Download citation
Download citation
link to html
The rigid organic linkers N-(4-bromo­phenyl­sulfon­yl)dithio­carbimate(2−) and N-(4-iodo­phenyl­sulfon­yl)dithio­car­bim­ate(2−) crystallize with two potassium cations and two water mol­ecules in their asymmetric units, forming the title coordination polymers, [K2(C7H4BrNO2S3)(H2O)2]n and [K2(C7H4INO2S3)(H2O)2]n. The anions and the water mol­ecules link the potassium cations into broad two-dimensional networks, which are further linked by K...halide inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112040589/bg3152sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040589/bg3152Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040589/bg3152IIsup3.hkl
Contains datablock II

CCDC references: 914639; 914640

Comment top

The chemistry of dithiocarbamates (R2NCS2)2- and their metal complexes has attracted considerable attention for a long time, due to their applications as very active accelerators of vulcanization and as antiozonants in the rubber industry (Nakagawa et al., 1992). Many metal dithiocarbamate complexes have shown biological activity and are used as fungicides (Leroux, 1996; Coucouvanis, 1969). The use of dithiocarbamates with polar solvents is effective in removing both renal and hepatic deposits of platinum from rats without decreasing the antitumour efficacy of cisplatin (Shimada et al., 1993). However, the chemistry of dithiocarbimate anions, especially those from sulfonylamides, (RSO2NCS2)2-, and their metal complexes, is less known. Metal–dithiocarbimate complexes, similar to the metal–dithiocarbamate complexes, exhibit antifungal and vulcanization activities (Perpétuo et al., 2003; Oliveira et al., 2007; Mariano et al., 2007; Alves et al. 2009; Amim et al., 2011). A literature survey showed that the majority of the 40 metal–dithiocarbimate structures reported to date were studied during the last decade (CSD, Version 5.33, Date of release?; Allen, 2002). The majority of the known metal–dithiocarbimate structures contain transition metal ions [Ni2+ (26 structures), Zn2+ (three), Cu2+ (two), Pt2+ (two) and Pd2+ (two)] and only a few structures contain metal ions of the main groups (Hummel & Korn, 1989; Amim et al., 2008).

N-(4-Bromophenylsulfonyl)dithiocarbimate (hereinafter L1) and N-(4-iodophenylsulfonyl)dithiocarbimate (hereinafter L2) potassium salts are well soluble in water, so they have been used as substrates for the syntheses of complexes with transition metal ions like Ni2+ or Zn2+ (Alves et al. 2009; Franca et al., 2006; Oliveira et al., 2002, 2003, 2011). However, to date, the X-ray crystal structures of potassium salts of the L12- and L22- ligands are unknown. The IR spectroscopic investigation of these potassium dithiocarbimates indicated that these compounds are hydrated (Franca et al., 2006). Therefore, we decided to obtain good quality single crystals of these salts for structural studies. In this work, we descibe the crystal structures of [K2(L1)(H2O)2]n, (I), and [K2(L2)(H2O)2]n, (II).

The asymmetric units of (I) and (II) contain one L12- or L22- anion, two potassium cations (K1 and K2) and two water molecules (O3 and O4) (Figs. 1a and 1b). Although the compounds possess almost identical compositions, their structures exhibit differences. In (I), the environment of K1 consists of one (N,O) pair from an L12- dithiocarbimate ligand, one S atom from another symmetry-related L12- ligand and four water O atoms. K2, instead, is linked to three different L12- ligands, one through (O) and two chelating through (S,O) and (S,S) pairs, plus two water molecules. In (II), the coordination environments of the potassium ions are slightly different. Both K1 and K2 are linked to three different L22- ligands, but in different manners. The coordination of K1 is made up of two S atoms of different L22- ligands, one (O,N)-chelating L22- ligand and three water molecules. The second potassium cation, K2, is coordinated through one (O), one (O,S) and one (S,S) groups, with one water molecule completing the polyhedron.

Inspection of these potassium coordination environments shows the presence of two different substructures, each involving only one type of K cation.

While the two K2 substructures are rather similar, the K1 substructures are not. In (I), the K1 substructure consists of a chain running along the a axis, with inversion-related K1 cations bridged by water molecules (O3 and O4) to form a [K2(H2O)4]n one-dimensional polymer or K1 chain. Each K1 cation in this polymer interacts with one L12- anionic ligand, which acts as an O,N-donor, forming the final K1 substructure (Fig. 2a). Within the K1 chain, the bridging of atom O3 is stronger than that of O4 (Table 1). The equivalent K1 substructure in (II) consists instead of a chain running along the b axis (Fig. 2b) and, in contrast with that of (I), K1 cations within the chain are related by a screw axis and bridged by atom O3, while the remaining water molecule (O4) interacts only with one K1 within the K1 chain and one K2 from the K2 chain (Table 3), thus linking both substructures. Water molecules O3 bridge K1 cations to form a wave-like [K(H2O)]n polymer (Fig. 2b). Each cation within the chain interacts with one L22- ligand, which acts as an O,N-donor, forming the final K1 substructure.

As stated above, the two K2 substructures are similar. That in (I) is a two-dimensional array parallel to (001) (Fig. 3a), while that in (II) is a two-dimensional array parallel to (100) (Fig. 3b). In these substructures, L12- and L22- act as O,O-donor ligands to bridge the K2 cations into chains, along [010] in (I) and [001] in (II). Additionally, the ligands interconnect these chains via the bridging S1 atoms, forming planar K2 substructures.

The planar K2 substructures bind to the K1 substructures on opposite sides in a `sandwich-like' fashion, forming broad layers parallel to (001) in (I) and to (100) in (II) (Fig. 4). Within these layers, some weak O—H···N and O—H···S interactions are present (Tables 2 and 4). The layers are interconnected via K···Br contacts in (I) and K···I contacts in (II) (Tables 1 and 3) into a three-dimensional network.

In conclusion, in (I) water molecules O3 and O4 bridge symmetry-related K1 cations, whereas in (II) these cations are bridged by O3 water molecules only. Additionally, in both compounds the anionic ligands bind through O in a stronger fashion than through S. This is in contrast with what was found in the known structures of NR-sulfonyldithiocarbimate complexes with transition metal ions, in which the NR-sulfonyldithiocarbimate(2-) anions act as S,S-donor chelating ligands, and it agrees with the soft–hard acid–base theory (Pearson, 1963), according to which the hard acid K+ prefers to interact with O, a harder base than S in the NR-sulfonyldithiocarbimate(2-) anions. This implies that the C—S bonds in (I) should not be perturbed by interaction with a metal cation as is the case for transition metal complexes, and in fact they are either similar to or slightly shorter than those in the N-4-bromo- and N-4-iodophenylsulfonyldithiocarbimate nickel or zinc complexes, as shown in Table 5.

Related literature top

For related literature, see: Allen (2002); Alves et al. (2009); Amim et al. (2008, 2011); Coucouvanis (1969); Franca et al. (2006); Hummel & Korn (1989); Leroux (1996); Mariano et al. (2007); Nakagawa et al. (1992); Oliveira et al. (2002, 2003, 2007, 2011); Pearson (1963); Perpétuo et al. (2003); Shimada et al. (1993).

Experimental top

The title compounds were obtained as described previously (Franca et al. 2006). Yellowish single crystals of both (I) and (II) were obtained by recrystallization from solution in ethanol:water (1:1 v/v) mixtures.

Refinement top

C-bound H atoms were located in their geometric positions, with C—H = 0.93 Å, and with the Uiso(H) = 1.2Ueq(C). Water H atoms were located from Δρ maps and their positions were refined, with Uiso(H) = 1.5Ueq(O).

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric units of the two compounds, showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate interactions with neighbouring molecules. (a) Structure (I). [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z; (iii) -x + 2, -y, -z; (iv) x, y + 1, z; (v) x - 1, y + 1, z; (vi) -x + 2, y + 1/2, -z + 1/2.] (b) Structure (II). [Symmetry codes: (i) -x + 2, y - 1/2, -z + 1/2; (ii) x, -y + 1/2, z - 1/2; (iii) x, -y + 3/2, z - 1/2; (iv) x, y - 1, z; (v) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Views of the K1 substructures. (a) Structure (I). [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z.] (b) Structure (II). [Symmetry codes: (i) -x + 2, y - 1/2, -z + 1/2; (ii) x, -y + 1/2, z - 1/2.]
[Figure 3] Fig. 3. Views of the planar K2 substructures, showing the K2 chains formed by the corresponding O,O-bridging ligands. H atoms have been omitted for clarity. (a) Structure (I). [Symmetry codes: (iv) x, y + 1, z; (v) x - 1, y + 1, z.] (b) Structure (II). [Symmetry codes: (ii) x, -y + 1/2, z - 1/2; (iv) x, y - 1, z.]
[Figure 4] Fig. 4. (a) The packing arrangement of (I), viewed along the a axis. [Symmetry code: (i) -x + 1, -y + 1, -z] (b) The packing arrangement of (II), viewed along the b axis [Symmetry code: (i) -x + 2, y - 1/2, -z + 1/2]. H atoms have been omitted for clarity. Dashed lines indicate intermolecular interactions
(I) Poly[di-µ-aqua-[µ6-N-(4- bromophenylsulfonyl)dithiocarbimato]dipotassium] top
Crystal data top
[K2(C7H4BrNO2S3)(H2O)2]F(000) = 840
Mr = 424.43Dx = 1.975 Mg m3
Dm = 1.97 Mg m3
Dm measured by flotation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 856 reflections
a = 6.1869 (12) Åθ = 2.9–27.0°
b = 7.2241 (14) ŵ = 3.90 mm1
c = 31.941 (6) ÅT = 295 K
β = 90.42 (3)°Parallelepiped, yellow
V = 1427.6 (5) Å30.28 × 0.14 × 0.11 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer with CCD detector
3365 independent reflections
Radiation source: fine-focus sealed tube1881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 28.6°, θmin = 2.9°
Absorption correction: numerical
CrysAlis RED ( Oxford Diffraction, 2007)
h = 78
Tmin = 0.411, Tmax = 0.675k = 89
16622 measured reflectionsl = 3743
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[K2(C7H4BrNO2S3)(H2O)2]V = 1427.6 (5) Å3
Mr = 424.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1869 (12) ŵ = 3.90 mm1
b = 7.2241 (14) ÅT = 295 K
c = 31.941 (6) Å0.28 × 0.14 × 0.11 mm
β = 90.42 (3)°
Data collection top
Kuma KM-4
diffractometer with CCD detector
3365 independent reflections
Absorption correction: numerical
CrysAlis RED ( Oxford Diffraction, 2007)
1881 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.675Rint = 0.080
16622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.63 e Å3
3365 reflectionsΔρmin = 0.47 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.7308 (2)0.35351 (18)0.02764 (4)0.0384 (3)
K20.66877 (19)0.76993 (17)0.10735 (4)0.0360 (3)
Br11.50252 (10)0.35087 (9)0.290276 (18)0.0431 (2)
C11.0822 (8)0.2672 (7)0.17087 (16)0.0261 (13)
C21.2908 (9)0.3379 (8)0.16832 (17)0.0365 (14)
H21.34910.36720.14240.044*
C31.4087 (9)0.3640 (7)0.20370 (17)0.0343 (14)
H31.54610.41580.20210.041*
C41.3265 (10)0.3142 (8)0.24232 (16)0.0332 (14)
C51.1236 (9)0.2450 (8)0.24508 (16)0.0365 (15)
H51.06740.21540.27120.044*
C61.0004 (9)0.2182 (8)0.20973 (17)0.0349 (14)
H60.86270.16750.21170.042*
S30.9207 (2)0.2479 (2)0.12510 (4)0.0282 (3)
O10.7504 (6)0.1171 (5)0.13255 (11)0.0360 (10)
O20.8446 (6)0.4325 (5)0.11534 (11)0.0383 (10)
N11.0774 (7)0.1956 (6)0.08663 (12)0.0272 (11)
C71.1834 (7)0.0316 (7)0.08480 (15)0.0234 (12)
S11.1699 (2)0.1426 (2)0.12082 (4)0.0309 (3)
S21.3424 (2)0.0047 (2)0.04102 (4)0.0343 (4)
O30.3396 (7)0.5089 (6)0.05540 (13)0.0401 (11)
H310.259 (10)0.413 (9)0.0585 (19)0.060*
H320.304 (11)0.584 (9)0.071 (2)0.060*
O40.8796 (7)0.7196 (7)0.02613 (14)0.0456 (12)
H410.980 (11)0.755 (10)0.037 (2)0.068*
H420.827 (11)0.806 (9)0.0092 (19)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0469 (8)0.0371 (8)0.0311 (7)0.0072 (7)0.0003 (6)0.0004 (6)
K20.0273 (6)0.0322 (8)0.0485 (8)0.0058 (6)0.0011 (6)0.0056 (6)
Br10.0514 (4)0.0450 (4)0.0326 (3)0.0025 (3)0.0086 (3)0.0051 (3)
C10.036 (3)0.022 (3)0.020 (3)0.006 (3)0.000 (2)0.006 (2)
C20.039 (4)0.038 (4)0.033 (3)0.003 (3)0.002 (3)0.002 (3)
C30.032 (3)0.028 (4)0.043 (4)0.002 (3)0.001 (3)0.001 (3)
C40.047 (4)0.028 (4)0.025 (3)0.010 (3)0.013 (3)0.004 (2)
C50.044 (4)0.048 (4)0.017 (3)0.005 (3)0.013 (3)0.002 (3)
C60.031 (3)0.044 (4)0.030 (3)0.003 (3)0.005 (3)0.003 (3)
S30.0319 (8)0.0245 (8)0.0281 (7)0.0042 (7)0.0006 (6)0.0018 (7)
O10.028 (2)0.029 (2)0.050 (2)0.0007 (18)0.0018 (18)0.0108 (19)
O20.047 (2)0.025 (2)0.042 (2)0.016 (2)0.0082 (19)0.0024 (18)
N10.038 (3)0.028 (3)0.015 (2)0.007 (2)0.000 (2)0.0012 (19)
C70.017 (3)0.025 (3)0.028 (3)0.002 (2)0.004 (2)0.004 (2)
S10.0293 (7)0.0286 (8)0.0350 (8)0.0042 (7)0.0024 (6)0.0076 (7)
S20.0408 (9)0.0319 (9)0.0303 (8)0.0055 (7)0.0091 (7)0.0013 (7)
O30.049 (3)0.034 (3)0.038 (3)0.002 (2)0.007 (2)0.002 (2)
O40.046 (3)0.050 (3)0.040 (3)0.000 (2)0.010 (2)0.000 (2)
Geometric parameters (Å, º) top
K1—O42.801 (5)C2—H20.9300
K1—O32.817 (4)C3—C41.385 (7)
K1—O3i2.863 (4)C3—H30.9300
K1—O22.939 (4)C4—C51.355 (7)
K1—O4ii3.016 (5)C5—C61.372 (7)
K1—N13.065 (4)C5—H50.9300
K1—S2iii3.420 (2)C6—H60.9300
K2—O1iv2.681 (4)S3—O11.436 (4)
K2—O22.681 (4)S3—O21.447 (4)
K2—O42.935 (5)S3—N11.616 (4)
K2—S1v3.1827 (19)N1—C71.355 (6)
K2—S1iv3.1902 (19)C7—S11.708 (5)
K2—O33.226 (4)C7—S21.727 (5)
K2—S2v3.373 (2)O3—H310.86 (6)
C1—C61.390 (7)O3—H320.76 (6)
C1—C21.391 (7)O4—H410.75 (6)
C1—S31.771 (5)O4—H420.89 (7)
C2—C31.354 (7)
K2···Br1vi3.4941 (16)
O4—K1—O384.98 (14)S1iv—K2—K1iv79.72 (4)
O4—K1—O3i72.79 (13)O3—K2—K1iv106.54 (9)
O3—K1—O3i91.62 (12)S2v—K2—K1iv45.23 (3)
O4—K1—O275.92 (12)Br1vi—K2—K1iv111.39 (3)
O3—K1—O279.81 (12)K1—K2—K1iv107.97 (4)
O3i—K1—O2148.15 (13)O1iv—K2—K1i120.87 (9)
O4—K1—O4ii83.76 (15)O2—K2—K1i96.71 (9)
O3—K1—O4ii160.21 (13)O4—K2—K1i55.92 (9)
O3i—K1—O4ii69.51 (13)S1v—K2—K1i71.36 (4)
O2—K1—O4ii112.94 (12)S1iv—K2—K1i128.40 (5)
O4—K1—N197.66 (13)O3—K2—K1i31.97 (8)
O3—K1—N1123.63 (12)S2v—K2—K1i42.54 (3)
O3i—K1—N1143.11 (12)Br1vi—K2—K1i132.91 (4)
O2—K1—N147.51 (10)K1—K2—K1i50.52 (3)
O4ii—K1—N174.12 (12)K1iv—K2—K1i75.48 (3)
O4—K1—S396.66 (10)O1iv—K2—H32135.0 (13)
O3—K1—S395.34 (10)O2—K2—H3286.0 (13)
O3i—K1—S3166.83 (10)O4—K2—H3286.3 (13)
O2—K1—S325.01 (7)S1v—K2—H3252.3 (13)
O4ii—K1—S3102.08 (10)S1iv—K2—H32155.3 (12)
N1—K1—S328.29 (8)O3—K2—H3212.7 (12)
O4—K1—S2iii138.19 (11)S2v—K2—H3261.0 (13)
O3—K1—S2iii113.17 (10)Br1vi—K2—H32102.5 (13)
O3i—K1—S2iii69.51 (10)K1—K2—H3257.4 (12)
O2—K1—S2iii141.96 (9)K1iv—K2—H32104.7 (13)
O4ii—K1—S2iii66.73 (9)K1i—K2—H3235.7 (13)
N1—K1—S2iii101.61 (9)O1iv—K2—H4198.0 (13)
S3—K1—S2iii117.36 (5)O2—K2—H4176.9 (14)
O4—K1—S2vii154.87 (11)O4—K2—H4114.6 (12)
O3—K1—S2vii69.96 (10)S1v—K2—H41138.1 (13)
O3i—K1—S2vii105.22 (10)S1iv—K2—H4158.3 (13)
O2—K1—S2vii100.53 (9)O3—K2—H4190.0 (13)
O4ii—K1—S2vii119.62 (10)S2v—K2—H4186.1 (13)
N1—K1—S2vii97.73 (9)Br1vi—K2—H41156.4 (13)
S3—K1—S2vii87.69 (5)K1—K2—H4154.5 (13)
S2iii—K1—S2vii56.45 (5)K1iv—K2—H4165.7 (13)
O4—K1—K1i73.97 (10)K1i—K2—H4170.3 (13)
O3—K1—K1i46.28 (9)H32—K2—H41100.7 (17)
O3i—K1—K1i45.34 (9)C4—Br1—K2viii123.89 (19)
O2—K1—K1i119.23 (9)C6—C1—C2119.4 (5)
O4ii—K1—K1i114.61 (10)C6—C1—S3120.7 (4)
N1—K1—K1i166.49 (9)C2—C1—S3119.9 (4)
S3—K1—K1i140.38 (6)C3—C2—C1119.8 (5)
S2iii—K1—K1i91.54 (5)C3—C2—H2120.1
S2vii—K1—K1i86.90 (5)C1—C2—H2120.1
O4—K1—K247.74 (10)C2—C3—C4120.5 (5)
O3—K1—K253.67 (10)C2—C3—H3119.7
O3i—K1—K2108.49 (9)C4—C3—H3119.7
O2—K1—K242.59 (7)C5—C4—C3120.0 (5)
O4ii—K1—K2125.48 (10)C5—C4—Br1121.8 (4)
N1—K1—K287.60 (8)C3—C4—Br1118.1 (4)
S3—K1—K267.49 (4)C4—C5—C6120.5 (5)
S2iii—K1—K2166.84 (5)C4—C5—H5119.7
S2vii—K1—K2113.41 (5)C6—C5—H5119.7
K1i—K1—K278.92 (5)C5—C6—C1119.7 (5)
O4—K1—K1ii43.78 (10)C5—C6—H6120.2
O3—K1—K1ii126.75 (11)C1—C6—H6120.2
O3i—K1—K1ii64.22 (10)O1—S3—O2113.8 (2)
O2—K1—K1ii96.55 (9)O1—S3—N1114.7 (2)
O4ii—K1—K1ii39.98 (9)O2—S3—N1104.3 (2)
N1—K1—K1ii84.01 (9)O1—S3—C1109.0 (2)
S3—K1—K1ii102.75 (5)O2—S3—C1106.6 (2)
S2iii—K1—K1ii101.94 (5)N1—S3—C1107.9 (2)
S2vii—K1—K1ii158.30 (6)O1—S3—K192.88 (16)
K1i—K1—K1ii96.39 (5)O2—S3—K159.15 (15)
K2—K1—K1ii88.24 (5)N1—S3—K164.04 (15)
O1iv—K2—O2138.30 (12)C1—S3—K1157.81 (19)
O1iv—K2—O4107.29 (12)S3—O1—K2ix134.6 (2)
O2—K2—O477.81 (13)S3—O2—K2171.7 (2)
O1iv—K2—S1v87.40 (8)S3—O2—K195.84 (18)
O2—K2—S1v124.11 (10)K2—O2—K189.51 (11)
O4—K2—S1v125.58 (10)C7—N1—S3122.0 (3)
O1iv—K2—S1iv66.01 (8)C7—N1—K1129.4 (3)
O2—K2—S1iv76.94 (9)S3—N1—K187.67 (17)
O4—K2—S1iv72.89 (9)N1—C7—S1126.1 (4)
S1v—K2—S1iv152.25 (7)N1—C7—S2114.3 (4)
O1iv—K2—O3144.89 (12)S1—C7—S2119.6 (3)
O2—K2—O376.81 (12)C7—S1—K2x90.18 (17)
O4—K2—O375.88 (11)C7—S1—K2ix96.15 (17)
S1v—K2—O364.93 (8)K2x—S1—K2ix152.25 (7)
S1iv—K2—O3142.60 (9)C7—S2—K2x83.68 (17)
O1iv—K2—S2v80.14 (9)C7—S2—K1iii122.06 (18)
O2—K2—S2v139.25 (9)K2x—S2—K1iii95.63 (5)
O4—K2—S2v77.00 (10)C7—S2—K1xi114.37 (18)
S1v—K2—S2v53.74 (4)K2x—S2—K1xi91.74 (5)
S1iv—K2—S2v124.18 (5)K1iii—S2—K1xi123.55 (5)
O3—K2—S2v66.30 (9)K1—O3—K1i88.38 (12)
O1iv—K2—Br1vi67.68 (8)K1—O3—K281.61 (12)
O2—K2—Br1vi100.88 (9)K1i—O3—K2111.39 (14)
O4—K2—Br1vi171.04 (9)K1—O3—H31102 (4)
S1v—K2—Br1vi62.56 (4)K1i—O3—H31108 (4)
S1iv—K2—Br1vi98.15 (5)K2—O3—H31141 (4)
O3—K2—Br1vi112.61 (8)K1—O3—H32137 (5)
S2v—K2—Br1vi108.62 (4)K1i—O3—H32108 (5)
O1iv—K2—K1152.18 (9)K2—O3—H3256 (5)
O2—K2—K147.90 (8)H31—O3—H32109 (7)
O4—K2—K144.93 (10)K1—O4—K287.33 (14)
S1v—K2—K1109.64 (5)K1—O4—K1ii96.24 (15)
S1iv—K2—K197.96 (5)K2—O4—K1ii152.52 (17)
O3—K2—K144.71 (8)K1—O4—H41125 (6)
S2v—K2—K192.21 (4)K2—O4—H4185 (6)
Br1vi—K2—K1139.47 (4)K1ii—O4—H4170 (5)
O1iv—K2—K1iv48.80 (8)K1—O4—H42124 (4)
O2—K2—K1iv142.36 (9)K2—O4—H42107 (4)
O4—K2—K1iv67.27 (10)K1ii—O4—H4294 (4)
S1v—K2—K1iv88.82 (4)H41—O4—H42110 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y, z; (iv) x, y+1, z; (v) x1, y+1, z; (vi) x+2, y+1/2, z+1/2; (vii) x1, y, z; (viii) x+2, y1/2, z+1/2; (ix) x, y1, z; (x) x+1, y1, z; (xi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1vii0.86 (6)2.13 (6)2.962 (6)162 (6)
O3—H32···S1v0.76 (6)2.68 (6)3.440 (4)177 (7)
O4—H41···S2iv0.75 (6)2.88 (7)3.556 (5)150 (7)
O4—H42···S2ii0.89 (7)2.35 (7)3.227 (5)171 (6)
Symmetry codes: (ii) x+2, y+1, z; (iv) x, y+1, z; (v) x1, y+1, z; (vii) x1, y, z.
(II) Poly[di-µ-aqua-[µ4-N-(4- iodophenylsulfonyl)dithiocarbimato]dipotassium] top
Crystal data top
[K2(C7H4INO2S3)(H2O)2]F(000) = 912
Mr = 471.42Dx = 2.089 Mg m3
Dm = 2.08 Mg m3
Dm measured by flotation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 687 reflections
a = 16.155 (3) Åθ = 3.0–27.5°
b = 6.3794 (13) ŵ = 3.11 mm1
c = 14.549 (3) ÅT = 295 K
β = 91.86 (3)°Parallelepiped, yellow
V = 1498.7 (5) Å30.28 × 0.14 × 0.11 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer with CCD detector
3712 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 29.0°, θmin = 3.0°
Absorption correction: numerical
CrysAlis RED ( Oxford Diffraction, 2007)
h = 2121
Tmin = 0.479, Tmax = 0.728k = 85
18295 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.024P)2]
where P = (Fo2 + 2Fc2)/3
3712 reflections(Δ/σ)max = 0.002
175 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[K2(C7H4INO2S3)(H2O)2]V = 1498.7 (5) Å3
Mr = 471.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.155 (3) ŵ = 3.11 mm1
b = 6.3794 (13) ÅT = 295 K
c = 14.549 (3) Å0.28 × 0.14 × 0.11 mm
β = 91.86 (3)°
Data collection top
Kuma KM-4
diffractometer with CCD detector
3712 independent reflections
Absorption correction: numerical
CrysAlis RED ( Oxford Diffraction, 2007)
2653 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.728Rint = 0.044
18295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.89 e Å3
3712 reflectionsΔρmin = 0.87 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.94257 (4)0.32931 (12)0.17673 (5)0.0474 (2)
K20.78812 (4)0.15291 (10)0.39108 (4)0.03357 (16)
I10.425239 (12)1.02845 (3)0.628119 (16)0.04446 (8)
C10.66742 (16)0.5846 (4)0.62402 (18)0.0257 (6)
C20.67515 (17)0.7878 (4)0.6565 (2)0.0325 (7)
H20.72680.84040.67470.039*
C30.60516 (18)0.9117 (5)0.6615 (2)0.0349 (7)
H30.60951.04870.68300.042*
C40.52888 (17)0.8309 (4)0.63450 (19)0.0295 (7)
C50.52129 (18)0.6254 (5)0.6059 (2)0.0362 (7)
H50.46930.57010.59100.043*
C60.59095 (18)0.5027 (4)0.5996 (2)0.0336 (7)
H60.58640.36510.57900.040*
S30.75653 (4)0.42488 (11)0.61685 (5)0.02754 (17)
O10.73725 (13)0.2514 (3)0.55665 (13)0.0367 (5)
O20.78083 (12)0.3627 (3)0.70952 (13)0.0386 (5)
N10.83201 (13)0.5704 (3)0.58595 (15)0.0273 (5)
C70.83282 (16)0.6712 (4)0.50487 (18)0.0250 (6)
S10.75896 (5)0.65259 (11)0.41794 (5)0.02992 (17)
S20.91817 (5)0.83120 (12)0.49106 (5)0.03318 (18)
O30.90292 (15)0.7276 (5)0.24635 (17)0.0523 (7)
H310.885 (2)0.801 (6)0.204 (3)0.079*
H320.869 (2)0.726 (6)0.284 (3)0.079*
O40.94218 (16)0.3527 (4)0.36815 (17)0.0522 (7)
H410.934 (3)0.463 (6)0.386 (3)0.078*
H420.978 (2)0.303 (6)0.399 (3)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0380 (4)0.0672 (5)0.0371 (4)0.0022 (4)0.0033 (3)0.0012 (4)
K20.0437 (4)0.0319 (4)0.0254 (3)0.0013 (3)0.0048 (3)0.0016 (3)
I10.03126 (12)0.04811 (15)0.05430 (15)0.00669 (10)0.00566 (9)0.00461 (11)
C10.0279 (15)0.0306 (16)0.0191 (14)0.0003 (13)0.0058 (12)0.0010 (12)
C20.0248 (15)0.0350 (17)0.0378 (18)0.0050 (13)0.0018 (13)0.0022 (14)
C30.0355 (17)0.0278 (16)0.0417 (19)0.0020 (14)0.0042 (14)0.0046 (14)
C40.0267 (15)0.0349 (18)0.0273 (16)0.0033 (13)0.0046 (12)0.0037 (13)
C50.0274 (16)0.0420 (19)0.0391 (18)0.0065 (14)0.0019 (14)0.0008 (16)
C60.0380 (17)0.0293 (17)0.0333 (17)0.0042 (14)0.0003 (13)0.0079 (14)
S30.0326 (4)0.0303 (4)0.0201 (4)0.0028 (3)0.0062 (3)0.0043 (3)
O10.0505 (13)0.0282 (11)0.0322 (12)0.0013 (10)0.0133 (10)0.0023 (9)
O20.0444 (13)0.0470 (13)0.0248 (11)0.0082 (10)0.0064 (9)0.0116 (10)
N10.0254 (12)0.0344 (14)0.0221 (12)0.0006 (11)0.0024 (10)0.0033 (11)
C70.0262 (14)0.0251 (15)0.0239 (14)0.0047 (12)0.0060 (12)0.0024 (12)
S10.0350 (4)0.0284 (4)0.0260 (4)0.0014 (3)0.0042 (3)0.0024 (3)
S20.0278 (4)0.0398 (5)0.0321 (4)0.0051 (3)0.0029 (3)0.0048 (4)
O30.0431 (15)0.0783 (19)0.0359 (15)0.0120 (14)0.0058 (11)0.0125 (13)
O40.0495 (15)0.0640 (19)0.0431 (15)0.0210 (14)0.0011 (12)0.0044 (13)
Geometric parameters (Å, º) top
K1—O42.789 (3)C2—H20.9300
K1—O32.817 (3)C3—C41.381 (4)
K1—O3i2.779 (3)C3—H30.9300
K1—O2ii2.939 (2)C4—C51.379 (4)
K1—N1ii3.359 (2)C5—C61.377 (4)
K1—S2i3.3734 (12)C5—H50.9300
K1—S2iii3.4749 (12)C6—H60.9300
K2—O2ii2.642 (2)S3—O11.439 (2)
K2—O12.646 (2)S3—O21.4474 (19)
K2—O42.826 (3)S3—N11.608 (2)
K2—S13.248 (2)N1—C71.344 (3)
K2—S1iv3.252 (2)C7—S11.714 (3)
K2—S2iv3.248 (2)C7—S21.732 (3)
I1—C42.095 (3)O3—H310.82 (4)
C1—C61.377 (4)O3—H320.79 (4)
C1—C21.384 (4)O4—H410.76 (4)
C1—S31.770 (3)O4—H420.79 (4)
C2—C31.384 (4)
K2···I1v3.6380 (10)
O3i—K1—O468.99 (8)O2—S3—C1107.43 (12)
O3i—K1—O3106.11 (8)N1—S3—C1108.05 (12)
O4—K1—O365.47 (7)O1—S3—K1vi87.84 (9)
O3i—K1—O2ii128.98 (7)O2—S3—K1vi55.70 (8)
O4—K1—O2ii80.17 (7)N1—S3—K1vi71.59 (8)
O3—K1—O2ii95.96 (7)C1—S3—K1vi161.04 (9)
O3i—K1—N1ii116.13 (7)O2—S3—K2130.25 (9)
O4—K1—N1ii114.50 (7)N1—S3—K284.06 (9)
O3—K1—N1ii134.58 (7)C1—S3—K2116.77 (9)
O2ii—K1—N1ii44.21 (5)K1vi—S3—K282.18 (3)
O2ii—K2—O1156.06 (7)S3—O1—K2132.01 (11)
O2ii—K2—O484.82 (7)S3—O2—K2vi160.64 (12)
O1—K2—O4107.53 (7)S3—O2—K1vi100.30 (10)
O2ii—K2—I1v84.26 (5)K2vi—O2—K1vi97.80 (7)
O1—K2—I1v79.86 (5)C7—N1—S3123.41 (19)
O4—K2—I1v166.01 (5)C7—N1—K1vi133.49 (17)
S2iv—K2—I1v115.53 (3)S3—N1—K1vi81.39 (9)
S1—K2—I1v100.40 (2)N1—C7—S1126.0 (2)
S1iv—K2—I1v63.672 (18)N1—C7—S2114.5 (2)
C4—I1—K2v124.46 (8)S1—C7—S2119.52 (16)
C6—C1—C2120.9 (3)C7—S1—K293.25 (9)
C6—C1—S3119.4 (2)C7—S1—K2vii85.44 (9)
C2—C1—S3119.7 (2)K2—S1—K2vii157.94 (3)
C3—C2—C1119.2 (3)C7—S2—K2vii85.32 (9)
C3—C2—H2120.4C7—S2—K1viii129.35 (9)
C1—C2—H2120.4K2vii—S2—K1viii96.61 (3)
C4—C3—C2119.6 (3)C7—S2—K1ix110.34 (9)
C4—C3—H3120.2K2vii—S2—K1ix90.56 (3)
C2—C3—H3120.2K1viii—S2—K1ix120.22 (3)
C5—C4—C3120.7 (3)K1viii—O3—K198.26 (8)
C5—C4—I1119.7 (2)K1viii—O3—H31117 (3)
C3—C4—I1119.5 (2)K1—O3—H31109 (3)
C6—C5—C4119.7 (3)K1viii—O3—H32112 (3)
C6—C5—H5120.1K1—O3—H32114 (3)
C4—C5—H5120.1H31—O3—H32108 (4)
C5—C6—C1119.7 (3)K1—O4—K297.15 (9)
C5—C6—H6120.2K1—O4—H41114 (4)
C1—C6—H6120.2K2—O4—H41102 (3)
O1—S3—O2113.76 (12)K1—O4—H42121 (3)
O1—S3—N1115.13 (12)K2—O4—H42113 (3)
O2—S3—N1103.50 (12)H41—O4—H42108 (4)
O1—S3—C1108.55 (13)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z; (v) x+1, y+1, z+1; (vi) x, y+1/2, z+1/2; (vii) x, y+1, z; (viii) x+2, y+1/2, z+1/2; (ix) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1iii0.82 (4)2.06 (4)2.871 (3)168 (4)
O3—H32···S10.79 (4)2.72 (4)3.500 (3)170 (4)
O4—H41···S20.76 (4)2.82 (4)3.565 (3)167 (4)
O4—H42···S2x0.79 (4)2.43 (4)3.219 (3)173 (4)
Symmetry codes: (iii) x, y+3/2, z1/2; (x) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[K2(C7H4BrNO2S3)(H2O)2][K2(C7H4INO2S3)(H2O)2]
Mr424.43471.42
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)295295
a, b, c (Å)6.1869 (12), 7.2241 (14), 31.941 (6)16.155 (3), 6.3794 (13), 14.549 (3)
β (°) 90.42 (3) 91.86 (3)
V3)1427.6 (5)1498.7 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)3.903.11
Crystal size (mm)0.28 × 0.14 × 0.110.28 × 0.14 × 0.11
Data collection
DiffractometerKuma KM-4
diffractometer with CCD detector
Kuma KM-4
diffractometer with CCD detector
Absorption correctionNumerical
CrysAlis RED ( Oxford Diffraction, 2007)
Numerical
CrysAlis RED ( Oxford Diffraction, 2007)
Tmin, Tmax0.411, 0.6750.479, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
16622, 3365, 1881 18295, 3712, 2653
Rint0.0800.044
(sin θ/λ)max1)0.6740.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.110, 1.00 0.032, 0.059, 1.01
No. of reflections33653712
No. of parameters175175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.470.89, 0.87

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Selected interatomic distances (Å) for (I) top
K1—O42.801 (5)K2—O1iv2.681 (4)
K1—O32.817 (4)K2—O22.681 (4)
K1—O3i2.863 (4)K2—O42.935 (5)
K1—O22.939 (4)K2—S1v3.1827 (19)
K1—O4ii3.016 (5)K2—S1iv3.1902 (19)
K1—N13.065 (4)K2—O33.226 (4)
K1—S2iii3.420 (2)K2—S2v3.373 (2)
K2···Br1vi3.4941 (16)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y, z; (iv) x, y+1, z; (v) x1, y+1, z; (vi) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1vii0.86 (6)2.13 (6)2.962 (6)162 (6)
O3—H32···S1v0.76 (6)2.68 (6)3.440 (4)177 (7)
O4—H41···S2iv0.75 (6)2.88 (7)3.556 (5)150 (7)
O4—H42···S2ii0.89 (7)2.35 (7)3.227 (5)171 (6)
Symmetry codes: (ii) x+2, y+1, z; (iv) x, y+1, z; (v) x1, y+1, z; (vii) x1, y, z.
Selected interatomic distances (Å) for (II) top
K1—O42.789 (3)K2—O2ii2.642 (2)
K1—O32.817 (3)K2—O12.646 (2)
K1—O3i2.779 (3)K2—O42.826 (3)
K1—O2ii2.939 (2)K2—S13.248 (2)
K1—N1ii3.359 (2)K2—S1iv3.252 (2)
K1—S2i3.3734 (12)K2—S2iv3.248 (2)
K1—S2iii3.4749 (12)
K2···I1v3.6380 (10)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1iii0.82 (4)2.06 (4)2.871 (3)168 (4)
O3—H32···S10.79 (4)2.72 (4)3.500 (3)170 (4)
O4—H41···S20.76 (4)2.82 (4)3.565 (3)167 (4)
O4—H42···S2vi0.79 (4)2.43 (4)3.219 (3)173 (4)
Symmetry codes: (iii) x, y+3/2, z1/2; (vi) x+2, y+1, z+1.
Comparison of C—S distances (Å) in related structures top
StructureCationC—S
(I)K1.708 (5), 1.727 (5)
(II)K1.714 (3), 1.732 (3)
(III)aZn1.738 (3), 1.739 (3)
(IV)bNi1.734 (3), 1.738 (3)
(V)cNi1.725 (3), 1.764 (3)
(VI)dNi1.735 (3), 1.737 (3)
References: (a) Alves et al. (2009); (b) Franca et al. (2006); (c) Oliveira et al. (2002); (d) Oliveira et al. (2011).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds