Download citation
Download citation
link to html
The title compound, (C14H13N2)[Fe(C7H3NO4)2]·2H2O or (dmpH)[Fe(pydc)2]·2H2O (dmp is 2,9-dimethyl-1,10-phenanthroline and pydcH2 is pyridine-2,6-dicarboxylic acid), is a six-coordinate FeIII complex obtained by reacting neocuproine (dmp), dipicolinic acid (pydcH2) and iron(II) chloride. The anionic six-coordinate complex has a distorted octa­hedral geometry and is connected to its counter-cation by a number of inter­molecular inter­actions, forming infinite one-dimensional chains in the [010] direction. Ion pairing, metal–ligand coordination and van der Waals forces, as well as inter­molecular X—H...O hydrogen bonds (X = O, N and C) and π–π stacking inter­actions [with centroid-to-centroid separations of 3.531 and 3.457 Å, shortest interplanar distances of 3.355 and 3.449 Å, and interplanar angles of 1.89 and 5.45°], result in a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025081/bh2100sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025081/bh2100Isup2.hkl
Contains datablock I

CCDC reference: 635308

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.058
  • wR factor = 0.165
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H9B .. H10B .. 1.38 Ang.
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.127 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.13 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT432_ALERT_2_C Short Inter X...Y Contact C5 .. C5 .. 3.15 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.07
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Continuing our research on proton-transfer compounds, we reached a system which is highly soluble in polar solvents. This compound has not been crystallized until now, but its metal-organic derivatives can be obtained as suitable crystals. In this report, the crystal structure of the iron(III) derivative is described.

The FeIII ion is located at the centre of a distorted octahedral arrangement (Fig. 1). The O1—Fe1—O5—C8 [92.4 (3)°], O1—Fe1—O8—C14 [-91.4 (3)°], O8—Fe1—O1—C1 [-96.6 (3)°] and O8—Fe1—O4—C7 [98.1 (3)°] torsion angles, and O1—Fe1—O8 [95.78 (12)°] and O4—Fe1—O5 [94.88 (11)°] bond angles indicate that the dianionic pydc2- units are almost perpendicular to each other. The important characteristic of the crystal structure is the infinite one dimensional chains based on [010] vector. Figure 2 shows the wavy chains of [Fe(pydc)2]- complex anions formed through the C—H···O interactions, in which the R22(10) and C22(16) graph set can be observed. The space between two chains is filled with dmpH+ cations and lattice water molecules. Hydrogen bonds play an important role in stabilizing the crystal structure.

Other intermolecular interactions exist between aromatic cations and the ligands bonded to the metal center. The centroid to centroid separation between the π–systems of the cation, labeled as B, and the anion, A1 and A2, are 3.531 and 3.457 Å, respectively (Fig. 3). The shortest interplanar distances for A1/B (3.355 Å) and A2/B (3.449 Å) and their related interplanar angles, 1.89 and 5.45°, respectively, confirm the effective ππ stacking interactions. Therefore, in the formation of this FeIII complex, ion pairing, metal–ligand coordinations, hydrogen–bonding and ππ stacking as well as van der Waals forces, play important roles in the construction of the observed three–dimensional network.

Related literature top

There are several reports on proton transfer between a carboxylic acid and a heterocyclic amine, and on the ability of the resulting self-associated proton-transfer systems to react with metal ions, affording transition metal complexes (Aghabozorg et al., 2006; Zhao et al., 2005).

Experimental top

A solution of FeCl2 (50 mg, 0.25 mmol) in water (10 ml) was added to 10 ml of an aqueous solution of dmp (105 mg, 0.5 mmol) and pydcH2 (69 mg, 0.5 mmol). Pale yellow crystals of the title compound were obtained after allowing the mixture to stand for a week at room temperature.

Refinement top

C and N-bonded H atoms were positioned geometrically and refined using a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with Uiso(H) constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom. H atoms for water molecules were found in a difference map and their parameters constrained to fit an idealized geometry: O—H = 0.95 Å and Uiso(H) = 1.2Uiso(carrier O).

Structure description top

Continuing our research on proton-transfer compounds, we reached a system which is highly soluble in polar solvents. This compound has not been crystallized until now, but its metal-organic derivatives can be obtained as suitable crystals. In this report, the crystal structure of the iron(III) derivative is described.

The FeIII ion is located at the centre of a distorted octahedral arrangement (Fig. 1). The O1—Fe1—O5—C8 [92.4 (3)°], O1—Fe1—O8—C14 [-91.4 (3)°], O8—Fe1—O1—C1 [-96.6 (3)°] and O8—Fe1—O4—C7 [98.1 (3)°] torsion angles, and O1—Fe1—O8 [95.78 (12)°] and O4—Fe1—O5 [94.88 (11)°] bond angles indicate that the dianionic pydc2- units are almost perpendicular to each other. The important characteristic of the crystal structure is the infinite one dimensional chains based on [010] vector. Figure 2 shows the wavy chains of [Fe(pydc)2]- complex anions formed through the C—H···O interactions, in which the R22(10) and C22(16) graph set can be observed. The space between two chains is filled with dmpH+ cations and lattice water molecules. Hydrogen bonds play an important role in stabilizing the crystal structure.

Other intermolecular interactions exist between aromatic cations and the ligands bonded to the metal center. The centroid to centroid separation between the π–systems of the cation, labeled as B, and the anion, A1 and A2, are 3.531 and 3.457 Å, respectively (Fig. 3). The shortest interplanar distances for A1/B (3.355 Å) and A2/B (3.449 Å) and their related interplanar angles, 1.89 and 5.45°, respectively, confirm the effective ππ stacking interactions. Therefore, in the formation of this FeIII complex, ion pairing, metal–ligand coordinations, hydrogen–bonding and ππ stacking as well as van der Waals forces, play important roles in the construction of the observed three–dimensional network.

There are several reports on proton transfer between a carboxylic acid and a heterocyclic amine, and on the ability of the resulting self-associated proton-transfer systems to react with metal ions, affording transition metal complexes (Aghabozorg et al., 2006; Zhao et al., 2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the chains formed by C—H···O interactions; water molecules (yellow and purple) are located in the space between chains and connected via O—H···O hydrogen bonds; dmpH+ cations are omitted for clarity.
[Figure 3] Fig. 3. Representation of separations between cation and anions.
2,9-Dimethyl-1,10-phenanthrolinium bis(pyridine-2,6-dicarboxylato-κ3O,N,O')ferrate(III) dihydrate top
Crystal data top
(C14H13N2)[Fe(C7H3NO4)2]·2H2OF(000) = 1300
Mr = 631.35Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3591 reflections
a = 8.9535 (14) Åθ = 2.5–25.3°
b = 18.607 (3) ŵ = 0.65 mm1
c = 15.674 (2) ÅT = 150 K
β = 94.826 (3)°Plate, pale yellow
V = 2602.1 (7) Å30.50 × 0.40 × 0.08 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
5986 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.127
Detector resolution: 100 pixels mm-1θmax = 27.7°, θmin = 1.7°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 2423
Tmin = 0.737, Tmax = 0.950l = 2020
29654 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
5986 reflections(Δ/σ)max = 0.001
390 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
(C14H13N2)[Fe(C7H3NO4)2]·2H2OV = 2602.1 (7) Å3
Mr = 631.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9535 (14) ŵ = 0.65 mm1
b = 18.607 (3) ÅT = 150 K
c = 15.674 (2) Å0.50 × 0.40 × 0.08 mm
β = 94.826 (3)°
Data collection top
Bruker SMART
diffractometer
5986 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2776 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.950Rint = 0.127
29654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.89Δρmax = 0.55 e Å3
5986 reflectionsΔρmin = 0.81 e Å3
390 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00816 (6)0.59166 (3)0.79981 (3)0.03083 (19)
N10.0103 (3)0.59937 (17)0.66923 (19)0.0271 (7)
N20.0118 (3)0.60327 (17)0.93011 (19)0.0290 (8)
N30.1130 (3)0.85237 (17)1.1817 (2)0.0308 (8)
H3A0.17230.82781.22550.037*
N40.3022 (3)0.74239 (18)1.1490 (2)0.0337 (8)
O10.1666 (3)0.66723 (15)0.78243 (16)0.0374 (7)
O20.2907 (3)0.72973 (16)0.68816 (17)0.0453 (8)
O30.2573 (3)0.46501 (16)0.63913 (18)0.0467 (8)
O40.1384 (3)0.51698 (14)0.75482 (16)0.0351 (7)
O50.1630 (3)0.52142 (15)0.84458 (17)0.0382 (7)
O60.2980 (3)0.47772 (17)0.9602 (2)0.0555 (9)
O70.2787 (3)0.72774 (17)0.91050 (18)0.0516 (9)
O80.1594 (3)0.66250 (15)0.81730 (16)0.0390 (7)
O90.1840 (3)0.43660 (17)0.69343 (19)0.0573 (9)
H9B0.10650.40210.69640.069*
H9A0.19000.45090.75180.069*
O100.4860 (3)0.80382 (17)0.80094 (18)0.0598 (9)
H10B0.50930.85360.80090.072*
H10A0.53750.78470.85140.072*
C10.1945 (4)0.6862 (2)0.7062 (3)0.0352 (10)
C20.0991 (4)0.6478 (2)0.6361 (2)0.0295 (9)
C30.0992 (4)0.6569 (2)0.5490 (2)0.0361 (10)
H30.16380.69070.52560.043*
C40.0022 (4)0.6152 (2)0.4967 (3)0.0377 (10)
H40.00150.62030.43630.045*
C50.0902 (4)0.5654 (2)0.5332 (3)0.0349 (10)
H50.15810.53680.49790.042*
C60.0822 (4)0.5584 (2)0.6199 (2)0.0294 (9)
C70.1676 (4)0.5071 (2)0.6735 (3)0.0335 (10)
C80.2013 (4)0.5167 (2)0.9265 (3)0.0356 (10)
C90.1112 (4)0.5660 (2)0.9794 (3)0.0311 (9)
C100.1242 (5)0.5746 (2)1.0666 (3)0.0384 (11)
H100.19620.54821.10200.046*
C110.0282 (5)0.6232 (2)1.1014 (3)0.0416 (11)
H110.03360.62961.16170.050*
C120.0744 (5)0.6620 (2)1.0500 (2)0.0382 (11)
H120.13900.69561.07390.046*
C130.0806 (4)0.6508 (2)0.9628 (2)0.0328 (10)
C140.1835 (4)0.6849 (2)0.8936 (3)0.0357 (10)
C150.0199 (5)0.9230 (3)1.2958 (3)0.0496 (13)
H15C0.03660.87931.33040.074*
H15B0.07750.94381.30620.074*
H15A0.09940.95781.31180.074*
C160.0215 (4)0.9047 (2)1.2041 (3)0.0404 (11)
C170.0667 (5)0.9402 (2)1.1396 (3)0.0454 (12)
H170.13290.97741.15390.054*
C180.0577 (4)0.9213 (2)1.0562 (3)0.0457 (12)
H180.11870.94561.01280.055*
C190.0387 (4)0.8672 (2)1.0329 (3)0.0359 (10)
C200.0586 (5)0.8467 (2)0.9465 (3)0.0442 (11)
H200.00030.86960.90090.053*
C210.1576 (5)0.7959 (2)0.9285 (3)0.0428 (11)
H210.17060.78450.87050.051*
C220.2434 (4)0.7591 (2)0.9956 (3)0.0358 (10)
C230.3494 (5)0.7056 (2)0.9805 (3)0.0397 (11)
H230.36690.69280.92350.048*
C240.4261 (5)0.6725 (2)1.0473 (3)0.0429 (11)
H240.49820.63671.03730.052*
C250.3988 (4)0.6913 (2)1.1322 (3)0.0390 (11)
C260.4740 (5)0.6527 (3)1.2077 (3)0.0553 (13)
H26C0.49980.68711.25390.083*
H26B0.56550.62951.19110.083*
H26A0.40610.61621.22750.083*
C270.2274 (4)0.7761 (2)1.0811 (2)0.0323 (9)
C280.1244 (4)0.8313 (2)1.0993 (2)0.0321 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0346 (3)0.0349 (4)0.0232 (3)0.0007 (3)0.0037 (2)0.0011 (3)
N10.0287 (17)0.0283 (19)0.0244 (16)0.0021 (15)0.0027 (13)0.0016 (15)
N20.0318 (18)0.032 (2)0.0233 (17)0.0043 (15)0.0002 (14)0.0010 (15)
N30.0239 (17)0.036 (2)0.0317 (19)0.0033 (15)0.0006 (14)0.0042 (16)
N40.0345 (19)0.034 (2)0.0315 (19)0.0059 (16)0.0070 (15)0.0004 (16)
O10.0468 (17)0.0402 (18)0.0247 (15)0.0065 (14)0.0004 (12)0.0026 (13)
O20.0473 (18)0.046 (2)0.0425 (18)0.0196 (16)0.0046 (14)0.0031 (15)
O30.0488 (19)0.044 (2)0.0463 (19)0.0172 (16)0.0025 (15)0.0075 (16)
O40.0382 (16)0.0403 (18)0.0271 (15)0.0050 (13)0.0042 (12)0.0022 (13)
O50.0404 (17)0.0379 (18)0.0368 (17)0.0023 (14)0.0058 (13)0.0042 (14)
O60.053 (2)0.052 (2)0.059 (2)0.0143 (17)0.0112 (16)0.0048 (17)
O70.0519 (19)0.054 (2)0.049 (2)0.0192 (17)0.0067 (15)0.0050 (17)
O80.0437 (17)0.0455 (19)0.0271 (16)0.0076 (14)0.0010 (13)0.0008 (14)
O90.069 (2)0.054 (2)0.050 (2)0.0097 (18)0.0111 (17)0.0099 (17)
O100.084 (3)0.042 (2)0.050 (2)0.0052 (18)0.0086 (18)0.0004 (17)
C10.035 (2)0.031 (3)0.039 (3)0.004 (2)0.0014 (19)0.003 (2)
C20.029 (2)0.029 (2)0.031 (2)0.0010 (18)0.0052 (17)0.0006 (19)
C30.040 (2)0.036 (3)0.034 (2)0.002 (2)0.0096 (19)0.008 (2)
C40.047 (3)0.040 (3)0.026 (2)0.010 (2)0.0002 (19)0.000 (2)
C50.038 (2)0.031 (2)0.035 (2)0.0081 (19)0.0026 (19)0.005 (2)
C60.028 (2)0.028 (2)0.032 (2)0.0048 (18)0.0011 (17)0.0052 (19)
C70.034 (2)0.034 (3)0.033 (2)0.005 (2)0.0022 (18)0.000 (2)
C80.031 (2)0.035 (3)0.040 (3)0.008 (2)0.0027 (19)0.000 (2)
C90.034 (2)0.029 (2)0.031 (2)0.0057 (18)0.0021 (18)0.0056 (19)
C100.043 (3)0.041 (3)0.030 (2)0.015 (2)0.0042 (19)0.006 (2)
C110.056 (3)0.047 (3)0.021 (2)0.021 (2)0.002 (2)0.003 (2)
C120.044 (3)0.040 (3)0.032 (2)0.008 (2)0.007 (2)0.010 (2)
C130.034 (2)0.033 (3)0.032 (2)0.0094 (19)0.0051 (18)0.001 (2)
C140.037 (2)0.034 (3)0.036 (3)0.002 (2)0.0032 (19)0.001 (2)
C150.041 (3)0.060 (3)0.049 (3)0.003 (2)0.015 (2)0.011 (3)
C160.027 (2)0.045 (3)0.050 (3)0.006 (2)0.008 (2)0.003 (2)
C170.029 (2)0.044 (3)0.063 (3)0.002 (2)0.005 (2)0.000 (3)
C180.030 (2)0.044 (3)0.062 (3)0.000 (2)0.004 (2)0.012 (3)
C190.028 (2)0.036 (3)0.043 (3)0.0035 (19)0.0033 (18)0.006 (2)
C200.053 (3)0.045 (3)0.032 (3)0.001 (2)0.013 (2)0.007 (2)
C210.058 (3)0.041 (3)0.029 (2)0.007 (2)0.002 (2)0.002 (2)
C220.040 (2)0.034 (3)0.034 (2)0.010 (2)0.0036 (19)0.003 (2)
C230.046 (3)0.039 (3)0.035 (3)0.010 (2)0.009 (2)0.004 (2)
C240.044 (3)0.034 (3)0.051 (3)0.002 (2)0.008 (2)0.004 (2)
C250.036 (2)0.035 (3)0.044 (3)0.005 (2)0.006 (2)0.001 (2)
C260.062 (3)0.045 (3)0.057 (3)0.009 (3)0.007 (2)0.004 (3)
C270.030 (2)0.031 (2)0.035 (2)0.0062 (19)0.0004 (17)0.001 (2)
C280.030 (2)0.034 (3)0.032 (2)0.0071 (19)0.0009 (17)0.0021 (19)
Geometric parameters (Å, º) top
Fe1—O51.990 (3)C8—C91.514 (5)
Fe1—O41.999 (3)C9—C101.371 (5)
Fe1—O12.032 (3)C10—C111.390 (6)
Fe1—O82.033 (3)C10—H100.9500
Fe1—N22.051 (3)C11—C121.375 (5)
Fe1—N12.054 (3)C11—H110.9500
N1—C61.325 (5)C12—C131.379 (5)
N1—C21.335 (4)C12—H120.9500
N2—C91.325 (5)C13—C141.503 (5)
N2—C131.342 (5)C15—C161.479 (5)
N3—C161.338 (5)C15—H15C0.9800
N3—C281.362 (5)C15—H15B0.9800
N3—H3A0.9501C15—H15A0.9800
N4—C251.326 (5)C16—C171.395 (6)
N4—C271.362 (5)C17—C181.363 (6)
O1—C11.290 (4)C17—H170.9500
O2—C11.232 (5)C18—C191.395 (6)
O3—C71.216 (4)C18—H180.9500
O4—C71.292 (4)C19—C281.408 (5)
O5—C81.303 (4)C19—C201.432 (5)
O6—C81.215 (5)C20—C211.341 (6)
O7—C141.213 (4)C20—H200.9500
O8—C141.301 (4)C21—C221.424 (6)
O9—H9B0.9499C21—H210.9500
O9—H9A0.9497C22—C271.396 (5)
O10—H10B0.9500C22—C231.409 (5)
O10—H10A0.9502C23—C241.351 (6)
C1—C21.514 (5)C23—H230.9500
C2—C31.375 (5)C24—C251.418 (6)
C3—C41.381 (5)C24—H240.9500
C3—H30.9500C25—C261.494 (6)
C4—C51.396 (5)C26—H26C0.9800
C4—H40.9500C26—H26B0.9800
C5—C61.361 (5)C26—H26A0.9800
C5—H50.9500C27—C281.426 (5)
C6—C71.520 (5)
O5—Fe1—O494.88 (11)C12—C11—C10121.1 (4)
O5—Fe1—O191.61 (11)C12—C11—H11119.4
O4—Fe1—O1151.51 (10)C10—C11—H11119.4
O5—Fe1—O8151.48 (11)C11—C12—C13118.0 (4)
O4—Fe1—O891.63 (11)C11—C12—H12121.0
O1—Fe1—O895.78 (12)C13—C12—H12121.0
O5—Fe1—N276.47 (12)N2—C13—C12120.2 (4)
O4—Fe1—N2112.29 (11)N2—C13—C14111.3 (3)
O1—Fe1—N296.20 (11)C12—C13—C14128.5 (4)
O8—Fe1—N275.37 (12)O7—C14—O8125.8 (4)
O5—Fe1—N1109.44 (11)O7—C14—C13121.3 (4)
O4—Fe1—N175.98 (11)O8—C14—C13112.9 (3)
O1—Fe1—N175.70 (11)C16—C15—H15C109.5
O8—Fe1—N199.08 (11)C16—C15—H15B109.5
N2—Fe1—N1169.85 (12)H15C—C15—H15B109.5
C6—N1—C2121.6 (3)C16—C15—H15A109.5
C6—N1—Fe1118.9 (3)H15C—C15—H15A109.5
C2—N1—Fe1119.4 (3)H15B—C15—H15A109.5
C9—N2—C13121.9 (3)N3—C16—C17118.5 (4)
C9—N2—Fe1118.6 (3)N3—C16—C15118.6 (4)
C13—N2—Fe1119.4 (3)C17—C16—C15123.0 (4)
C16—N3—C28123.7 (4)C18—C17—C16119.8 (4)
C16—N3—H3A118.6C18—C17—H17120.1
C28—N3—H3A117.7C16—C17—H17120.1
C25—N4—C27117.5 (3)C17—C18—C19121.7 (4)
C1—O1—Fe1120.4 (3)C17—C18—H18119.1
C7—O4—Fe1121.3 (3)C19—C18—H18119.1
C8—O5—Fe1120.6 (3)C18—C19—C28117.3 (4)
C14—O8—Fe1120.9 (3)C18—C19—C20124.7 (4)
H9B—O9—H9A97.1C28—C19—C20118.0 (4)
H10B—O10—H10A105.9C21—C20—C19121.6 (4)
O2—C1—O1125.9 (4)C21—C20—H20119.2
O2—C1—C2120.4 (4)C19—C20—H20119.2
O1—C1—C2113.7 (3)C20—C21—C22120.5 (4)
N1—C2—C3121.3 (4)C20—C21—H21119.7
N1—C2—C1110.7 (3)C22—C21—H21119.7
C3—C2—C1127.9 (4)C27—C22—C23116.5 (4)
C2—C3—C4117.8 (4)C27—C22—C21120.5 (4)
C2—C3—H3121.1C23—C22—C21123.0 (4)
C4—C3—H3121.1C24—C23—C22119.8 (4)
C3—C4—C5119.6 (4)C24—C23—H23120.1
C3—C4—H4120.2C22—C23—H23120.1
C5—C4—H4120.2C23—C24—C25119.9 (4)
C6—C5—C4119.3 (4)C23—C24—H24120.0
C6—C5—H5120.4C25—C24—H24120.0
C4—C5—H5120.4N4—C25—C24122.0 (4)
N1—C6—C5120.4 (4)N4—C25—C26116.5 (4)
N1—C6—C7110.9 (3)C24—C25—C26121.5 (4)
C5—C6—C7128.7 (4)C25—C26—H26C109.5
O3—C7—O4126.9 (4)C25—C26—H26B109.5
O3—C7—C6120.2 (4)H26C—C26—H26B109.5
O4—C7—C6112.8 (4)C25—C26—H26A109.5
O6—C8—O5126.0 (4)H26C—C26—H26A109.5
O6—C8—C9121.0 (4)H26B—C26—H26A109.5
O5—C8—C9113.0 (4)N4—C27—C22124.3 (4)
N2—C9—C10121.1 (4)N4—C27—C28117.3 (4)
N2—C9—C8111.1 (3)C22—C27—C28118.4 (4)
C10—C9—C8127.8 (4)N3—C28—C19119.0 (4)
C9—C10—C11117.6 (4)N3—C28—C27119.9 (4)
C9—C10—H10121.2C19—C28—C27121.0 (4)
C11—C10—H10121.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O10i0.952.012.907 (5)157
O9—H9A···O50.951.992.866 (4)153
O10—H10B···O9ii0.952.332.907 (4)119
O10—H10A···O7iii0.952.112.964 (4)150
N3—H3A···O8iv0.952.002.832 (4)145
C3—H3···O7v0.952.453.304 (5)150
C12—H12···O2vi0.952.393.263 (5)152
C17—H17···O9vi0.952.413.357 (5)175
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+3/2, z1/2; (vi) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C14H13N2)[Fe(C7H3NO4)2]·2H2O
Mr631.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.9535 (14), 18.607 (3), 15.674 (2)
β (°) 94.826 (3)
V3)2602.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.50 × 0.40 × 0.08
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.737, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
29654, 5986, 2776
Rint0.127
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.165, 0.89
No. of reflections5986
No. of parameters390
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.81

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O10i0.952.012.907 (5)157.1
O9—H9A···O50.951.992.866 (4)152.7
O10—H10A···O7ii0.952.112.964 (4)149.5
C3—H3···O7iii0.952.453.304 (5)150
C12—H12···O2iv0.952.393.263 (5)152
C17—H17···O9iv0.952.413.357 (5)175
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds