20.0695 (13)0.0420 (10)0.0474 (11)0.0153 (10)0.0097 (10)0.0052 (9)
O30.0395 (9)0.0490 (10)0.0360 (9)0.0103 (8)0.0026 (8)0.0008 (8)
C10.0642 (18)0.0418 (14)0.0436 (14)0.0107 (13)0.0004 (14)0.0011 (13)
C20.087 (2)0.0442 (16)0.0597 (19)0.0007 (17)0.0084 (18)0.0115 (14)
C30.092 (3)0.0619 (19)0.0507 (18)0.0038 (18)0.0139 (18)0.0132 (16)
C40.072 (2)0.0574 (18)0.0421 (15)0.0089 (15)0.0117 (15)0.0084 (15)
C50.0527 (15)0.0435 (14)0.0333 (13)0.0078 (13)0.0020 (12)0.0012 (11)
C60.0624 (18)0.0469 (15)0.0329 (13)0.0116 (14)0.0030 (13)0.0100 (12)
C70.0604 (18)0.0436 (15)0.0412 (14)0.0014 (13)0.0053 (14)0.0076 (12)
C80.0461 (15)0.0397 (13)0.0373 (13)0.0023 (12)0.0052 (12)0.0056 (12)
C90.0410 (13)0.0376 (12)0.0328 (13)0.0041 (11)0.0052 (11)0.0029 (11)
C100.0441 (14)0.0387 (13)0.0339 (12)0.0051 (11)0.0019 (11)0.0006 (11)
C110.134 (4)0.081 (2)0.0400 (18)0.012 (3)0.016 (2)0.0019 (17)
C120.071 (2)0.080 (2)0.073 (2)0.0043 (19)0.0276 (18)0.006 (2)
C130.0454 (15)0.0527 (16)0.0405 (14)0.0016 (14)0.0047 (12)0.0006 (13)
C140.0366 (12)0.0396 (13)0.0332 (13)0.0056 (11)0.0004 (10)0.0001 (11)
C150.0551 (18)0.0540 (17)0.0526 (16)0.0122 (14)0.0044 (14)0.0041 (14)
C160.0325 (12)0.0365 (13)0.0375 (13)0.0026 (10)0.0022 (11)0.0009 (11)
C170.0318 (12)0.0374 (12)0.0360 (13)0.0021 (10)0.0019 (11)0.0025 (11)
C180.0353 (12)0.0404 (13)0.0321 (13)0.0011 (11)0.0022 (10)0.0017 (11)
C190.0402 (14)0.0343 (13)0.0407 (13)0.0035 (11)0.0071 (11)0.0036 (11)
C200.0432 (14)0.0341 (12)0.0430 (14)0.0062 (11)0.0003 (12)0.0051 (11)
C210.0380 (13)0.0375 (13)0.0345 (13)0.0014 (11)0.0002 (11)0.0047 (11)
Geometric parameters (Å, º) top
O1—C211.362 (3)C8—C91.550 (3)
O1—C81.465 (3)C9—C141.532 (3)
O2—C191.369 (3)C9—C101.573 (3)
O2—H20.95 (4)C9—H90.9800
O3—C18i1.380 (3)C10—C131.537 (3)
O3—C141.469 (3)C11—H11A0.9600
C1—C21.524 (4)C11—H11B0.9600
C1—C101.538 (3)C11—H11C0.9600
C1—H1A0.9700C12—H12A0.9600
C1—H1B0.9700C12—H12B0.9600
C2—C31.515 (4)C12—H12C0.9600
C2—H2A0.9700C13—H13A0.9600
C2—H2B0.9700C13—H13B0.9600
C3—C41.536 (5)C13—H13C0.9600
C3—H3A0.9700C14—C161.509 (3)
C3—H3B0.9700C14—H140.9800
C4—C121.541 (5)C15—H15A0.9600
C4—C111.543 (4)C15—H15B0.9600
C4—C51.553 (4)C15—H15C0.9600
C5—C61.530 (4)C16—C211.377 (3)
C5—C101.558 (3)C16—C171.387 (3)
C5—H50.9800C17—C181.371 (3)
C6—C71.520 (4)C17—C17i1.450 (5)
C6—H6A0.9700C18—O3i1.380 (3)
C6—H6B0.9700C18—C191.399 (4)
C7—C81.506 (3)C19—C201.373 (3)
C7—H7A0.9700C20—C211.400 (3)
C7—H7B0.9700C20—H200.9300
C8—C151.530 (4)
C21—O1—C8113.87 (18)C10—C9—H9106.0
C19—O2—H2103 (2)C13—C10—C1109.5 (2)
C18i—O3—C14112.36 (18)C13—C10—C5113.4 (2)
C2—C1—C10113.2 (2)C1—C10—C5107.5 (2)
C2—C1—H1A108.9C13—C10—C9110.58 (19)
C10—C1—H1A108.9C1—C10—C9107.6 (2)
C2—C1—H1B108.9C5—C10—C9108.0 (2)
C10—C1—H1B108.9C4—C11—H11A109.5
H1A—C1—H1B107.7C4—C11—H11B109.5
C3—C2—C1111.4 (3)H11A—C11—H11B109.5
C3—C2—H2A109.3C4—C11—H11C109.5
C1—C2—H2A109.3H11A—C11—H11C109.5
C3—C2—H2B109.3H11B—C11—H11C109.5
C1—C2—H2B109.3C4—C12—H12A109.5
H2A—C2—H2B108.0C4—C12—H12B109.5
C2—C3—C4113.2 (3)H12A—C12—H12B109.5
C2—C3—H3A108.9C4—C12—H12C109.5
C4—C3—H3A108.9H12A—C12—H12C109.5
C2—C3—H3B108.9H12B—C12—H12C109.5
C4—C3—H3B108.9C10—C13—H13A109.5
H3A—C3—H3B107.7C10—C13—H13B109.5
C3—C4—C12111.4 (3)H13A—C13—H13B109.5
C3—C4—C11107.5 (3)C10—C13—H13C109.5
C12—C4—C11106.0 (3)H13A—C13—H13C109.5
C3—C4—C5108.0 (2)H13B—C13—H13C109.5
C12—C4—C5114.8 (2)O3—C14—C16109.82 (18)
C11—C4—C5108.9 (3)O3—C14—C9111.31 (19)
C6—C5—C4114.9 (2)C16—C14—C9112.7 (2)
C6—C5—C10110.1 (2)O3—C14—H14107.6
C4—C5—C10117.1 (2)C16—C14—H14107.6
C6—C5—H5104.4C9—C14—H14107.6
C4—C5—H5104.4C8—C15—H15A109.5
C10—C5—H5104.4C8—C15—H15B109.5
C7—C6—C5109.2 (2)H15A—C15—H15B109.5
C7—C6—H6A109.8C8—C15—H15C109.5
C5—C6—H6A109.8H15A—C15—H15C109.5
C7—C6—H6B109.8H15B—C15—H15C109.5
C5—C6—H6B109.8C21—C16—C17119.2 (2)
H6A—C6—H6B108.3C21—C16—C14123.9 (2)
C8—C7—C6113.7 (2)C17—C16—C14116.7 (2)
C8—C7—H7A108.8C18—C17—C16122.2 (2)
C6—C7—H7A108.8C18—C17—C17i119.0 (3)
C8—C7—H7B108.8C16—C17—C17i116.7 (3)
C6—C7—H7B108.8C17—C18—O3i123.3 (2)
H7A—C7—H7B107.7C17—C18—C19118.1 (2)
O1—C8—C7104.3 (2)O3i—C18—C19118.3 (2)
O1—C8—C15108.4 (2)O2—C19—C20118.9 (2)
C7—C8—C15109.0 (2)O2—C19—C18120.6 (2)
O1—C8—C9110.86 (19)C20—C19—C18120.4 (2)
C7—C8—C9112.5 (2)C19—C20—C21120.6 (2)
C15—C8—C9111.6 (2)C19—C20—H20119.7
C14—C9—C8110.36 (19)C21—C20—H20119.7
C14—C9—C10112.0 (2)O1—C21—C16120.8 (2)
C8—C9—C10115.6 (2)O1—C21—C20120.0 (2)
C14—C9—H9106.0C16—C21—C20119.2 (2)
C8—C9—H9106.0
C10—C1—C2—C357.4 (3)C14—C9—C10—C167.9 (2)
C1—C2—C3—C457.2 (4)C8—C9—C10—C1164.5 (2)
C2—C3—C4—C1274.3 (3)C14—C9—C10—C5176.30 (19)
C2—C3—C4—C11169.9 (3)C8—C9—C10—C548.7 (3)
C2—C3—C4—C552.6 (4)C18i—O3—C14—C1650.0 (2)
C3—C4—C5—C6176.6 (3)C18i—O3—C14—C9175.53 (19)
C12—C4—C5—C658.5 (4)C8—C9—C14—O397.3 (2)
C11—C4—C5—C660.1 (3)C10—C9—C14—O3132.3 (2)
C3—C4—C5—C1052.0 (3)C8—C9—C14—C1626.6 (3)
C12—C4—C5—C1073.0 (3)C10—C9—C14—C16103.8 (2)
C11—C4—C5—C10168.4 (2)O3—C14—C16—C21126.5 (2)
C4—C5—C6—C7160.9 (2)C9—C14—C16—C211.7 (3)
C10—C5—C6—C764.4 (3)O3—C14—C16—C1748.3 (3)
C5—C6—C7—C858.8 (3)C9—C14—C16—C17173.0 (2)
C21—O1—C8—C7178.8 (2)C21—C16—C17—C185.2 (4)
C21—O1—C8—C1565.2 (3)C14—C16—C17—C18179.8 (2)
C21—O1—C8—C957.6 (3)C21—C16—C17—C17i158.50 (17)
C6—C7—C8—O172.2 (3)C14—C16—C17—C17i16.5 (2)
C6—C7—C8—C15172.2 (2)C16—C17—C18—O3i174.0 (2)
C6—C7—C8—C947.9 (3)C17i—C17—C18—O3i10.7 (3)
O1—C8—C9—C1455.9 (3)C16—C17—C18—C190.8 (4)
C7—C8—C9—C14172.2 (2)C17i—C17—C18—C19162.49 (17)
C15—C8—C9—C1464.9 (3)C17—C18—C19—O2178.8 (2)
O1—C8—C9—C1072.5 (3)O3i—C18—C19—O25.2 (3)
C7—C8—C9—C1043.8 (3)C17—C18—C19—C202.1 (4)
C15—C8—C9—C10166.6 (2)O3i—C18—C19—C20171.5 (2)
C2—C1—C10—C1370.9 (3)O2—C19—C20—C21177.3 (2)
C2—C1—C10—C552.7 (3)C18—C19—C20—C210.6 (4)
C2—C1—C10—C9168.9 (2)C8—O1—C21—C1628.2 (3)
C6—C5—C10—C1364.4 (3)C8—O1—C21—C20150.7 (2)
C4—C5—C10—C1369.2 (3)C17—C16—C21—O1172.3 (2)
C6—C5—C10—C1174.4 (2)C14—C16—C21—O12.3 (4)
C4—C5—C10—C152.0 (3)C17—C16—C21—C206.5 (4)
C6—C5—C10—C958.5 (3)C14—C16—C21—C20178.9 (2)
C4—C5—C10—C9167.9 (2)C19—C20—C21—O1175.1 (2)
C14—C9—C10—C1351.7 (3)C19—C20—C21—C163.7 (4)
C8—C9—C10—C1375.9 (3)
Symmetry code: (i) y+1, x+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.95 (4)2.16 (4)2.753 (3)120 (3)
Symmetry code: (i) y+1, x+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC42H54O6
Mr654.85
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)13.5981 (10), 18.7260 (19)
V3)3462.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.24 × 0.14
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.743, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
20532, 2219, 1644
Rint0.110
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 0.95
No. of reflections2219
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The research work was financially supported by the National Marine `863' Project (No. 2006 A A09Z412), the Natural Science Foundation of China (Nos. 3073108, 20772136, and 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Projects (No. 017XD14036 and 06DZ22028), and partially funded by a grant from the Syngenta-SIMM-PhD Studentship Project.

References

First citationAlvarez-Manzaneda, E. J., Chahboun, R., Barranco Pérez, I., Cabrera, E., Alvarez, E. & Alvarez-Manzaneda, R. (2005). Org. Lett. 7, 1477–1480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlvarez-Manzaneda, E. J., Chahboun, R., Cabrera, E., Alvarez, E., Haidour, A., Ramos, J. M., Alvarez-Manzaneda, R., Hmamouchi, M. & Bouanou, H. (2007). J. Org. Chem. 72, 3332–3339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmade, P., Chevelot, L., Perzanowski, H. P. & Scheuer, P. J. (1983). Helv. Chim. Acta, 66, 1672–1675.  CrossRef CAS Web of Science Google Scholar
First citationBarrero, A. F., Alvarez-Manzaneda, E. J., Herrador, M. M., Valdivia, M. V. & Chahboun, R. (1998). Tetrahedron, 39, 2425–2428.  CrossRef CAS Google Scholar
First citationBarrero, A. F., Alvarez-Miranda, E. J., Chahboun, R., Cortés, M. & Armstrong, V. (1999). Tetrahedron, 55, 15181–15208.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, M. E., González-Iriarte, M., Barrero, A. F., Salvador-Tormo, N., Muñoz-Chápuli, R., Medina, M. A. & Quesada, A. R. (2004). Int. J. Cancer, 20, 31–38.  Web of Science CrossRef Google Scholar
First citationCiavatta, M. L., Lopez Gresa, M. P., Gavagnin, M., Romero, V., Melck, D., Manzo, E., Guo, Y.-W., van Soest, R. & Cimino, G. (2007). Tetrahedron, 63, 1380–1384.  Web of Science CrossRef CAS Google Scholar
First citationHamann, M. T. (2003). Curr. Pharm. Des. 9, 879–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKohmoto, S., McConnell, O. J., Wright, A., Koehn, F., Thompson, W., Lui, M. & Snader, K. M. (1987). J. Nat. Prod. 50, 336–336.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLongley, R. E., McConnell, O. J., Essich, E. & Harmody, D. (1993). J. Nat. Prod. 56, 915–920.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakamatsu, S., Hodges, T. W., Rajbhandari, I., Gerwick, W. H., Hamann, M. T. & Nagle, D. G. (2003). J. Nat. Prod. 66, 605–608.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages o946-o947
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds