Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title complex, [Co(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O, displays a distorted octa­hedral coordination geometry around the CoII center, formed by a diamino­bithia­zole mol­ecule (DABT), one pyridine-2,6-dicarboxyl­ate anion and one water mol­ecule. The pyridine-2,6-dicarboxyl­ate anion chelates the CoII ion with a facial configuration. Within the chelating DABT ligand, the thia­zole rings are twisted with respect to each other [dihedral angle 15.10 (5)°]. Uncoordinated water mol­ecules are involved in O—H...O and N—H...O hydrogen bonds, with H...O separations in the range 1.88–2.17 Å, stabilizing the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029595/bh2116sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029595/bh2116Isup2.hkl
Contains datablock I

CCDC reference: 654800

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.048
  • wR factor = 0.112
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT322_ALERT_2_C Check Hybridisation of S11 in Main Residue . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 8 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 5 H2 O
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Co (2) 1.67
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential applications in the field of soft magnetic materials (Sun et al., 1997). As a part of a serial structural investigation of metal complexes with DABT (Liu et al., 2003), the title CoII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by one DABT ligand, one pyridine-2,6-dicarboxylate anion and one water molecule. The asymmetric unit is completed with four lattice water molecules.

Thiazole rings of DABT are not coplanar, as observed in other complexes we have reported. The dihedral angle between thiazole rings is 15.10 (5) °, the rings being defined as C11/C12/C13/S11/N11 and C14/C15/C16/S12/N13. This angle is similar to the dihedral angle of 17.23 (7)° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu & Xu, 2004). Bond lengths C16—N14 [1.335 (4) Å] and C16—N13 [1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature for DABT can be found in other DABT complexes based on MnII (Liu & Xu, 2005) and CoII (Liu, Yu & Xu, 2005) we have reported. Other DABT complexes have been reported (Liu et al., 2006; Zhang et al., 2006).

The tridentate pyridine-2,6-dicarboxylate anion chelates to the CoII ion with a facial configuration (Ma et al., 2002). The maximum deviation from the mean plane defined by C21···C27/N21/O21···O24 is 0.082 (3) Å, for atom N21.

The extensive hydrogen bonding scheme involving lattice water molecules and complex helps to stabilize the crystal structure, as shown in Fig. 1. and Table reporting intermolecular contacts..

Related literature top

For general background, see Liu et al. (2006); For synthesis see Zhang et al. (2006). For related structures see: Liu & Xu (2004, 2005); Liu et al. (2003, 2005); Sun et al. (1997), Ma et al. (2002).

Experimental top

The complex was prepared following a procedure similar to that previously used for a NiII compound (Zhang et al., 2006). An aqueous solution (20 ml) containing DABT (1 mmol) and CoCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,6-dicarboxylic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature the solution was filtered. Red single crystals of the title complex were obtained from the filtrate after 30 d.

Refinement top

C-bonded H atoms were placed in calculated positions, and were included in the refinement in riding mode with C—H distances constrained to 0.93 Å and Uiso(H) = 1.2Ueq(carrier C atom). H atoms of amino groups of DABT were located in a difference map and included in the refinement with fixed positions and isotropic displacement parameters Uiso(H) = 0.05 Å2. Finally, H atoms of water molecules were located in a difference map and included in the refinement as riding with O—H bond lengths constrained to the found distances and Uiso(H) = 1.5Ueq(carrier O atom).

Structure description top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential applications in the field of soft magnetic materials (Sun et al., 1997). As a part of a serial structural investigation of metal complexes with DABT (Liu et al., 2003), the title CoII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by one DABT ligand, one pyridine-2,6-dicarboxylate anion and one water molecule. The asymmetric unit is completed with four lattice water molecules.

Thiazole rings of DABT are not coplanar, as observed in other complexes we have reported. The dihedral angle between thiazole rings is 15.10 (5) °, the rings being defined as C11/C12/C13/S11/N11 and C14/C15/C16/S12/N13. This angle is similar to the dihedral angle of 17.23 (7)° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu & Xu, 2004). Bond lengths C16—N14 [1.335 (4) Å] and C16—N13 [1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature for DABT can be found in other DABT complexes based on MnII (Liu & Xu, 2005) and CoII (Liu, Yu & Xu, 2005) we have reported. Other DABT complexes have been reported (Liu et al., 2006; Zhang et al., 2006).

The tridentate pyridine-2,6-dicarboxylate anion chelates to the CoII ion with a facial configuration (Ma et al., 2002). The maximum deviation from the mean plane defined by C21···C27/N21/O21···O24 is 0.082 (3) Å, for atom N21.

The extensive hydrogen bonding scheme involving lattice water molecules and complex helps to stabilize the crystal structure, as shown in Fig. 1. and Table reporting intermolecular contacts..

For general background, see Liu et al. (2006); For synthesis see Zhang et al. (2006). For related structures see: Liu & Xu (2004, 2005); Liu et al. (2003, 2005); Sun et al. (1997), Ma et al. (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines show the hydrogen bonds [symmetry code: (i) x - 1, y, z].
Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole-κ2N,N')(pyridine- 2,6-dicarboxylato-κ3O,N,O')cobalt(II) tetrahydrate top
Crystal data top
[Co(C7H3NO4)(C6H6N4S2)(H2O)]·4H2OF(000) = 1052
Mr = 512.38Dx = 1.734 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4380 reflections
a = 10.0259 (15) Åθ = 2.0–27.5°
b = 7.0956 (11) ŵ = 1.15 mm1
c = 27.648 (4) ÅT = 295 K
β = 93.528 (2)°Prism, red
V = 1963.2 (5) Å30.26 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4488 independent reflections
Radiation source: fine-focus sealed tube2781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1213
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 79
Tmin = 0.76, Tmax = 0.84l = 3435
11819 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
4488 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Co(C7H3NO4)(C6H6N4S2)(H2O)]·4H2OV = 1963.2 (5) Å3
Mr = 512.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0259 (15) ŵ = 1.15 mm1
b = 7.0956 (11) ÅT = 295 K
c = 27.648 (4) Å0.26 × 0.20 × 0.15 mm
β = 93.528 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4488 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2781 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.84Rint = 0.058
11819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
4488 reflectionsΔρmin = 0.53 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.70981 (5)0.52542 (7)0.673116 (16)0.02505 (15)
N110.5102 (3)0.5782 (4)0.69340 (9)0.0249 (7)
N120.3703 (3)0.5793 (5)0.62170 (11)0.0416 (9)
H12A0.42060.58890.59640.050*
H12B0.28430.57560.61360.050*
N130.7381 (3)0.5238 (4)0.74861 (9)0.0246 (7)
N140.9684 (3)0.4777 (5)0.76659 (11)0.0393 (8)
H14A0.97780.42650.73940.050*
H14B1.03170.46370.79000.050*
N210.7092 (3)0.6023 (4)0.60086 (9)0.0238 (7)
O10.9027 (2)0.3886 (3)0.66627 (8)0.0322 (6)
H1A0.95710.44460.65110.048*
H1B0.89620.28370.65630.048*
O210.8075 (2)0.8037 (3)0.67166 (8)0.0318 (6)
O220.8782 (2)1.0307 (3)0.62364 (9)0.0349 (6)
O230.6270 (2)0.2834 (3)0.63337 (8)0.0315 (6)
O240.5645 (3)0.1782 (4)0.55884 (9)0.0449 (7)
O1W0.4090 (3)0.1295 (4)0.54364 (10)0.0501 (8)
H1WA0.46140.04380.55350.075*
H1WB0.40720.12940.51340.075*
O2W0.9974 (3)0.2014 (4)0.55043 (9)0.0520 (8)
H2WA0.95440.19870.52320.078*
H2WB0.94750.16320.57170.078*
O3W1.0712 (3)0.5351 (4)0.59782 (10)0.0482 (7)
H3WA1.07340.63250.58280.072*
H3WB1.04650.45090.57990.072*
O4W1.1338 (3)0.8492 (4)0.54165 (9)0.0470 (7)
H4WA1.21530.86010.54430.070*
H4WB1.09930.95070.54990.070*
S110.26088 (9)0.55446 (15)0.70815 (4)0.0358 (3)
S120.80820 (10)0.54847 (16)0.83941 (3)0.0378 (3)
C110.4991 (4)0.5664 (5)0.74335 (12)0.0263 (8)
C120.3732 (4)0.5532 (5)0.75708 (13)0.0329 (9)
H120.35020.54460.78910.039*
C130.3914 (4)0.5722 (5)0.67035 (13)0.0293 (8)
C140.6233 (3)0.5582 (5)0.77352 (12)0.0268 (8)
C150.6420 (4)0.5770 (5)0.82163 (13)0.0332 (9)
H150.57480.60200.84250.040*
C160.8444 (4)0.5117 (5)0.77936 (12)0.0274 (8)
C210.7622 (3)0.7664 (5)0.58793 (12)0.0246 (8)
C220.7694 (4)0.8154 (5)0.53997 (12)0.0324 (9)
H220.80620.93020.53150.039*
C230.7210 (4)0.6913 (6)0.50479 (13)0.0363 (9)
H230.72310.72250.47220.044*
C240.6693 (4)0.5201 (5)0.51834 (13)0.0332 (9)
H240.63810.43370.49500.040*
C250.6647 (3)0.4792 (5)0.56717 (12)0.0249 (8)
C260.6130 (4)0.2984 (5)0.58774 (13)0.0298 (8)
C270.8201 (3)0.8784 (5)0.63080 (13)0.0269 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0258 (3)0.0284 (3)0.0209 (3)0.0019 (2)0.00102 (19)0.0000 (2)
N110.0250 (17)0.0282 (18)0.0219 (15)0.0007 (12)0.0037 (12)0.0019 (13)
N120.0281 (18)0.069 (3)0.0275 (17)0.0025 (16)0.0039 (14)0.0014 (17)
N130.0236 (16)0.0279 (17)0.0222 (15)0.0020 (13)0.0008 (12)0.0033 (13)
N140.0272 (18)0.063 (2)0.0273 (17)0.0008 (16)0.0065 (13)0.0040 (16)
N210.0253 (16)0.0238 (17)0.0221 (15)0.0044 (12)0.0006 (12)0.0020 (13)
O10.0344 (15)0.0291 (15)0.0330 (14)0.0013 (11)0.0023 (11)0.0048 (12)
O210.0390 (16)0.0353 (16)0.0209 (13)0.0092 (12)0.0005 (11)0.0014 (12)
O220.0403 (16)0.0300 (15)0.0341 (15)0.0124 (12)0.0012 (12)0.0024 (12)
O230.0394 (16)0.0256 (14)0.0295 (14)0.0043 (11)0.0039 (11)0.0027 (12)
O240.0606 (19)0.0334 (16)0.0397 (16)0.0197 (14)0.0044 (14)0.0087 (14)
O1W0.062 (2)0.0436 (18)0.0450 (17)0.0232 (15)0.0053 (14)0.0062 (15)
O2W0.058 (2)0.060 (2)0.0384 (16)0.0206 (16)0.0055 (14)0.0009 (15)
O3W0.0499 (18)0.0456 (18)0.0491 (18)0.0084 (14)0.0023 (14)0.0041 (15)
O4W0.0489 (18)0.0468 (18)0.0451 (17)0.0039 (14)0.0018 (14)0.0022 (14)
S110.0258 (5)0.0401 (6)0.0420 (6)0.0004 (4)0.0045 (4)0.0018 (5)
S120.0423 (6)0.0492 (7)0.0214 (5)0.0010 (5)0.0027 (4)0.0007 (5)
C110.032 (2)0.0211 (19)0.0265 (19)0.0015 (15)0.0054 (15)0.0001 (15)
C120.032 (2)0.037 (2)0.030 (2)0.0015 (17)0.0068 (16)0.0007 (18)
C130.028 (2)0.033 (2)0.027 (2)0.0002 (16)0.0000 (16)0.0020 (17)
C140.031 (2)0.025 (2)0.0254 (19)0.0041 (16)0.0038 (15)0.0015 (16)
C150.033 (2)0.040 (2)0.027 (2)0.0002 (17)0.0027 (16)0.0010 (18)
C160.031 (2)0.027 (2)0.0235 (18)0.0018 (16)0.0027 (15)0.0025 (16)
C210.0219 (18)0.024 (2)0.0277 (19)0.0013 (15)0.0001 (15)0.0019 (16)
C220.040 (2)0.029 (2)0.028 (2)0.0080 (17)0.0019 (17)0.0065 (17)
C230.049 (3)0.041 (2)0.0189 (19)0.0058 (19)0.0007 (17)0.0024 (18)
C240.043 (2)0.033 (2)0.0228 (19)0.0084 (18)0.0011 (16)0.0070 (17)
C250.0285 (19)0.0220 (19)0.0237 (18)0.0005 (15)0.0006 (14)0.0003 (15)
C260.029 (2)0.031 (2)0.029 (2)0.0037 (16)0.0025 (16)0.0000 (17)
C270.025 (2)0.026 (2)0.029 (2)0.0039 (15)0.0016 (15)0.0050 (17)
Geometric parameters (Å, º) top
Co—N212.070 (3)O1W—H1WB0.8346
Co—N132.089 (3)O2W—H2WA0.8437
Co—N112.144 (3)O2W—H2WB0.8397
Co—O232.176 (2)O3W—H3WA0.8077
Co—O12.182 (2)O3W—H3WB0.8042
Co—O212.206 (2)O4W—H4WA0.8198
N11—C131.316 (4)O4W—H4WB0.8369
N11—C111.395 (4)S11—C121.706 (4)
N12—C131.350 (4)S11—C131.729 (4)
N12—H12A0.8902S12—C151.720 (4)
N12—H12B0.8774S12—C161.741 (3)
N13—C161.324 (4)C11—C121.344 (5)
N13—C141.399 (4)C11—C141.457 (5)
N14—C161.335 (4)C12—H120.9300
N14—H14A0.8454C14—C151.338 (5)
N14—H14B0.8832C15—H150.9300
N21—C251.334 (4)C21—C221.377 (4)
N21—C211.338 (4)C21—C271.513 (4)
O1—H1A0.8126C22—C231.379 (5)
O1—H1B0.7954C22—H220.9300
O21—C271.261 (4)C23—C241.381 (5)
O22—C271.250 (4)C23—H230.9300
O23—C261.265 (4)C24—C251.385 (5)
O24—C261.247 (4)C24—H240.9300
O1W—H1WA0.8383C25—C261.508 (5)
N21—Co—N13163.25 (11)C15—S12—C1690.01 (17)
N21—Co—N11105.01 (11)C12—C11—N11114.7 (3)
N13—Co—N1179.13 (10)C12—C11—C14128.3 (3)
N21—Co—O2375.06 (10)N11—C11—C14116.8 (3)
N13—Co—O23121.63 (10)C11—C12—S11111.2 (3)
N11—Co—O2386.38 (10)C11—C12—H12124.4
N21—Co—O189.05 (10)S11—C12—H12124.4
N13—Co—O191.00 (10)N11—C13—N12124.3 (3)
N11—Co—O1161.20 (10)N11—C13—S11113.9 (3)
O23—Co—O185.27 (9)N12—C13—S11121.8 (3)
N21—Co—O2173.83 (10)C15—C14—N13116.0 (3)
N13—Co—O2189.42 (10)C15—C14—C11128.9 (3)
N11—Co—O21105.71 (10)N13—C14—C11115.2 (3)
O23—Co—O21148.60 (9)C14—C15—S12110.2 (3)
O1—Co—O2190.00 (9)C14—C15—H15124.9
C13—N11—C11110.6 (3)S12—C15—H15124.9
C13—N11—Co134.3 (2)N13—C16—N14124.6 (3)
C11—N11—Co112.4 (2)N13—C16—S12113.3 (3)
C13—N12—H12A136.5N14—C16—S12122.1 (3)
C13—N12—H12B110.3N21—C21—C22121.5 (3)
H12A—N12—H12B113.3N21—C21—C27112.8 (3)
C16—N13—C14110.4 (3)C22—C21—C27125.6 (3)
C16—N13—Co134.1 (2)C21—C22—C23118.7 (3)
C14—N13—Co115.2 (2)C21—C22—H22120.6
C16—N14—H14A118.0C23—C22—H22120.6
C16—N14—H14B117.7C22—C23—C24119.5 (3)
H14A—N14—H14B119.3C22—C23—H23120.3
C25—N21—C21120.3 (3)C24—C23—H23120.3
C25—N21—Co118.8 (2)C23—C24—C25119.0 (3)
C21—N21—Co120.6 (2)C23—C24—H24120.5
Co—O1—H1A117.0C25—C24—H24120.5
Co—O1—H1B113.1N21—C25—C24120.9 (3)
H1A—O1—H1B108.7N21—C25—C26113.7 (3)
C27—O21—Co117.5 (2)C24—C25—C26125.4 (3)
C26—O23—Co116.9 (2)O24—C26—O23126.6 (3)
H1WA—O1W—H1WB107.5O24—C26—C25118.0 (3)
H2WA—O2W—H2WB108.8O23—C26—C25115.3 (3)
H3WA—O3W—H3WB109.6O22—C27—O21125.4 (3)
H4WA—O4W—H4WB108.7O22—C27—C21119.4 (3)
C12—S11—C1389.57 (17)O21—C27—C21115.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3W0.812.022.812 (4)163
O1—H1B···O22i0.802.012.804 (3)174
O1W—H1WA···O240.841.882.701 (4)164
O1W—H1WB···O24ii0.842.062.883 (4)167
O2W—H2WA···O4Wiii0.841.982.816 (4)171
O2W—H2WB···O22i0.841.882.700 (4)163
O3W—H3WA···O4W0.812.032.809 (4)163
O3W—H3WB···O2W0.812.002.784 (4)165
O4W—H4WA···O1Wiv0.821.942.760 (4)173
O4W—H4WB···O2Wv0.842.052.866 (4)164
N12—H12A···O1Wv0.892.473.030 (4)121
N12—H12B···O3Wvi0.882.173.047 (4)173
N14—H14A···O10.852.132.881 (4)148
N14—H14B···O21vii0.882.193.003 (4)152
N14—H14B···O22vii0.882.553.338 (4)150
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x1, y, z; (vii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O
Mr512.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0259 (15), 7.0956 (11), 27.648 (4)
β (°) 93.528 (2)
V3)1963.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.26 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.76, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
11819, 4488, 2781
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.01
No. of reflections4488
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.53

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3W0.812.022.812 (4)163
O1—H1B···O22i0.802.012.804 (3)174
O1W—H1WA···O240.841.882.701 (4)164
O1W—H1WB···O24ii0.842.062.883 (4)167
O2W—H2WA···O4Wiii0.841.982.816 (4)171
O2W—H2WB···O22i0.841.882.700 (4)163
O3W—H3WA···O4W0.812.032.809 (4)163
O3W—H3WB···O2W0.812.002.784 (4)165
O4W—H4WA···O1Wiv0.821.942.760 (4)173
O4W—H4WB···O2Wv0.842.052.866 (4)164
N12—H12B···O3Wvi0.882.173.047 (4)173
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds