Download citation
Download citation
link to html
In the title complex, [Cu(C16H16Cl3N3O2P)Cl(C12H8N2)], the CuII cation presents a square-pyramidal environment, where the CuO2N2 base is formed by two O atoms from carbonyl and phosphoryl groups, and by two N atoms from a 1,10-phen­­anthroline mol­ecule. A coordinated Cl atom occupies the apex. N—H...Cl hydrogen bonds link the molecules into one-dimensional chains. The tri­chloro­methyl group is rotationally disordered over two positions, with occupancies of 0.747 (7) and 0.253 (7).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113011943/bg3157sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113011943/bg3157Isup2.hkl
Contains datablock I

CCDC reference: 950430

Comment top

The synthesis of coordination compounds of carbacylamidophosphates (CAPh) have been the subject of important developments in recent years (Gholivand et al., 2010; Sokolov et al., 2008; Trush et al., 2005; Gubina et al., 2000). On the other hand, CAPhs containing the [C(O)NHP(O)] structural unit have been known for a considerable time (Amirkhanov et al., 1997; Ovchynnikov et al., 1998; Ly & Woollins, 1998). This interest is due to their coordination chemistry as a consequence of the steric control that this ligand system may impart compared with, for example, β-diketonates (Kepert, 1987; Gorkum et al., 2005). The especially interesting feature of CAPh ligands is the bidentate chelating character of their coordination to the central metal atom (Bundya et al., 1999).

On the other hand, carbacylamidophosphate complexes formulated as ML2 {where M = CoII, MnII, CuII or NiII, and L = [Cl3C(O)NP(O)R2]-, with R = NHCH2Ph, NHCH2CHCH2 or NEt2} are neutral species with an unsaturated coordination environment of the metal cations that readily coordinate additional bidentate chelating donor groups like 2,2'-dipyridyl or 1,10-phenanthroline (phen), hereinafter generically Lig (Dickman, 1999; Gubina et al., 2009). It is common knowledge that, in general, multidentate ligands with nitrogen heterocycles feature prominently as building blocks in the design of metal–ligand networks (Janiak, 2000). Moreover, such compounds can display biological activity (Gholivand et al., 2012; Ekstrom et al., 2006).

Unlike the case of previously known coordination compounds of common formula ML2(Lig) [see Gubina et al. (2009) and Bundya et al. (1999)], the same mixing procedure led in the present case to a totally different complex, the title compound, (I), formulated as [Cu(L)Cl(phen)], which we report herein. It is interesting to note that the composition of the complex obtained in the solid state indicates the presence of equilibrium in solution, viz.

phen + Cu2+ + 2Cl- + 2L- + 2Na+ CuCl(L)(phen) + Cl- + 2Na+ + L- [Sarah: see scheme 2 in trash for format, but include as text]

In (I) (Fig. 1), the copper(II) cation presents a square-pyramidal environment, with the basal plane defined by two O atoms from a carbonyl and a phosphoryl group (O1 and O2) and two N atoms from a phen molecule (N1 and N2). A coordinated Cl atom (Cl1) occupies the apex. The mean-square plane passing through the basal atoms N4/N5/O1/O2 [maximum deviation = 0.083 (2) Å for O3] is 0.324 (2) Å from the cation.

The organic N,N'-dibenzyl-N''-(trichloroacetyl)phosphoramidate (L) ligand is coordinated in a bidentate manner via the O atoms of the phosphoryl and carbonyl groups, forming a six-membered chelate (Fig. 1). The Cu—O1(P1) bond is shorter than the Cu1—O2(C1) bond (Table 1) and this can be explained by the stronger affinity to copper shown by the phosphoryl group compared with the carbonyl group. A similar difference in bond lengths is observed for complexes with deprotonated CAPh ligands (Gubina et al., 2000).

The six-membered metallocycle of (I) is far from planar, but presents a fairly planar subgroup [atoms Cu1/C1/O1/O2; maximum deviation from the least-squares plane = 0.003 (2) Å for O2], leaving the remaining two atoms on the same side of the plane [N1 at 0.259 (3) Å and P1 at 0.603 (3)Å], in an `envelope-like' shape.

Deprotonation of the amide N atom in (I) changes the bond lengths in the C1—(O2)—N1—P1—(O1) fragment with respect to that in the free ligand (Lfree). The P1—O1 and O2—C1 bonds in (I) (Table 1) are slightly longer than the corresponding bonds in Lfree [1.4787 (15) and 1.213 (2) Å, respectively; Ovchynnikov, 2010]. The P1—N1 and C1—N1 bonds are, in turn, notably shortened [1.7055 (17) and 1.354 (3) Å, respectively, in Lfree], which indicates resonance delocalization of the negative charge. Charge redistribution from the N atom to the O atoms also affects the bond angles in the slightly distorted tetrahedral geometry around the P atom; the maximum deviation from ideal values is for the N1—P1—O1 angle, which is involved in the formation of the six-membered chelate ring, whereas in Lfree this angle is 106.89 (8)°, less than the ideal tetrahedral value. The carbonyl atom has an sp2 character.

Regarding noncovalent interactions, the structure displays N—H···Cl hydrogen bonds (Table 2). One of these is intramolecular and a second links the molecules into [101] chains (Fig. 2). There are also intermolecular stacking interactions (Table 3) linking the chains along [001], forming two-dimensional structures parallel to (010) (Fig. 3).

Related literature top

For related literature, see: Amirkhanov et al. (1997); Bundya et al. (1999); Dickman (1999); Ekstrom et al. (2006); Gholivand et al. (2010, 2012); Gorkum et al. (2005); Gubina et al. (2000, 2009); Janiak (2000); Kepert (1987); Ly & Woollins (1998); Ovchynnikov (2010); Ovchynnikov et al. (1998); Sokolov et al. (2008); Trush et al. (2005).

Experimental top

All chemicals were commercial products of reagent grade and were used without further purification. N,N'-Dibenzyl-N''-(trichloroacetyl)phosphoramide (HL) was prepared according to the method of Ovchynnikov (2010). The sodium salt NaL was obtained from a methanol solution by treatment of the ligand with an equimolar ratio of sodium methoxide. The salt was a white fine-grained substance which was soluble in alcohols and acetone, and insoluble in non-polar aprotic organic solvents.

The title complex, [Cu(L)Cl(phen)], was obtained by an exchange reaction of a solution of NaL (2 mmol) in methanol (10 ml) with a solution of hydrated copper(II) chloride (1 mmol) in methanol (15 ml). A solution of 1,10-phenanthroline (1 mmol) in 2-propan-2-ol (30 ml) was then added and the resulting solution stirred under heating and finally cooled. After a while, green crystals precipitated from the bleached solution. They were filtered off, washed with cool propan-2-ol and dried over CaCl2 (yield 77%). Single crystals of [Cu(L)Cl(phen)] were obtained by slow crystallization from a propan-2-ol–methanol (5:1 v/v) mixture.

Refinement top

The trichloromethyl group in the phosphoramidate ligand is disordered over a major and a minor orientation, with refined occupancies of 0.749 (7) and 0.251 (7), respectively. Standard restraints on the C—Cl distances [1.77 (1) Å] were used for the refinement of the disordered group. H atoms were located theoretically and subsequently treated as riding atoms, with C—H = 0.97 (CH2) or 0.93 Å (aromatic), and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). [Please check added text]

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity, except for that involved in the intramolecular hydrogen bond (dashed line).
[Figure 2] Fig. 2. A view of the one-dimensional chain of (I). All H atoms have been omitted, except for those required to illustrate the intermolecular N3—H3A···Cl4 hydrogen bonds (dashed lines). [Symmetry code: (i) x - 1/2, -y + 1/2, z - 1/2.]
[Figure 3] Fig. 3. The crystal packing of (I), showing the ππ interactions (heavy dashed lines; purple in the electronic version of the journal). [Meaning of blue dashed lines?]
Chlorido[N,N'-dibenzyl-N''-(trichloroacetyl)phosphoramidato-κ2O,O'](1,10-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C16H16Cl3N3O2P)Cl(C12H8N2)]F(000) = 1420
Mr = 698.83Dx = 1.545 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.4404 (5) ÅCell parameters from 8509 reflections
b = 21.0317 (6) Åθ = 2.8–34.6°
c = 9.8219 (3) ŵ = 1.17 mm1
β = 117.814 (3)°T = 293 K
V = 3003.75 (16) Å3Plate, green
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Oxford Xcalibur3
diffractometer
6579 independent reflections
Radiation source: Enhance (Mo) X-ray Source4685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 2322
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2929
Tmin = 0.651, Tmax = 0.799l = 1113
12387 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0543P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
6579 reflectionsΔρmax = 0.68 e Å3
406 parametersΔρmin = 0.43 e Å3
8 restraintsAbsolute structure: Flack (1983), 2267 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (12)
Crystal data top
[Cu(C16H16Cl3N3O2P)Cl(C12H8N2)]V = 3003.75 (16) Å3
Mr = 698.83Z = 4
Monoclinic, CcMo Kα radiation
a = 16.4404 (5) ŵ = 1.17 mm1
b = 21.0317 (6) ÅT = 293 K
c = 9.8219 (3) Å0.40 × 0.20 × 0.20 mm
β = 117.814 (3)°
Data collection top
Oxford Xcalibur3
diffractometer
6579 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4685 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.799Rint = 0.024
12387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.68 e Å3
S = 1.04Δρmin = 0.43 e Å3
6579 reflectionsAbsolute structure: Flack (1983), 2267 Friedel pairs
406 parametersAbsolute structure parameter: 0.006 (12)
8 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.20196 (3)0.175873 (19)0.05397 (4)0.03932 (12)
Cl40.31424 (7)0.16554 (5)0.33193 (12)0.0538 (3)
P10.09286 (6)0.26507 (4)0.14434 (10)0.0346 (2)
N10.0149 (2)0.20904 (14)0.1015 (4)0.0399 (6)
O10.15305 (18)0.25715 (11)0.0683 (3)0.0433 (6)
C10.0300 (2)0.15251 (17)0.0618 (4)0.0374 (7)
N20.1614 (2)0.27172 (15)0.3272 (4)0.0449 (7)
H2A0.213 (3)0.2442 (16)0.369 (4)0.030 (9)*
O20.09746 (17)0.12909 (11)0.0553 (3)0.0440 (6)
C20.0487 (2)0.10605 (15)0.0216 (3)0.0484 (9)
Cl1A0.0340 (3)0.0674 (2)0.1884 (3)0.156 (3)0.747 (7)
Cl2A0.15787 (12)0.14336 (13)0.0580 (6)0.1069 (15)0.747 (7)
Cl3A0.05584 (19)0.04899 (13)0.1101 (4)0.1008 (13)0.747 (7)
Cl1B0.0041 (6)0.0324 (4)0.117 (2)0.157 (7)0.253 (7)
Cl2B0.1351 (7)0.1206 (4)0.0673 (18)0.113 (5)0.253 (7)
Cl3B0.0845 (12)0.0773 (11)0.1647 (11)0.247 (11)0.253 (7)
N30.0297 (2)0.32885 (13)0.0949 (4)0.0387 (6)
H3A0.025 (3)0.3247 (15)0.036 (4)0.029 (9)*
C30.1360 (3)0.2888 (2)0.4447 (5)0.0544 (10)
H3B0.08540.31880.39990.065*
H3C0.18760.31110.52550.065*
N40.2365 (2)0.09668 (14)0.0210 (3)0.0417 (7)
C40.1079 (3)0.2360 (2)0.5194 (4)0.0532 (10)
N50.2735 (2)0.21737 (15)0.0419 (4)0.0452 (7)
C50.0728 (4)0.2506 (3)0.6184 (5)0.0740 (14)
H5A0.06790.29290.64080.089*
C60.0446 (4)0.2031 (5)0.6851 (6)0.095 (2)
H6A0.02050.21380.75100.114*
C70.0523 (4)0.1410 (4)0.6542 (7)0.095 (2)
H7A0.03310.10910.69840.114*
C80.0881 (4)0.1254 (3)0.5589 (7)0.0816 (17)
H8A0.09380.08280.53900.098*
C90.1163 (4)0.1726 (2)0.4907 (6)0.0630 (12)
H9A0.14080.16150.42570.076*
C100.0691 (3)0.39174 (18)0.1075 (5)0.0515 (10)
H10A0.12390.39460.20630.062*
H10B0.02550.42280.10760.062*
C110.0947 (3)0.41017 (17)0.0162 (5)0.0470 (9)
C120.0321 (4)0.4071 (2)0.1686 (6)0.0682 (13)
H12A0.02750.39340.19750.082*
C130.0567 (5)0.4240 (3)0.2797 (8)0.092 (2)
H13A0.01310.42090.38270.110*
C140.1405 (7)0.4447 (3)0.2449 (9)0.099 (2)
H14A0.15570.45580.32190.119*
C150.2049 (5)0.4493 (3)0.0904 (10)0.095 (2)
H15A0.26370.46420.06320.114*
C160.1818 (4)0.4318 (2)0.0242 (7)0.0694 (13)
H16A0.22520.43470.12730.083*
C170.2128 (3)0.03728 (19)0.0126 (5)0.0526 (10)
H17A0.17440.02890.03090.063*
C180.2444 (4)0.0132 (2)0.0680 (6)0.0623 (12)
H18A0.22660.05450.06100.075*
C190.3003 (4)0.0026 (2)0.1314 (6)0.0640 (12)
H19A0.32260.03650.16490.077*
C200.3246 (3)0.0600 (2)0.1464 (5)0.0568 (11)
C210.3783 (4)0.0787 (3)0.2207 (6)0.0727 (14)
H21A0.40450.04750.25490.087*
C220.3910 (3)0.1387 (3)0.2411 (6)0.0701 (14)
H22A0.42280.14880.29550.084*
C230.3575 (3)0.1900 (2)0.1821 (5)0.0565 (11)
C240.3678 (3)0.2549 (3)0.1998 (5)0.0684 (14)
H24A0.39920.26840.25250.082*
C250.3321 (3)0.2983 (3)0.1404 (6)0.0674 (13)
H25A0.33810.34150.15380.081*
C260.2865 (3)0.2778 (2)0.0590 (6)0.0568 (11)
H26A0.26450.30810.01530.068*
C270.2899 (2)0.1082 (2)0.0874 (4)0.0425 (8)
C280.3084 (3)0.1738 (2)0.1035 (4)0.0443 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0372 (2)0.0394 (2)0.0502 (3)0.0030 (2)0.02775 (19)0.0027 (2)
Cl40.0379 (5)0.0595 (6)0.0512 (6)0.0066 (4)0.0100 (4)0.0012 (4)
P10.0320 (4)0.0338 (5)0.0416 (5)0.0005 (4)0.0203 (4)0.0003 (4)
N10.0352 (15)0.0394 (16)0.0507 (17)0.0046 (12)0.0247 (13)0.0038 (13)
O10.0406 (13)0.0373 (13)0.0631 (16)0.0013 (10)0.0336 (12)0.0037 (11)
C10.0351 (17)0.0376 (17)0.0386 (19)0.0029 (14)0.0165 (15)0.0001 (14)
N20.0361 (16)0.0513 (18)0.0420 (18)0.0030 (14)0.0139 (14)0.0028 (13)
O20.0395 (14)0.0347 (13)0.0647 (17)0.0001 (10)0.0300 (13)0.0046 (11)
C20.048 (2)0.049 (2)0.059 (2)0.0107 (17)0.0336 (19)0.0101 (17)
Cl1A0.172 (4)0.186 (4)0.0794 (16)0.114 (3)0.0338 (18)0.0351 (18)
Cl2A0.0359 (8)0.0744 (15)0.185 (3)0.0092 (8)0.0306 (13)0.0522 (18)
Cl3A0.0817 (16)0.0895 (17)0.161 (3)0.0395 (12)0.0813 (19)0.0851 (19)
Cl1B0.114 (6)0.064 (5)0.306 (18)0.004 (4)0.107 (9)0.068 (7)
Cl2B0.095 (6)0.085 (5)0.217 (13)0.047 (5)0.122 (8)0.069 (7)
Cl3B0.207 (14)0.48 (3)0.053 (5)0.246 (17)0.059 (7)0.102 (9)
N30.0336 (16)0.0385 (16)0.0445 (17)0.0056 (12)0.0185 (14)0.0052 (12)
C30.052 (2)0.063 (3)0.043 (2)0.003 (2)0.0181 (19)0.0042 (18)
N40.0426 (17)0.0454 (18)0.0421 (16)0.0045 (13)0.0241 (14)0.0032 (13)
C40.045 (2)0.071 (3)0.036 (2)0.0007 (19)0.0122 (17)0.0034 (18)
N50.0401 (16)0.055 (2)0.0456 (18)0.0027 (14)0.0246 (14)0.0066 (15)
C50.072 (3)0.106 (4)0.042 (3)0.006 (3)0.024 (2)0.011 (2)
C60.061 (3)0.189 (8)0.036 (3)0.001 (4)0.023 (2)0.016 (4)
C70.073 (4)0.133 (6)0.060 (4)0.021 (4)0.016 (3)0.034 (4)
C80.086 (4)0.093 (4)0.067 (3)0.003 (3)0.037 (3)0.033 (3)
C90.065 (3)0.072 (3)0.055 (3)0.000 (2)0.030 (2)0.011 (2)
C100.062 (3)0.0330 (19)0.069 (3)0.0018 (17)0.039 (2)0.0050 (17)
C110.051 (2)0.0310 (18)0.061 (3)0.0030 (15)0.028 (2)0.0035 (15)
C120.075 (4)0.070 (3)0.057 (3)0.005 (3)0.029 (3)0.006 (2)
C130.118 (6)0.086 (4)0.080 (4)0.002 (4)0.053 (4)0.024 (3)
C140.163 (7)0.068 (4)0.106 (5)0.004 (4)0.095 (5)0.028 (3)
C150.098 (5)0.067 (4)0.154 (7)0.014 (3)0.087 (5)0.009 (4)
C160.060 (3)0.062 (3)0.085 (4)0.009 (2)0.033 (3)0.003 (2)
C170.055 (2)0.050 (2)0.054 (2)0.0077 (19)0.026 (2)0.0008 (18)
C180.068 (3)0.050 (3)0.069 (3)0.010 (2)0.033 (3)0.002 (2)
C190.066 (3)0.064 (3)0.062 (3)0.014 (2)0.030 (2)0.015 (2)
C200.040 (2)0.083 (3)0.045 (2)0.007 (2)0.0180 (18)0.011 (2)
C210.058 (3)0.104 (4)0.072 (3)0.003 (3)0.043 (3)0.022 (3)
C220.048 (3)0.120 (5)0.056 (3)0.005 (3)0.035 (2)0.014 (3)
C230.041 (2)0.092 (3)0.038 (2)0.009 (2)0.0199 (18)0.0124 (19)
C240.040 (2)0.112 (4)0.058 (3)0.006 (2)0.027 (2)0.019 (3)
C250.052 (3)0.072 (3)0.078 (3)0.003 (2)0.030 (2)0.026 (3)
C260.052 (2)0.054 (3)0.076 (3)0.003 (2)0.040 (2)0.010 (2)
C270.0316 (17)0.064 (2)0.0331 (19)0.0026 (16)0.0164 (15)0.0050 (16)
C280.0333 (18)0.064 (2)0.0331 (18)0.0010 (16)0.0134 (15)0.0026 (16)
Geometric parameters (Å, º) top
Cu1—O11.922 (2)C8—C91.394 (7)
Cu1—O21.985 (3)C8—H8A0.9300
Cu1—N42.007 (3)C9—H9A0.9300
Cu1—N52.016 (3)C10—C111.510 (6)
Cu1—Cl42.4910 (10)C10—H10A0.9700
P1—O11.501 (3)C10—H10B0.9700
P1—N21.621 (3)C11—C121.366 (6)
P1—N31.625 (3)C11—C161.373 (7)
P1—N11.644 (3)C12—C131.375 (8)
N1—C11.310 (5)C12—H12A0.9300
C1—O21.242 (4)C13—C141.330 (10)
C1—C21.519 (5)C13—H13A0.9300
N2—C31.443 (5)C14—C151.391 (11)
N2—H2A0.95 (4)C14—H14A0.9300
C2—Cl2B1.705 (4)C15—C161.394 (9)
C2—Cl3A1.728 (3)C15—H15A0.9300
C2—Cl1A1.742 (3)C16—H16A0.9300
C2—Cl3B1.748 (5)C17—C181.397 (6)
C2—Cl2A1.772 (3)C17—H17A0.9300
C2—Cl1B1.783 (5)C18—C191.348 (7)
N3—C101.453 (5)C18—H18A0.9300
N3—H3A0.82 (4)C19—C201.402 (7)
C3—C41.516 (6)C19—H19A0.9300
C3—H3B0.9700C20—C271.413 (6)
C3—H3C0.9700C20—C211.438 (7)
N4—C171.322 (5)C21—C221.311 (8)
N4—C271.337 (5)C21—H21A0.9300
C4—C51.377 (7)C22—C231.450 (7)
C4—C91.383 (6)C22—H22A0.9300
N5—C261.314 (5)C23—C241.396 (7)
N5—C281.364 (5)C23—C281.395 (5)
C5—C61.387 (9)C24—C251.355 (8)
C5—H5A0.9300C24—H24A0.9300
C6—C71.362 (10)C25—C261.395 (7)
C6—H6A0.9300C25—H25A0.9300
C7—C81.357 (10)C26—H26A0.9300
C7—H7A0.9300C27—C281.438 (6)
O1—Cu1—O292.72 (10)C8—C7—C6120.1 (6)
O1—Cu1—N4164.68 (12)C8—C7—H7A120.0
O2—Cu1—N489.13 (11)C6—C7—H7A120.0
O1—Cu1—N590.24 (12)C7—C8—C9120.5 (6)
O2—Cu1—N5155.89 (12)C7—C8—H8A119.7
N4—Cu1—N582.03 (13)C9—C8—H8A119.7
O1—Cu1—Cl496.82 (9)C4—C9—C8120.2 (5)
O2—Cu1—Cl498.67 (8)C4—C9—H9A119.9
N4—Cu1—Cl497.93 (9)C8—C9—H9A119.9
N5—Cu1—Cl4104.72 (10)N3—C10—C11116.5 (3)
O1—P1—N2106.41 (17)N3—C10—H10A108.2
O1—P1—N3114.83 (16)C11—C10—H10A108.2
N2—P1—N3106.06 (17)N3—C10—H10B108.2
O1—P1—N1114.13 (15)C11—C10—H10B108.2
N2—P1—N1113.64 (17)H10A—C10—H10B107.3
N3—P1—N1101.66 (16)C12—C11—C16118.9 (5)
C1—N1—P1119.6 (2)C12—C11—C10121.3 (4)
P1—O1—Cu1122.03 (15)C16—C11—C10119.8 (4)
O2—C1—N1132.2 (3)C11—C12—C13120.4 (5)
O2—C1—C2113.8 (3)C11—C12—H12A119.8
N1—C1—C2113.9 (3)C13—C12—H12A119.8
C3—N2—P1126.6 (3)C14—C13—C12122.3 (6)
C3—N2—H2A110 (2)C14—C13—H13A118.8
P1—N2—H2A116 (2)C12—C13—H13A118.8
C1—O2—Cu1126.9 (2)C13—C14—C15118.2 (6)
C1—C2—Cl2B121.9 (3)C13—C14—H14A120.9
C1—C2—Cl3A113.2 (2)C15—C14—H14A120.9
Cl2B—C2—Cl3A123.2 (4)C14—C15—C16120.5 (6)
C1—C2—Cl1A109.1 (2)C14—C15—H15A119.7
Cl2B—C2—Cl1A66.6 (5)C16—C15—H15A119.7
Cl3A—C2—Cl1A108.1 (3)C11—C16—C15119.6 (5)
C1—C2—Cl3B108.9 (5)C11—C16—H16A120.2
Cl2B—C2—Cl3B115.0 (7)C15—C16—H16A120.2
Cl3A—C2—Cl3B26.4 (8)N4—C17—C18121.3 (4)
Cl1A—C2—Cl3B130.9 (7)N4—C17—H17A119.4
C1—C2—Cl2A113.2 (2)C18—C17—H17A119.4
Cl2B—C2—Cl2A40.5 (5)C19—C18—C17120.8 (5)
Cl3A—C2—Cl2A106.0 (2)C19—C18—H18A119.6
Cl1A—C2—Cl2A106.8 (3)C17—C18—H18A119.6
Cl3B—C2—Cl2A85.1 (8)C18—C19—C20119.5 (4)
C1—C2—Cl1B109.3 (4)C18—C19—H19A120.3
Cl2B—C2—Cl1B101.8 (5)C20—C19—H19A120.3
Cl3A—C2—Cl1B70.1 (6)C19—C20—C27116.2 (4)
Cl1A—C2—Cl1B41.9 (5)C19—C20—C21125.6 (4)
Cl3B—C2—Cl1B96.2 (9)C27—C20—C21118.2 (5)
Cl2A—C2—Cl1B134.4 (4)C22—C21—C20121.4 (5)
C10—N3—P1121.9 (3)C22—C21—H21A119.3
C10—N3—H3A117 (2)C20—C21—H21A119.3
P1—N3—H3A118 (2)C21—C22—C23122.5 (5)
N2—C3—C4118.1 (4)C21—C22—H22A118.7
N2—C3—H3B107.8C23—C22—H22A118.7
C4—C3—H3B107.8C24—C23—C28116.3 (4)
N2—C3—H3C107.8C24—C23—C22125.9 (4)
C4—C3—H3C107.8C28—C23—C22117.7 (4)
H3B—C3—H3C107.1C25—C24—C23120.2 (4)
C17—N4—C27118.7 (3)C25—C24—H24A119.9
C17—N4—Cu1128.2 (3)C23—C24—H24A119.9
C27—N4—Cu1113.0 (3)C24—C25—C26119.8 (5)
C5—C4—C9118.2 (5)C24—C25—H25A120.1
C5—C4—C3120.1 (4)C26—C25—H25A120.1
C9—C4—C3121.7 (4)N5—C26—C25122.3 (5)
C26—N5—C28117.8 (4)N5—C26—H26A118.8
C26—N5—Cu1130.1 (3)C25—C26—H26A118.8
C28—N5—Cu1112.0 (3)N4—C27—C20123.5 (4)
C4—C5—C6121.1 (6)N4—C27—C28116.6 (3)
C4—C5—H5A119.5C20—C27—C28119.8 (4)
C6—C5—H5A119.5N5—C28—C23123.6 (4)
C7—C6—C5119.9 (6)N5—C28—C27116.2 (3)
C7—C6—H6A120.0C23—C28—C27120.2 (4)
C5—C6—H6A120.0
O1—P1—N1—C126.5 (3)C3—C4—C5—C6178.5 (5)
N2—P1—N1—C195.8 (3)C4—C5—C6—C70.6 (8)
N3—P1—N1—C1150.7 (3)C5—C6—C7—C80.4 (9)
N2—P1—O1—Cu183.6 (2)C6—C7—C8—C90.7 (9)
N3—P1—O1—Cu1159.34 (18)C5—C4—C9—C81.1 (7)
N1—P1—O1—Cu142.5 (2)C3—C4—C9—C8178.7 (5)
O2—Cu1—O1—P128.1 (2)C7—C8—C9—C40.1 (9)
N4—Cu1—O1—P1124.8 (4)P1—N3—C10—C1177.7 (4)
N5—Cu1—O1—P1175.8 (2)N3—C10—C11—C1254.3 (5)
Cl4—Cu1—O1—P170.93 (18)N3—C10—C11—C16127.1 (4)
P1—N1—C1—O24.0 (6)C16—C11—C12—C131.4 (7)
P1—N1—C1—C2178.6 (2)C10—C11—C12—C13180.0 (5)
O1—P1—N2—C3170.9 (3)C11—C12—C13—C140.9 (10)
N3—P1—N2—C348.2 (4)C12—C13—C14—C150.2 (10)
N1—P1—N2—C362.7 (4)C13—C14—C15—C160.9 (10)
N1—C1—O2—Cu116.8 (6)C12—C11—C16—C150.7 (7)
C2—C1—O2—Cu1165.8 (2)C10—C11—C16—C15179.4 (4)
O1—Cu1—O2—C10.7 (3)C14—C15—C16—C110.4 (8)
N4—Cu1—O2—C1164.1 (3)C27—N4—C17—C181.7 (6)
N5—Cu1—O2—C196.0 (4)Cu1—N4—C17—C18178.7 (3)
Cl4—Cu1—O2—C198.0 (3)N4—C17—C18—C190.2 (7)
O2—C1—C2—Cl2B163.5 (7)C17—C18—C19—C202.1 (7)
N1—C1—C2—Cl2B14.4 (8)C18—C19—C20—C272.1 (7)
O2—C1—C2—Cl3A30.8 (4)C18—C19—C20—C21175.6 (5)
N1—C1—C2—Cl3A151.3 (3)C19—C20—C21—C22174.0 (5)
O2—C1—C2—Cl1A89.7 (4)C27—C20—C21—C223.6 (7)
N1—C1—C2—Cl1A88.2 (4)C20—C21—C22—C234.1 (8)
O2—C1—C2—Cl3B58.7 (10)C21—C22—C23—C24179.6 (5)
N1—C1—C2—Cl3B123.4 (9)C21—C22—C23—C281.2 (7)
O2—C1—C2—Cl2A151.5 (3)C28—C23—C24—C250.8 (7)
N1—C1—C2—Cl2A30.6 (4)C22—C23—C24—C25179.2 (5)
O2—C1—C2—Cl1B45.2 (7)C23—C24—C25—C261.2 (7)
N1—C1—C2—Cl1B132.7 (7)C28—N5—C26—C251.7 (7)
O1—P1—N3—C1054.3 (3)Cu1—N5—C26—C25174.5 (3)
N2—P1—N3—C1062.9 (3)C24—C25—C26—N52.5 (8)
N1—P1—N3—C10178.0 (3)C17—N4—C27—C201.6 (5)
P1—N2—C3—C488.4 (4)Cu1—N4—C27—C20178.7 (3)
O1—Cu1—N4—C17116.7 (5)C17—N4—C27—C28175.8 (3)
O2—Cu1—N4—C1719.5 (3)Cu1—N4—C27—C284.0 (4)
N5—Cu1—N4—C17177.0 (3)C19—C20—C27—N40.3 (6)
Cl4—Cu1—N4—C1779.1 (3)C21—C20—C27—N4177.6 (4)
O1—Cu1—N4—C2763.0 (6)C19—C20—C27—C28177.6 (4)
O2—Cu1—N4—C27160.2 (3)C21—C20—C27—C280.3 (6)
N5—Cu1—N4—C272.7 (2)C26—N5—C28—C230.5 (6)
Cl4—Cu1—N4—C27101.2 (2)Cu1—N5—C28—C23177.3 (3)
N2—C3—C4—C5172.3 (4)C26—N5—C28—C27177.8 (4)
N2—C3—C4—C97.5 (6)Cu1—N5—C28—C270.9 (4)
O1—Cu1—N5—C268.7 (4)C24—C23—C28—N51.7 (6)
O2—Cu1—N5—C26105.9 (4)C22—C23—C28—N5179.7 (4)
N4—Cu1—N5—C26175.4 (4)C24—C23—C28—C27176.5 (4)
Cl4—Cu1—N5—C2688.4 (4)C22—C23—C28—C272.1 (6)
O1—Cu1—N5—C28167.6 (3)N4—C27—C28—N53.3 (5)
O2—Cu1—N5—C2870.4 (4)C20—C27—C28—N5179.2 (3)
N4—Cu1—N5—C280.9 (3)N4—C27—C28—C23175.0 (3)
Cl4—Cu1—N5—C2895.3 (2)C20—C27—C28—C232.4 (5)
C9—C4—C5—C61.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl4i0.82 (4)2.47 (4)3.270 (3)167 (3)
N2—H2A···Cl40.95 (4)2.49 (4)3.346 (3)150 (3)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H16Cl3N3O2P)Cl(C12H8N2)]
Mr698.83
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)16.4404 (5), 21.0317 (6), 9.8219 (3)
β (°) 117.814 (3)
V3)3003.75 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Xcalibur3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.651, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
12387, 6579, 4685
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections6579
No. of parameters406
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.43
Absolute structureFlack (1983), 2267 Friedel pairs
Absolute structure parameter0.006 (12)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Selected geometric parameters (Å, º) top
Cu1—O11.922 (2)P1—O11.501 (3)
Cu1—O21.985 (3)P1—N21.621 (3)
Cu1—N42.007 (3)P1—N31.625 (3)
Cu1—N52.016 (3)P1—N11.644 (3)
Cu1—Cl42.4910 (10)C1—O21.242 (4)
O1—P1—N1114.13 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl4i0.82 (4)2.47 (4)3.270 (3)167 (3)
N2—H2A···Cl40.95 (4)2.49 (4)3.346 (3)150 (3)
Symmetry code: (i) x1/2, y+1/2, z1/2.
ππ contacts (Å, °) for (I) top
Cg···CgIPD (Å)DA (°)CCD (Å)
Cg1···Cg2ii3.549 (2)10.4 (2)3.40 (8)
Cg2···Cg3ii3.774 (3)7.6 (2)3.55 (4)
Symmetry code: (ii) x, y, z - 1.

Notes: Cg1 Cg2 and Cg3 are the centroids of the Cu1/N4/C27/C28/N5, N5/C23–26/C28 and C4–C9 rings, respectively.

CCD is the centroid-to-centroid distance (distance between group centroids), DA is the dihedral angle (angle subtended by both planes) and IPD is the interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds