Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C15H12N2O4, contains a nearly planar four-membered β-lactam ring, making dihedral angles of 67.01 (13) and 75.21 (11)° with the phenyl and the benzene rings, respectively. A single N—H...O hydrogen bond links mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038354/bh2126sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038354/bh2126Isup2.hkl
Contains datablock I

CCDC reference: 660226

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.116
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.77 mm PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 900 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C9 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

β-Lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Bruggink, 2001; Morin & Gorman, 1982; Katritzky et al., 1996; Georg, 1993). The β-lactam class of drugs have revolutionized treatment in medicine (Coyne et al., 2007). In the late 1970's and early 1980's, the first classes of the monocyclic β-lactam antibacterial agents were found in natural sources (Dobrowolski et al., 2004). All β-lactams are based on a β-lactam ring responsible for the antibacterial activity and variable side chains that account for the major differences in their chemical and pharmacological properties (Cha et al., 2006). Monocyclic β-lactams such as nocardicins (Kamiya et al., 1982) and monobactams (Koster et al., 1982) are of interest as they have been found to exhibit antibiotic properties. These compounds can be synthesized by various routes, although the preparation of a N-unsubstituted β-lactam is a common feature (Chan et al., 1995). Apart from their clinical interest, the use of β-lactams as versatile synthons for the preparation of compounds of biological relevance, such as α- and β-amino acids, alkaloids, heterocycles, and taxoids, has triggered a renewed interest in the building of new β-lactam systems (Alcaide et al., 2007). In solution-phase syntheses, CAN has been utilized to remove the p-methoxyphenyl group from the amide nitrogen of β-lactams to generate corresponding N-unsubstituted analogs (Fukuyama et al., 1980; Kronenthal et al., 1982; Jarrahpour & Zarei, 2006). Jarrahpour and coworkers have synthesized some sugar-based monocyclic β-lactams (Jarrahpour & Alvand, 2007). We herein report on the crystal and molecular structures of the title compound, (I).

In (I) (Fig. 1), the four-membered β-lactam ring is nearly planar, with a maximum deviation of 0.013 (1) Å for atom N1. Within the lactam ring, the bond lengths are similar to those observed in our previous studies (Pınar et al., 2006; Akkurt et al., 2006). The four-membered β-lactam ring (N1/C7/C8/C9) in (I) makes dihedral angles of 67.01 (13) and 75.21 (11)°, respectively, with the C1···C6 phenyl and the C10···C15 benzene rings.

A single N—H···O hydrogen bond (Fig. 2) links molecules into centrosymmetric dimers, forming a R22(8) motif (Bernstein et al., 1995).

Related literature top

For related literature, see: Akkurt et al. (2006); Alcaide et al. (2007); Bernstein et al. (1995); Bruggink (2001); Cha et al. (2006); Chan et al. (1995); Coyne et al. (2007); Dobrowolski et al. (2004); Fukuyama et al. (1980); Georg (1993); Jarrahpour & Alvand (2007); Jarrahpour & Zarei (2006); Kamiya et al. (1982); Katritzky et al. (1996); Koster et al. (1982); Kronenthal et al. (1982); Morin & Gorman (1982); Pınar et al. (2006).

Experimental top

Treatment of 1-(4-methoxyphenyl)-4-(4-nitrophenyl)-3-phenoxyazetidin-2-one with ceric ammonium nitrate (CAN) at 273 K in acetonitrile gave the title N-unsubstituted monocyclic β-lactam (Jarrahpour et al., 2006). Compound (I) was recrystallized from dichloromethane to give light yellow single crystals. The IR spectrum showed the characteristic absorption of β-lactam carbonyl at 1755 cm-1 and the lactam NH at 3383.9 cm-1. The 1H NMR spectrum showed the β-lactam H-4 proton as a doublet at 5.11 p.p.m. (J = 5.50 Hz) and the H-3 proton also as a doublet at 5.71 p.p.m. (J = 5.50 Hz), NH at 6.76 p.p.m. and aromatic H protons at 6.59–8.21 p.p.m.. The 13C NMR spectrum exhibited the following signals: β-lactam C-4 at 55.11, β-lactam C-3 at 88.76, aromatic carbons at 114.23–158.13, and CO of β-lactam at 167.56 p.p.m.·The mass spectrum showed the molecular ion at m/e 284 and the base peak at m/e 191.

Refinement top

The H atom bonded to N atoms was found in a difference map and refined freely. The C-bonded H atoms were included in idealized positions and refined using a riding model approximation with C—H bond lengths set to 0.93 (aromatic CH) or 0.98 Å (methine CH), and with Uiso(H) = 1.2Ueq(C).

Structure description top

β-Lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Bruggink, 2001; Morin & Gorman, 1982; Katritzky et al., 1996; Georg, 1993). The β-lactam class of drugs have revolutionized treatment in medicine (Coyne et al., 2007). In the late 1970's and early 1980's, the first classes of the monocyclic β-lactam antibacterial agents were found in natural sources (Dobrowolski et al., 2004). All β-lactams are based on a β-lactam ring responsible for the antibacterial activity and variable side chains that account for the major differences in their chemical and pharmacological properties (Cha et al., 2006). Monocyclic β-lactams such as nocardicins (Kamiya et al., 1982) and monobactams (Koster et al., 1982) are of interest as they have been found to exhibit antibiotic properties. These compounds can be synthesized by various routes, although the preparation of a N-unsubstituted β-lactam is a common feature (Chan et al., 1995). Apart from their clinical interest, the use of β-lactams as versatile synthons for the preparation of compounds of biological relevance, such as α- and β-amino acids, alkaloids, heterocycles, and taxoids, has triggered a renewed interest in the building of new β-lactam systems (Alcaide et al., 2007). In solution-phase syntheses, CAN has been utilized to remove the p-methoxyphenyl group from the amide nitrogen of β-lactams to generate corresponding N-unsubstituted analogs (Fukuyama et al., 1980; Kronenthal et al., 1982; Jarrahpour & Zarei, 2006). Jarrahpour and coworkers have synthesized some sugar-based monocyclic β-lactams (Jarrahpour & Alvand, 2007). We herein report on the crystal and molecular structures of the title compound, (I).

In (I) (Fig. 1), the four-membered β-lactam ring is nearly planar, with a maximum deviation of 0.013 (1) Å for atom N1. Within the lactam ring, the bond lengths are similar to those observed in our previous studies (Pınar et al., 2006; Akkurt et al., 2006). The four-membered β-lactam ring (N1/C7/C8/C9) in (I) makes dihedral angles of 67.01 (13) and 75.21 (11)°, respectively, with the C1···C6 phenyl and the C10···C15 benzene rings.

A single N—H···O hydrogen bond (Fig. 2) links molecules into centrosymmetric dimers, forming a R22(8) motif (Bernstein et al., 1995).

For related literature, see: Akkurt et al. (2006); Alcaide et al. (2007); Bernstein et al. (1995); Bruggink (2001); Cha et al. (2006); Chan et al. (1995); Coyne et al. (2007); Dobrowolski et al. (2004); Fukuyama et al. (1980); Georg (1993); Jarrahpour & Alvand (2007); Jarrahpour & Zarei (2006); Kamiya et al. (1982); Katritzky et al. (1996); Koster et al. (1982); Kronenthal et al. (1982); Morin & Gorman (1982); Pınar et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of (I), showing the formation of centrosymmetric dimers, down the a axis in the unit cell. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one top
Crystal data top
C15H12N2O4Z = 2
Mr = 284.27F(000) = 296
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1548 (7) ÅCell parameters from 3067 reflections
b = 9.8007 (11) Åθ = 2.1–27.9°
c = 11.9296 (13) ŵ = 0.10 mm1
α = 80.552 (9)°T = 296 K
β = 75.167 (9)°Prism, light yellow
γ = 82.188 (9)°0.77 × 0.41 × 0.22 mm
V = 682.86 (14) Å3
Data collection top
Stoe IPDS2
diffractometer
2635 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2047 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.925, Tmax = 0.978l = 1414
5874 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.1246P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2635 reflectionsΔρmax = 0.19 e Å3
195 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C15H12N2O4γ = 82.188 (9)°
Mr = 284.27V = 682.86 (14) Å3
Triclinic, P1Z = 2
a = 6.1548 (7) ÅMo Kα radiation
b = 9.8007 (11) ŵ = 0.10 mm1
c = 11.9296 (13) ÅT = 296 K
α = 80.552 (9)°0.77 × 0.41 × 0.22 mm
β = 75.167 (9)°
Data collection top
Stoe IPDS2
diffractometer
2635 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2047 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.978Rint = 0.032
5874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
2635 reflectionsΔρmin = 0.24 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43673 (18)0.16127 (12)0.32486 (10)0.0569 (4)
O20.31243 (19)0.00746 (14)0.15344 (12)0.0669 (5)
O31.0921 (4)0.7129 (2)0.1750 (2)0.1277 (10)
O40.7998 (4)0.78343 (17)0.11047 (19)0.1150 (9)
N10.6469 (2)0.09919 (15)0.07432 (14)0.0586 (5)
N20.9265 (4)0.69132 (18)0.14639 (16)0.0798 (7)
C10.5052 (3)0.19644 (19)0.41665 (15)0.0587 (6)
C20.6992 (4)0.1401 (2)0.44995 (19)0.0765 (8)
C30.7471 (5)0.1856 (3)0.5453 (2)0.1007 (11)
C40.6077 (7)0.2836 (4)0.6032 (2)0.1137 (13)
C50.4185 (6)0.3397 (3)0.5681 (2)0.1074 (13)
C60.3640 (4)0.2961 (2)0.47587 (18)0.0797 (8)
C70.5801 (3)0.06734 (16)0.25548 (15)0.0529 (5)
C80.4792 (3)0.04325 (17)0.15693 (16)0.0540 (5)
C90.7757 (3)0.12692 (17)0.15498 (15)0.0529 (5)
C100.8109 (2)0.27613 (16)0.15189 (14)0.0467 (5)
C110.9911 (3)0.30699 (18)0.19038 (16)0.0548 (5)
C121.0272 (3)0.44190 (18)0.19040 (16)0.0587 (6)
C130.8818 (3)0.54697 (17)0.15168 (14)0.0551 (5)
C140.6991 (3)0.52079 (18)0.11567 (15)0.0598 (6)
C150.6654 (3)0.38471 (17)0.11566 (15)0.0549 (6)
H10.684 (3)0.091 (2)0.0023 (19)0.075 (6)*
H20.796600.073200.410100.0920*
H30.877400.147800.569400.1210*
H40.641400.312400.666800.1360*
H50.324300.408600.606800.1290*
H60.232000.333900.453600.0960*
H70.628100.018900.301000.0630*
H90.917100.066100.149600.0640*
H111.088700.235000.216600.0660*
H121.148300.461800.216200.0700*
H140.600000.593400.091700.0720*
H150.542600.365600.090900.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (6)0.0631 (7)0.0574 (7)0.0073 (5)0.0158 (5)0.0182 (5)
O20.0579 (7)0.0690 (8)0.0845 (9)0.0143 (6)0.0215 (6)0.0274 (7)
O30.1617 (18)0.0836 (12)0.166 (2)0.0607 (12)0.0640 (16)0.0180 (12)
O40.1542 (17)0.0467 (9)0.1371 (17)0.0001 (10)0.0286 (13)0.0104 (9)
N10.0623 (8)0.0590 (9)0.0615 (9)0.0137 (7)0.0132 (7)0.0248 (7)
N20.1102 (14)0.0526 (10)0.0743 (11)0.0222 (10)0.0060 (10)0.0157 (8)
C10.0706 (10)0.0604 (10)0.0480 (9)0.0262 (8)0.0115 (8)0.0039 (7)
C20.0866 (13)0.0816 (14)0.0718 (13)0.0252 (11)0.0342 (11)0.0021 (10)
C30.124 (2)0.113 (2)0.0853 (17)0.0509 (17)0.0543 (16)0.0080 (15)
C40.177 (3)0.121 (2)0.0630 (15)0.071 (2)0.0369 (18)0.0102 (15)
C50.154 (3)0.107 (2)0.0636 (14)0.0338 (19)0.0079 (16)0.0303 (14)
C60.0971 (15)0.0826 (14)0.0591 (12)0.0178 (11)0.0053 (10)0.0225 (10)
C70.0549 (9)0.0428 (8)0.0668 (11)0.0061 (7)0.0212 (8)0.0124 (7)
C80.0528 (8)0.0444 (8)0.0711 (11)0.0040 (7)0.0185 (8)0.0210 (7)
C90.0474 (8)0.0475 (9)0.0691 (11)0.0023 (7)0.0169 (7)0.0199 (8)
C100.0433 (7)0.0473 (8)0.0512 (9)0.0043 (6)0.0088 (6)0.0156 (7)
C110.0444 (8)0.0517 (9)0.0726 (11)0.0020 (7)0.0184 (7)0.0158 (8)
C120.0522 (9)0.0596 (10)0.0701 (11)0.0150 (8)0.0137 (8)0.0190 (9)
C130.0673 (10)0.0476 (9)0.0493 (9)0.0132 (7)0.0035 (7)0.0140 (7)
C140.0720 (11)0.0496 (9)0.0580 (10)0.0049 (8)0.0202 (8)0.0094 (7)
C150.0555 (9)0.0563 (10)0.0590 (10)0.0020 (7)0.0223 (7)0.0149 (8)
Geometric parameters (Å, º) top
O1—C11.377 (2)C10—C151.382 (2)
O1—C71.402 (2)C10—C111.389 (2)
O2—C81.212 (2)C11—C121.370 (3)
O3—N21.209 (4)C12—C131.371 (3)
O4—N21.208 (3)C13—C141.370 (3)
N1—C81.339 (2)C14—C151.377 (2)
N1—C91.471 (2)C2—H20.9300
N2—C131.466 (3)C3—H30.9300
N1—H10.90 (2)C4—H40.9300
C1—C61.375 (3)C5—H50.9300
C1—C21.371 (3)C6—H60.9300
C2—C31.398 (3)C7—H70.9800
C3—C41.351 (5)C9—H90.9800
C4—C51.354 (5)C11—H110.9300
C5—C61.374 (4)C12—H120.9300
C7—C81.526 (3)C14—H140.9300
C7—C91.565 (3)C15—H150.9300
C9—C101.500 (2)
O1···O23.1236 (18)C12···C14vii3.589 (3)
O1···N13.063 (2)C14···C12vii3.589 (3)
O1···C153.202 (2)C15···O13.202 (2)
O2···C9i3.383 (2)C2···H72.7000
O2···O13.1236 (18)C3···H7ix3.0400
O2···O3ii3.165 (3)C4···H7ix3.0600
O2···N1iii2.940 (2)C7···H22.5500
O3···O2iv3.165 (3)C8···H1iii2.87 (2)
O4···C8v3.037 (3)C8···H11i2.8500
O4···N1v3.103 (2)C9···H23.0400
O1···H11i2.7300C13···H5x2.9100
O2···H9i2.4500H1···O2iii2.09 (2)
O2···H11i2.7000H1···O3vii2.79 (2)
O2···H1iii2.09 (2)H1···C8iii2.87 (2)
O3···H4vi2.7600H2···C72.5500
O3···H122.4200H2···C93.0400
O3···H1vii2.79 (2)H2···H72.2200
O4···H142.4400H4···O3vi2.7600
N1···O13.063 (2)H5···C13x2.9100
N1···O4viii3.103 (2)H7···C22.7000
N1···O2iii2.940 (2)H7···H22.2200
N1···H152.6300H7···C3ix3.0400
C1···C103.267 (2)H7···C4ix3.0600
C2···C93.450 (3)H9···O2xi2.4500
C2···C103.512 (3)H9···H112.4200
C2···C113.432 (3)H11···O1xi2.7300
C3···C7ix3.581 (3)H11···O2xi2.7000
C5···C5x3.445 (4)H11···C8xi2.8500
C7···C3ix3.581 (3)H11···H92.4200
C8···O4viii3.037 (3)H12···O32.4200
C9···C23.450 (3)H14···O42.4400
C9···O2xi3.383 (2)H14···H15xii2.5000
C10···C23.512 (3)H15···N12.6300
C10···C13.267 (2)H15···H14xii2.5000
C11···C23.432 (3)
C1—O1—C7118.37 (14)N2—C13—C14119.22 (17)
C8—N1—C996.21 (14)N2—C13—C12118.87 (18)
O3—N2—O4122.8 (2)C12—C13—C14121.90 (16)
O3—N2—C13118.55 (19)C13—C14—C15118.61 (17)
O4—N2—C13118.6 (2)C10—C15—C14121.12 (17)
C9—N1—H1133.2 (13)C1—C2—H2121.00
C8—N1—H1127.4 (13)C3—C2—H2121.00
O1—C1—C6115.25 (17)C2—C3—H3119.00
O1—C1—C2124.64 (17)C4—C3—H3119.00
C2—C1—C6120.10 (18)C3—C4—H4120.00
C1—C2—C3118.4 (2)C5—C4—H4120.00
C2—C3—C4121.3 (3)C4—C5—H5120.00
C3—C4—C5119.6 (3)C6—C5—H5120.00
C4—C5—C6120.8 (3)C1—C6—H6120.00
C1—C6—C5119.8 (2)C5—C6—H6120.00
O1—C7—C8111.02 (15)O1—C7—H7113.00
O1—C7—C9117.47 (13)C8—C7—H7113.00
C8—C7—C985.24 (13)C9—C7—H7113.00
O2—C8—N1133.27 (18)N1—C9—H9112.00
N1—C8—C792.45 (14)C7—C9—H9112.00
O2—C8—C7134.29 (17)C10—C9—H9112.00
N1—C9—C10116.21 (14)C10—C11—H11120.00
C7—C9—C10116.46 (14)C12—C11—H11119.00
N1—C9—C786.05 (13)C11—C12—H12121.00
C11—C10—C15118.48 (15)C13—C12—H12121.00
C9—C10—C11119.25 (14)C13—C14—H14121.00
C9—C10—C15122.23 (14)C15—C14—H14121.00
C10—C11—C12121.01 (17)C10—C15—H15119.00
C11—C12—C13118.85 (18)C14—C15—H15119.00
C7—O1—C1—C23.9 (3)C8—C7—C9—N11.65 (12)
C7—O1—C1—C6175.69 (16)C8—C7—C9—C10119.04 (15)
C1—O1—C7—C8178.78 (14)O1—C7—C8—N1115.82 (15)
C1—O1—C7—C983.06 (19)O1—C7—C9—C107.8 (2)
C9—N1—C8—O2177.7 (2)C9—C7—C8—O2177.9 (2)
C8—N1—C9—C10119.51 (16)C9—C7—C8—N11.81 (13)
C9—N1—C8—C71.93 (14)O1—C7—C9—N1109.59 (16)
C8—N1—C9—C71.89 (13)N1—C9—C10—C1525.4 (2)
O3—N2—C13—C120.9 (3)C7—C9—C10—C11104.01 (19)
O4—N2—C13—C140.2 (3)C7—C9—C10—C1573.7 (2)
O4—N2—C13—C12178.9 (2)N1—C9—C10—C11156.84 (16)
O3—N2—C13—C14177.8 (2)C9—C10—C11—C12179.13 (16)
O1—C1—C6—C5179.2 (2)C15—C10—C11—C121.3 (3)
C6—C1—C2—C30.6 (3)C9—C10—C15—C14178.79 (16)
O1—C1—C2—C3179.8 (2)C11—C10—C15—C141.0 (3)
C2—C1—C6—C50.4 (3)C10—C11—C12—C130.0 (3)
C1—C2—C3—C40.6 (4)C11—C12—C13—N2177.11 (17)
C2—C3—C4—C50.4 (5)C11—C12—C13—C141.5 (3)
C3—C4—C5—C61.4 (5)N2—C13—C14—C15176.84 (16)
C4—C5—C6—C11.4 (4)C12—C13—C14—C151.8 (3)
O1—C7—C8—O264.5 (2)C13—C14—C15—C100.5 (3)
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+2, y+1, z+1; (vii) x+2, y+1, z; (viii) x, y1, z; (ix) x+1, y, z+1; (x) x+1, y+1, z+1; (xi) x+1, y, z; (xii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.90 (2)2.09 (2)2.940 (2)156.9 (18)
C9—H9···O2xi0.982.453.383 (2)159
Symmetry codes: (iii) x+1, y, z; (xi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O4
Mr284.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.1548 (7), 9.8007 (11), 11.9296 (13)
α, β, γ (°)80.552 (9), 75.167 (9), 82.188 (9)
V3)682.86 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.77 × 0.41 × 0.22
Data collection
DiffractometerStoe IPDS2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.925, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5874, 2635, 2047
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.03
No. of reflections2635
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.90 (2)2.09 (2)2.940 (2)156.9 (18)
C9—H9···O2ii0.982.453.383 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds