Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A tetranuclear CoIII oxide complex with cubane topology, tetra­kis­(2,2′-bi­pyridine-κ2N,N′)di-μ2-carbonato-κ4O:O′-tetra-μ3-oxido-tetra­cobalt(III) penta­deca­hydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2′-bi­pyridine. The solvent water mol­ecules form a hydrogen-bonded net with tetra­meric and penta­meric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614001107/bg3165sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001107/bg3165Isup2.hkl
Contains datablock I

CCDC reference: 981707

Introduction top

In the past few years, metal complexes containing hydrogen-bonded water clusters have attracted a great deal of attention in the field of supra­molecular chemistry and crystal engineering, because studying the behaviour of water clusters can provide insight into the mutual inter­action of unusual properties which are of importance in many physical, chemical and biological processes (Yang et al., 2008; Moorthy et al., 2002; Wu & Lin, 2005; Liu et al., 2007; Cheng et al., 2006; Jin & Che, 2007). The theoretical and experimental study of flexible hydrogen-bonded water clusters can provide direct information on how the clusters were formed and how they inter­link in various geometries under diverse environments (Ghosh & Bharadwaj, 2004; Atwood et al., 2001; Müller et al., 2003; Meng et al., 2010). During the past decade, a variety of water clusters, such as trimers (Ghosh & Bharadwaj, 2005), tetra­mers (Zuhayra et al., 2006), penta­mers (Zabel et al., 1986), hexamers (Saha & Nangia, 2006), o­cta­mers (Khatua et al., 2010), decamers (Yoshizawa et al., 2005), dodecamers (Song & Ma, 2007), tetra­decamers (Ghosh et al., 2005), hexadecamers (Bi et al., 2009) and o­cta­decamers (Luan et al., 2006), and one-dimensional chains (Saha & Nangia, 2005), one-dimensional tapes (Cheng et al., 2006), two-dimensional layers (Zhang et al., 2005) and three-dimensional structures have been reported (Carballo et al., 2005). However, studies of these clusters linking to form larger clusters, especially two- and three-dimensional networks, are rare (Yang et al., 2008; Li et al., 2008). In this paper, we present an inter­esting structure, a cubane-like tetra­nuclear oxide-bridged cobalt(III) complex, namely [Co4(CO3)23-O)4(bpy)4].15H2O (bpy is 2,2'-bi­pyridine), (I), including isolated two-dimensional water cluster layers.

Experimental top

Synthesis and crystallization top

All chemicals and solvents were commercially available and were used without further purification. A purple precipitate resulted from the addition of Na2CO3 (1.0 ml, 1.0 M) to an aqueous solution of CoCl2.6H2O (0.1594 g, 0.67 mmol) in H2O (5 ml); it was separated by centrifugation and washed with distilled water four times, then transferred into a solution of 2,2'-bi­pyridine (0.1062 g, 0.67 mmol) in methanol (10 ml) and water (10 ml). To the resulting red solution (pH = 11.24), Na2CO3 (1.0 ml, 1.0 M) was added dropwise to adjust the pH to 12.21. The mixture obtained was allowed to stand at room temperature for 12 d to afford black–red needle-shaped crystals of (I).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with C—H = 0.93 Å [Added text OK?] and with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and refined with the O—H distance restrained to 0.85 (1) Å, while the H atoms of the multiply split atom O19 could not be positioned reliably and were omitted from a difference Fourier map. Finally, all non-H atoms, except O19, were refined with anisotropic displacement parameters.

Results and discussion top

Hydrated complex (I) crystallizes in the orthorhombic space group Pnma, with a two-dimensional supra­molecular water cluster layer and an oxide-bridged Co4O4 cubane-like core. The cubane-like tetra­nuclear unit can be understood as a tetra­mer joined by two trimers (Fig. 1). The CoIII cations and O atoms are located at alternating corners of a pseudo-cube. Each CoIII cation is coordinated by two bpy N atoms, one carbonate O atom and three oxide O atoms, forming an o­cta­hedral CoN2O4 coordination geometry. Atom Co1 lies in a general posiiton (Wyckoff site 8d), while atoms Co2 and Co3 are halved by a mirror plane (Wyckoff sites 4c). The Co1—N/O bond lengths fall in the range 1.876 (2)–1.950 (2) Å, and the cisoid and transoid N/O—Co1—N/O angles are in the ranges 81.62 (9)–97.73 (10) and 172.79 (9)–177.04 (10)°, respectively. For atom Co2, the corresponding ranges are 1.878 (2)–1.947 (2) Å, and 81.61 (16)–96.77 (10) and 173.63 (12)–176.58 (10)°, and for atom Co3 they are 1.878 (2)–1.947 (2) Å, and 81.05 (15)–98.05 (10) and 172.21 (13)–176.77 (10)°. All of these bonding parameters are within normal values and confirm a slightly distorted o­cta­hedral coordination for the cations.

Three crystallographically distinct CoIII cations are corner-shared via an O atom to form a trimer, and these are in turn bridged to generate a Co4O4 cubane-like core (Fig. 1). The cuboidal core is distorted, with all the O—Co—O angles being smaller than 90° while all the Co—O—Co angles are larger than 90°. The intra- and inter­trimeric Co···Co separations vary from 2.6645 (9) to 2.8582 (7) Å (Table 2). The resulting Co4O4 cubane-like cores are capped by two crystallographically distinct carbonate anions, both of them bis­ected by a mirror plane.

It is inter­esting to note that ten symmetry-independent solvent water molecules, by cooperative hydrogen-bonding inter­actions, form a two-dimensional water network comprised of tetra­meric and penta­meric water clusters as subunits (Fig. 2). Water molecules O10, O14, O14i and O17 [symmetry code: (i) x, -y + 1/2, z] form a special cyclic tetra­meric cluster through hydrogen bonds. Molecules O10 and O17 form pairs of mirror-symmetric hydrogen bonds, viz. O10—H10A···O14 and O17—H17A···O14, respectively (see Fig. 2 and Table 3 for details). With the inclusion of water atoms O11, O12, O16 and O16i, a cyclic tetra­meric water cluster is formed. In these tetra­meric clusters, the average O···O separation (2.84 Å) is comparable with the value of 2.85 Å in liquid water, where the O···O···O angles are in the range 73.6–98.4° (Eisenberg & Kauzmann, 1969). The hydrogen bonds within the penta­meric core involve atoms O10, O12, O14, O15 and O16. As far as the penta­mer is concerned, the O···O···O angles are in the range 95.8 (2)–112.8 (3)° and the O···O distances range from 2.756 (5) to 2.840 (6) Å (average 2.796 Å), slightly longer than those observed in ice Ih (2.759 Å at 200 K; [Reference?]).

The tetra­meric water clusters and the two crystallographically equivalent penta­meric water clusters are edge-shared into (H2O)14 clusters (Fig. 2), in which the penta­meric clusters form hydrogen-bonding inter­actions with solvent water molecule O13, and the crystallographically independent tetra­meric water cluster serves as a hydrogen-bond acceptor for atoms O9 and O18. On the whole, the resulting (H2O)14 clusters are joined together by hydrogen-bonding inter­actions with two kinds of cyclic hexameric groups [one formed by atoms O13, O14, O15, O13iv, O14iv and O15iv, and the other formed by atoms 09ii, O10ii, O11, O14ii, O17ii and O18; symmetry codes: (ii) x, y, z + 1; (iv) -x, -y + 1, -z + 1], extending into a two-dimensional water cluster layer (Fig. 3). Inter­estingly, the Co4O4 cubane-like cores are sandwiched between these two-dimensional water cluster layers. Solvent molecules O9, O12, O13 and O15 donate H atoms to carbonate atoms O1, O2, O3 and O5, with O9··· O5 = 2.650 (5), O12···O3 = 2.701 (5), O13···O1iii = 2.823 (3) and O15 ···O2v = 2.722 (4) Å [symmetry codes: (iii) x - 1/2, -y + 1/2, -z + 3/2; (v) x - 1/2, y, -z + 3/2]. Due to this connection between the Co4O4 cubane-like core and the two-dimensional water cluster layers, the overall structure of (I) can be considered as a three-dimensional metallo-supra­molecular network (Fig. 4).

Related literature top

For related literature, see: Atwood et al. (2001); Bi et al. (2009); Carballo et al. (2005); Cheng et al. (2006); Eisenberg & Kauzmann (1969); Ghosh & Bharadwaj (2004, 2005); Ghosh, Ribas, Fallah & Bharadwaj (2005); Jin & Che (2007); Khatua et al. (2010); Li et al. (2008); Liu et al. (2007); Luan et al. (2006); Müller et al. (2003); Meng et al. (2010); Moorthy et al. (2002); Saha & Nangia (2005, 2006); Song & Ma (2007); Wu & Lin (2005); Yang et al. (2008); Yoshizawa et al. (2005); Zabel et al. (1986); Zhang et al. (2005); Zuhayra et al. (2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the cubane-like tetranuclear oxide-bridged cobalt(III) cluster of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level. [Symmetry code: (i) x, -y + 1/2, z.]

Fig. 2. The structure and hydrogen-bond connectivity of the (H2O)14 cluster of (I). Dashed lines indicate hydrogen bonds. [Significance of green and purple dashed lines?] [Symmetry code: (i) x, -y + 1/2, z.]

Fig. 3. The hydrogen-bonded network of the supramolecular water layer of (I). Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x, -y + 1/2, z; (ii) x, y, z + 1; (iv) -x, -y + 1, -z + 1.]

Fig. 4. The three-dimensional supramolecular structure of (I). Dashed lines indicate hydrogen bonds. [Significance of green and purple dashed lines?]
Tetrakis(2,2'-bipyridine-κ2N,N')di-µ2-carbonato-κ4O:O'-tetra-µ3-oxido-tetracobalt(III) pentadecahydrate top
Crystal data top
[Co4(CO3)2O4(C10H8N2)4]·15H2ODx = 1.597 Mg m3
Mr = 1314.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 31250 reflections
a = 30.712 (6) Åθ = 3.0–27.5°
b = 16.820 (3) ŵ = 1.28 mm1
c = 10.588 (2) ÅT = 293 K
V = 5469.5 (19) Å3Needle, red
Z = 40.27 × 0.20 × 0.08 mm
F(000) = 2712
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6456 independent reflections
Radiation source: fine-focus sealed tube4752 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.077
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3939
Tmin = 0.742, Tmax = 0.902k = 2121
49124 measured reflectionsl = 1312
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0605P)2 + 5.6408P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
6455 reflectionsΔρmax = 0.69 e Å3
435 parametersΔρmin = 0.41 e Å3
Crystal data top
[Co4(CO3)2O4(C10H8N2)4]·15H2OV = 5469.5 (19) Å3
Mr = 1314.71Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 30.712 (6) ŵ = 1.28 mm1
b = 16.820 (3) ÅT = 293 K
c = 10.588 (2) Å0.27 × 0.20 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6456 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4752 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.902Rint = 0.077
49124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04230 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.69 e Å3
6455 reflectionsΔρmin = 0.41 e Å3
435 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.37225 (2)0.17079 (2)0.61635 (4)0.02252 (11)
Co20.29076 (2)0.25000.58494 (5)0.02570 (14)
Co30.34589 (2)0.25000.39009 (5)0.02330 (14)
N10.40408 (8)0.08510 (15)0.5356 (2)0.0281 (6)
N20.35206 (8)0.08394 (15)0.7223 (2)0.0288 (6)
C10.43673 (10)0.0940 (2)0.4542 (3)0.0352 (7)
H10.44580.14510.43290.042*
C20.45758 (12)0.0297 (2)0.4005 (3)0.0457 (9)
H20.48050.03720.34450.055*
C30.44386 (14)0.0457 (2)0.4313 (4)0.0535 (10)
H30.45680.08980.39370.064*
C40.41100 (13)0.0555 (2)0.5177 (4)0.0472 (9)
H40.40170.10630.53980.057*
C50.39177 (11)0.01081 (19)0.5719 (3)0.0339 (7)
C60.36180 (11)0.01045 (18)0.6793 (3)0.0341 (7)
C70.34697 (13)0.0568 (2)0.7403 (4)0.0512 (10)
H70.35200.10700.70630.061*
C80.32442 (15)0.0485 (2)0.8531 (4)0.0597 (11)
H80.31420.09310.89560.072*
C90.31736 (13)0.0256 (3)0.9011 (4)0.0508 (10)
H90.30340.03210.97840.061*
C100.33128 (11)0.0915 (2)0.8326 (3)0.0362 (7)
H100.32600.14220.86440.043*
N30.25549 (8)0.17449 (16)0.6789 (2)0.0318 (6)
C110.25231 (11)0.0967 (2)0.6556 (3)0.0391 (8)
H110.26700.07550.58670.047*
C120.22778 (12)0.0470 (2)0.7311 (4)0.0456 (9)
H120.22550.00690.71250.055*
C130.20700 (12)0.0783 (2)0.8332 (4)0.0488 (10)
H130.19150.04530.88740.059*
C140.20892 (12)0.1585 (2)0.8561 (3)0.0435 (9)
H140.19450.18040.92520.052*
C150.23260 (10)0.2064 (2)0.7748 (3)0.0327 (7)
N40.36995 (8)0.17477 (14)0.2690 (2)0.0270 (5)
C160.36206 (11)0.09672 (19)0.2681 (3)0.0338 (7)
H160.34360.07560.32920.041*
C170.38024 (12)0.0462 (2)0.1799 (3)0.0412 (8)
H170.37410.00790.18090.049*
C180.40771 (13)0.0779 (2)0.0903 (3)0.0473 (9)
H180.42120.04480.03190.057*
C190.41513 (13)0.1589 (2)0.0876 (3)0.0434 (9)
H190.43310.18130.02660.052*
C200.39522 (10)0.20575 (19)0.1778 (3)0.0302 (7)
O10.42146 (7)0.18311 (12)0.7311 (2)0.0309 (5)
O20.47282 (11)0.25000.8292 (4)0.0457 (9)
C210.43830 (13)0.25000.7630 (4)0.0264 (9)
O30.24590 (10)0.25000.4555 (3)0.0383 (8)
O40.29278 (10)0.25000.2909 (3)0.0358 (7)
O50.22208 (13)0.25000.2613 (4)0.0860 (17)
C220.25351 (15)0.25000.3349 (5)0.0414 (12)
O60.32450 (6)0.17292 (12)0.50236 (18)0.0256 (4)
O70.39293 (9)0.25000.5069 (3)0.0237 (6)
O80.33913 (9)0.25000.6964 (3)0.0249 (6)
O90.15327 (12)0.25000.1103 (3)0.0488 (9)
H9A0.1350 (12)0.25000.171 (3)0.073*
H9B0.1780 (8)0.25000.146 (4)0.073*
O100.09819 (12)0.25000.3115 (4)0.0572 (10)
H10A0.0816 (6)0.2902 (3)0.306 (9)0.086*0.5
O110.10672 (15)0.25000.8858 (4)0.0622 (11)
H11A0.0794 (4)0.25000.900 (5)0.093*
H11B0.1184 (17)0.25000.959 (3)0.093*
O120.16004 (12)0.25000.5109 (4)0.0540 (10)
H12A0.1856 (7)0.25000.480 (5)0.081*
H12B0.1429 (14)0.25000.448 (3)0.081*
O130.03833 (10)0.46137 (16)0.6997 (3)0.0564 (7)
H13A0.0167 (10)0.440 (2)0.664 (4)0.085*
H13B0.0539 (12)0.4233 (17)0.726 (4)0.085*
O140.03912 (11)0.37480 (17)0.3290 (3)0.0608 (8)
H14A0.0333 (17)0.373 (3)0.4076 (15)0.091*
H14B0.0438 (17)0.4239 (10)0.314 (4)0.091*
O150.02680 (10)0.36692 (18)0.5865 (3)0.0586 (8)
H15A0.0536 (5)0.361 (3)0.603 (5)0.088*
H15B0.0145 (12)0.3245 (17)0.610 (4)0.088*
O160.11259 (11)0.35189 (17)0.6700 (3)0.0589 (7)
H16A0.1145 (17)0.324 (2)0.736 (2)0.088*
H16B0.1219 (17)0.323 (2)0.610 (3)0.088*
O170.00369 (16)0.25000.1883 (5)0.0744 (13)
H17A0.007 (3)0.2901 (3)0.226 (7)0.112*0.5
O180.02111 (17)0.25000.9347 (6)0.0947 (17)
H18A0.009 (2)0.25001.006 (3)0.142*
H18B0.0004 (18)0.25000.881 (6)0.142*
O19A0.2964 (7)0.2698 (12)0.031 (2)0.0244 (17)*0.08
O19B0.2736 (4)0.3595 (7)0.0968 (10)0.0244 (17)*0.2
O19C0.2834 (9)0.3290 (16)0.066 (2)0.0244 (17)*0.08
O19D0.2570 (5)0.3741 (9)0.1129 (14)0.0244 (17)*0.14
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0243 (2)0.01837 (19)0.0248 (2)0.00016 (15)0.00006 (16)0.00011 (15)
Co20.0216 (3)0.0287 (3)0.0268 (3)0.0000.0022 (2)0.000
Co30.0229 (3)0.0246 (3)0.0224 (3)0.0000.0009 (2)0.000
N10.0280 (13)0.0255 (13)0.0308 (13)0.0028 (10)0.0025 (11)0.0027 (10)
N20.0318 (14)0.0245 (13)0.0302 (13)0.0033 (11)0.0029 (11)0.0031 (11)
C10.0306 (17)0.0377 (18)0.0373 (17)0.0021 (14)0.0003 (14)0.0050 (14)
C20.0371 (19)0.055 (2)0.045 (2)0.0130 (17)0.0018 (16)0.0108 (18)
C30.053 (2)0.049 (2)0.058 (2)0.0209 (19)0.002 (2)0.020 (2)
C40.058 (2)0.0241 (17)0.059 (2)0.0087 (16)0.006 (2)0.0084 (16)
C50.0376 (18)0.0225 (15)0.0415 (18)0.0015 (13)0.0047 (15)0.0028 (13)
C60.0367 (17)0.0221 (15)0.0434 (18)0.0020 (13)0.0071 (15)0.0017 (14)
C70.060 (3)0.0260 (18)0.068 (3)0.0052 (17)0.003 (2)0.0073 (18)
C80.066 (3)0.041 (2)0.072 (3)0.011 (2)0.000 (2)0.023 (2)
C90.053 (2)0.057 (3)0.042 (2)0.0083 (19)0.0046 (18)0.0151 (18)
C100.0382 (18)0.0391 (19)0.0313 (16)0.0021 (15)0.0002 (14)0.0054 (14)
N30.0228 (13)0.0383 (15)0.0342 (14)0.0024 (11)0.0013 (11)0.0001 (12)
C110.0359 (18)0.0391 (19)0.0425 (18)0.0074 (15)0.0028 (15)0.0042 (15)
C120.043 (2)0.039 (2)0.055 (2)0.0145 (16)0.0026 (18)0.0032 (18)
C130.044 (2)0.053 (2)0.049 (2)0.0169 (18)0.0059 (18)0.0114 (18)
C140.0378 (19)0.054 (2)0.0392 (19)0.0073 (17)0.0094 (16)0.0019 (17)
C150.0248 (15)0.0430 (18)0.0304 (15)0.0009 (14)0.0018 (13)0.0017 (14)
N40.0284 (13)0.0263 (13)0.0262 (12)0.0005 (10)0.0008 (10)0.0014 (10)
C160.0355 (17)0.0300 (17)0.0359 (17)0.0038 (13)0.0050 (14)0.0002 (14)
C170.053 (2)0.0282 (17)0.0429 (19)0.0008 (15)0.0044 (17)0.0098 (15)
C180.054 (2)0.045 (2)0.042 (2)0.0125 (18)0.0058 (18)0.0167 (17)
C190.047 (2)0.046 (2)0.0364 (18)0.0031 (17)0.0103 (16)0.0061 (15)
C200.0289 (16)0.0336 (17)0.0282 (15)0.0011 (13)0.0011 (13)0.0010 (13)
O10.0329 (12)0.0240 (11)0.0357 (11)0.0008 (9)0.0071 (9)0.0014 (9)
O20.0378 (19)0.0310 (18)0.068 (2)0.0000.0237 (18)0.000
C210.024 (2)0.028 (2)0.027 (2)0.0000.0014 (17)0.000
O30.0235 (16)0.059 (2)0.0322 (17)0.0000.0017 (13)0.000
O40.0307 (17)0.052 (2)0.0250 (15)0.0000.0051 (13)0.000
O50.033 (2)0.178 (6)0.047 (2)0.0000.0149 (19)0.000
C220.028 (2)0.062 (3)0.035 (3)0.0000.004 (2)0.000
O60.0242 (10)0.0259 (11)0.0266 (10)0.0019 (8)0.0011 (8)0.0013 (8)
O70.0255 (15)0.0220 (14)0.0236 (14)0.0000.0010 (12)0.000
O80.0282 (15)0.0216 (14)0.0250 (14)0.0000.0025 (12)0.000
O90.043 (2)0.065 (3)0.0381 (19)0.0000.0061 (16)0.000
O100.039 (2)0.064 (3)0.069 (3)0.0000.000 (2)0.000
O110.066 (3)0.075 (3)0.046 (2)0.0000.002 (2)0.000
O120.037 (2)0.075 (3)0.051 (2)0.0000.0074 (17)0.000
O130.0601 (19)0.0383 (15)0.0708 (19)0.0081 (13)0.0174 (15)0.0004 (14)
O140.071 (2)0.0452 (17)0.0660 (19)0.0007 (15)0.0069 (17)0.0015 (14)
O150.0525 (17)0.0497 (17)0.074 (2)0.0041 (14)0.0133 (16)0.0113 (15)
O160.0687 (19)0.0411 (15)0.0668 (18)0.0047 (14)0.0019 (17)0.0021 (14)
O170.061 (3)0.079 (3)0.083 (3)0.0000.020 (2)0.000
O180.066 (3)0.120 (5)0.099 (4)0.0000.025 (3)0.000
Geometric parameters (Å, º) top
Co1—O71.876 (2)C11—H110.9300
Co1—O81.879 (2)C12—C131.361 (5)
Co1—O61.900 (2)C12—H120.9300
Co1—N11.940 (2)C13—C141.371 (5)
Co1—N21.943 (2)C13—H130.9300
Co1—O11.950 (2)C14—C151.385 (5)
Co2—O61.876 (2)C14—H140.9300
Co2—O6i1.876 (2)C15—C15i1.468 (7)
Co2—O81.897 (3)N4—C161.335 (4)
Co2—N3i1.943 (3)N4—C201.343 (4)
Co2—N31.943 (3)C16—C171.381 (5)
Co2—O31.943 (3)C16—H160.9300
Co3—O61.878 (2)C17—C181.376 (5)
Co3—O6i1.878 (2)C17—H170.9300
Co3—O71.902 (3)C18—C191.382 (5)
Co3—O41.940 (3)C18—H180.9300
Co3—N41.947 (2)C19—C201.381 (5)
Co3—N4i1.947 (2)C19—H190.9300
Co1—Co1i2.6645 (9)C20—C20i1.489 (6)
Co1—Co22.8547 (8)O1—C211.283 (3)
Co1—Co32.8582 (7)O2—C211.271 (5)
Co2—Co32.6689 (9)C21—O1i1.283 (3)
N1—C11.330 (4)O3—C221.298 (6)
N1—C51.361 (4)O4—C221.293 (6)
N2—C101.337 (4)O5—C221.241 (6)
N2—C61.351 (4)O7—Co1i1.8764 (19)
C1—C21.380 (5)O8—Co1i1.879 (2)
C1—H10.9300O9—H9A0.853 (10)
C2—C31.376 (6)O9—H9B0.849 (10)
C2—H20.9300O10—H10A0.848 (7)
C3—C41.372 (6)O11—H11A0.852 (10)
C3—H30.9300O11—H11B0.850 (10)
C4—C51.387 (5)O12—H12A0.849 (10)
C4—H40.9300O12—H12B0.846 (10)
C5—C61.463 (5)O13—H13A0.844 (10)
C6—C71.381 (5)O13—H13B0.848 (10)
C7—C81.388 (6)O14—H14A0.851 (10)
C7—H70.9300O14—H14B0.852 (10)
C8—C91.364 (6)O15—H15A0.847 (10)
C8—H80.9300O15—H15B0.844 (10)
C9—C101.392 (5)O16—H16A0.846 (10)
C9—H90.9300O16—H16B0.849 (10)
C10—H100.9300O17—H17A0.851 (7)
N3—C111.335 (4)O18—H18A0.852 (10)
N3—C151.346 (4)O18—H18B0.852 (10)
C11—C121.381 (5)O19A—O19Ai0.67 (4)
O7—Co1—O887.62 (9)C9—C8—C7119.5 (4)
O7—Co1—O681.70 (10)C9—C8—H8120.2
O8—Co1—O681.68 (10)C7—C8—H8120.2
O7—Co1—N194.86 (10)C8—C9—C10119.0 (4)
O8—Co1—N1177.04 (10)C8—C9—H9120.5
O6—Co1—N197.06 (9)C10—C9—H9120.5
O7—Co1—N2176.49 (10)N2—C10—C9121.7 (3)
O8—Co1—N295.73 (10)N2—C10—H10119.1
O6—Co1—N297.73 (10)C9—C10—H10119.1
N1—Co1—N281.77 (11)C11—N3—C15119.4 (3)
O7—Co1—O192.70 (11)C11—N3—Co2125.9 (2)
O8—Co1—O193.62 (11)C15—N3—Co2114.7 (2)
O6—Co1—O1172.79 (9)N3—C11—C12121.8 (3)
N1—Co1—O187.89 (10)N3—C11—H11119.1
N2—Co1—O188.13 (10)C12—C11—H11119.1
O6—Co2—O6i87.44 (12)C13—C12—C11118.7 (3)
O6—Co2—O881.81 (9)C13—C12—H12120.6
O6i—Co2—O881.81 (9)C11—C12—H12120.6
O6—Co2—N3i176.58 (10)C12—C13—C14120.1 (3)
O6i—Co2—N3i95.45 (10)C12—C13—H13120.0
O8—Co2—N3i96.76 (10)C14—C13—H13120.0
O6—Co2—N395.45 (10)C13—C14—C15119.0 (3)
O6i—Co2—N3176.58 (10)C13—C14—H14120.5
O8—Co2—N396.77 (10)C15—C14—H14120.5
N3i—Co2—N381.61 (16)N3—C15—C14120.8 (3)
O6—Co2—O393.61 (9)N3—C15—C15i113.46 (18)
O6i—Co2—O393.61 (9)C14—C15—C15i125.5 (2)
O8—Co2—O3173.63 (12)C16—N4—C20118.8 (3)
N3i—Co2—O388.05 (10)C16—N4—Co3125.1 (2)
N3—Co2—O388.05 (10)C20—N4—Co3116.1 (2)
O6—Co3—O6i87.33 (12)N4—C16—C17122.4 (3)
O6—Co3—O781.61 (9)N4—C16—H16118.8
O6i—Co3—O781.61 (9)C17—C16—H16118.8
O6—Co3—O492.78 (9)C18—C17—C16118.4 (3)
O6i—Co3—O492.78 (9)C18—C17—H17120.8
O7—Co3—O4172.21 (13)C16—C17—H17120.8
O6—Co3—N495.80 (9)C17—C18—C19119.8 (3)
O6i—Co3—N4176.77 (10)C17—C18—H18120.1
O7—Co3—N498.05 (10)C19—C18—H18120.1
O4—Co3—N487.85 (10)C20—C19—C18118.4 (3)
O6—Co3—N4i176.77 (10)C20—C19—H19120.8
O6i—Co3—N4i95.80 (9)C18—C19—H19120.8
O7—Co3—N4i98.05 (10)N4—C20—C19122.1 (3)
O4—Co3—N4i87.85 (10)N4—C20—C20i112.82 (17)
N4—Co3—N4i81.05 (15)C19—C20—C20i124.8 (2)
C1—N1—C5119.7 (3)C21—O1—Co1124.7 (2)
C1—N1—Co1125.5 (2)O2—C21—O1i118.75 (19)
C5—N1—Co1114.7 (2)O2—C21—O1118.75 (19)
C10—N2—C6119.2 (3)O1i—C21—O1122.5 (4)
C10—N2—Co1125.8 (2)C22—O3—Co2124.5 (3)
C6—N2—Co1115.0 (2)C22—O4—Co3126.1 (3)
N1—C1—C2121.9 (3)O5—C22—O4119.9 (4)
N1—C1—H1119.1O5—C22—O3118.6 (4)
C2—C1—H1119.1O4—C22—O3121.5 (4)
C3—C2—C1118.9 (3)Co2—O6—Co390.64 (9)
C3—C2—H2120.5Co2—O6—Co198.24 (9)
C1—C2—H2120.5Co3—O6—Co198.34 (9)
C4—C3—C2119.6 (3)Co1i—O7—Co190.47 (12)
C4—C3—H3120.2Co1i—O7—Co398.31 (11)
C2—C3—H3120.2Co1—O7—Co398.31 (11)
C3—C4—C5119.5 (4)Co1—O8—Co1i90.34 (12)
C3—C4—H4120.2Co1—O8—Co298.23 (11)
C5—C4—H4120.2Co1i—O8—Co298.23 (11)
N1—C5—C4120.2 (3)H9A—O9—H9B104.9 (16)
N1—C5—C6113.5 (3)H11A—O11—H11B104.8 (17)
C4—C5—C6125.9 (3)H12A—O12—H12B106.0 (17)
N2—C6—C7121.3 (3)H13A—O13—H13B105.9 (16)
N2—C6—C5113.4 (3)H14A—O14—H14B104.6 (16)
C7—C6—C5125.1 (3)H15A—O15—H15B105.9 (17)
C6—C7—C8119.0 (4)H16A—O16—H16B105.1 (16)
C6—C7—H7120.5H18A—O18—H18B104.6 (17)
C8—C7—H7120.5
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O100.85 (1)1.87 (1)2.720 (6)176 (5)
O9—H9B···O50.85 (1)1.82 (2)2.650 (5)164 (5)
O10—H10A···O140.85 (1)1.95 (2)2.781 (4)168 (9)
O11—H11A···O180.85 (1)1.83 (1)2.680 (7)179 (6)
O11—H11B···O9ii0.85 (1)1.93 (1)2.774 (5)171 (6)
O12—H12A···O30.85 (1)1.87 (2)2.701 (5)166 (5)
O12—H12B···O100.85 (1)2.00 (1)2.840 (6)175 (5)
O13—H13A···O150.84 (1)1.99 (2)2.822 (4)167 (4)
O13—H13B···O1iii0.85 (1)1.99 (2)2.823 (3)165 (4)
O14—H14A···O150.85 (1)1.91 (1)2.756 (5)174 (5)
O14—H14B···O13iv0.85 (1)1.94 (2)2.772 (4)164 (5)
O15—H15A···O160.85 (1)1.95 (1)2.791 (5)170 (5)
O15—H15B···O2v0.84 (1)1.90 (2)2.722 (4)163 (4)
O16—H16A···O110.85 (1)2.03 (2)2.862 (4)169 (5)
O16—H16B···O120.85 (1)1.99 (2)2.811 (4)161 (5)
O17—H17A···O140.85 (1)2.05 (1)2.891 (4)171 (4)
O18—H18A···O17ii0.85 (1)1.96 (2)2.791 (8)164 (8)
O18—H18B···O2v0.85 (1)2.38 (4)3.163 (7)152 (7)
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Co4(CO3)2O4(C10H8N2)4]·15H2O
Mr1314.71
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)30.712 (6), 16.820 (3), 10.588 (2)
V3)5469.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.27 × 0.20 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.742, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
49124, 6456, 4752
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 0.99
No. of reflections6455
No. of parameters435
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.41

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O71.876 (2)Co2—O31.943 (3)
Co1—O81.879 (2)Co3—O61.878 (2)
Co1—O61.900 (2)Co3—O71.902 (3)
Co1—N11.940 (2)Co3—O41.940 (3)
Co1—N21.943 (2)Co3—N41.947 (2)
Co1—O11.950 (2)Co1—Co1i2.6645 (9)
Co2—O61.876 (2)Co1—Co22.8547 (8)
Co2—O81.897 (3)Co1—Co32.8582 (7)
Co2—N31.943 (3)Co2—Co32.6689 (9)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O100.853 (10)1.868 (13)2.720 (6)176 (5)
O9—H9B···O50.849 (10)1.823 (19)2.650 (5)164 (5)
O10—H10A···O140.848 (7)1.95 (2)2.781 (4)168 (9)
O11—H11A···O180.852 (10)1.828 (13)2.680 (7)179 (6)
O11—H11B···O9ii0.850 (10)1.931 (13)2.774 (5)171 (6)
O12—H12A···O30.849 (10)1.870 (16)2.701 (5)166 (5)
O12—H12B···O100.846 (10)1.996 (12)2.840 (6)175 (5)
O13—H13A···O150.844 (10)1.994 (15)2.822 (4)167 (4)
O13—H13B···O1iii0.848 (10)1.994 (16)2.823 (3)165 (4)
O14—H14A···O150.851 (10)1.908 (12)2.756 (5)174 (5)
O14—H14B···O13iv0.852 (10)1.943 (18)2.772 (4)164 (5)
O15—H15A···O160.847 (10)1.952 (14)2.791 (5)170 (5)
O15—H15B···O2v0.844 (10)1.904 (16)2.722 (4)163 (4)
O16—H16A···O110.846 (10)2.028 (15)2.862 (4)169 (5)
O16—H16B···O120.849 (10)1.99 (2)2.811 (4)161 (5)
O17—H17A···O140.851 (7)2.047 (11)2.891 (4)171 (4)
O18—H18A···O17ii0.852 (10)1.96 (2)2.791 (8)164 (8)
O18—H18B···O2v0.852 (10)2.38 (4)3.163 (7)152 (7)
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x1/2, y, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds