Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, {[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2O}n, is a one-dimensional copper(II) coordination polymer bridged by cis-oxamide and carboxyl­ate groups. The asymmetric unit is composed of a dinuclear copper(II) cation, [Cu2(dmapob)(dabt)]+ {dmapob is N-(2-carboxyl­ato­phenyl)-N′-[3-(dimethyl­amino)­propyl]oxamidate and dabt is 2,2′-diamino-4,4′-bithia­zole}, one nitrate anion and one partially occupied site for a solvent water mol­ecule. The two CuII ions are located in square-planar and square-pyramidal coordination environments, respectively. The separations of the Cu atoms bridged by oxamide and carboxyl­ate groups are 5.2053 (3) and 5.0971 (4) Å, respectively. The complex chains are linked by classical hydrogen bonds to form a layer and then assembled by π–π stacking inter­actions into a three-dimensional network. The influence of the terminal ligand on the structure of the complex is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110034396/bg3129sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110034396/bg3129Isup2.hkl
Contains datablock I

CCDC reference: 770367

Comment top

Polymeric metal complexes, due to their novel structures, special properties and potential applications as metalloenzymes and catalysts, are of current interest, attracting increasing research effort (Miller & Epstein, 1994; Zhan et al., 2007). A successful strategy to construct polymeric metal complexes is self-assembly of metal ions and ligands with versatile coordination modes (Chen et al., 1998). N,N'-Bis(substituted)oxamides have played a key role in the design and synthesis of polymetallic systems, because their coordination abilities towards transition metal ions can be modified by changing the nature of the amide substituents (Ojima & Nonoyama, 1988). One of the outstanding characteristics of these ligands is the easy transformation of cistrans conformations, which makes it practical to design tunable molecular materials with extended structures and desired properties (Ruiz et al., 1999). To date, many polymeric structures based on symmetrical N,N'-bis(substituted)oxamides have been reported (Costes et al., 1999; Gulbrandsen et al., 1993; Jiang et al., 2009; Li et al., 2008; Lloret et al., 1993; Nakatani et al., 1991; Rangmathan et al., 1995; Pei et al., 1988; Zhang et al., 2001). In contrast, due to the difficulty of synthesis, reports of complexes based on disymmetrical N,N'-bis(substituted)oxamides are few (Pei et al., 1989; Zang et al., 2003). To the best of our knowledge, only a two-dimensional copper(II)–manganese(II) polymer, {[Cu(oxbe)]Mn(H2O)[Cu(oxbe)(DMF)].DMF.H2O}n, [oxbe is N-benzoato-N'-(2-aminoethyl)oxamide and DMF is dimethylformamide], (II), bridged simultaneously by disymmetrical cis-oxamide and carboxylate groups on the benzoate, has been reported (Zang et al., 2003), and no one-dimensional copper(II) complexes bridged by disymmetrical N,N'-bis(substituted)oxamides with the same coordination mode are known to date. However, complexes bridged by disymmetrical N,N'-bis(substituted)oxamides have shown magnetic properties (Larionova et al., 1997; Matović et al., 2005; Pei et al., 1989, 1991; Zang et al., 2003) and this prompted us to design and synthesize new polynuclear complexes.

Recently, we have synthesized a series of disymmetrical N,N'-bis(substituted)oxamide-bridged polynuclear metal complexes (Gu et al., 2009; Li et al., 2003, 2004; Liu et al., 2008). As an extension of our earlier research work and in order to investigate further the effect of terminal ligands on forming coordination polymers, we used N-(2-carboxylatophenyl)-N'-[3-(dimethylamino)propyl]oxamidate (dmapob) as a bridging ligand and 2,2'-diamino-4,4'-bithiazole (dabt) as a terminal ligand to synthesize the title novel one-dimensional copper(II) complex, (I).

Compound (I) exists as a one-dimensional coordination polymer extending along the b axis, constructed by the cis-oxamide and carboxylate groups connecting the CuII ions, and this structural unit can be considered as a cis-oxamide-bridged binuclear copper(II) fragment with dabt as the terminal ligand. An uncoordinated nitrate anion and a (depleted) solvent water molecule link to the chain through N—H···O and O—H···O hydrogen bonds (Fig. 1 and Table 2). In the binuclear fragment, the cis-oxamide group bridges the CuII ions in the usual chelating mode, with bite angles of 84.73 (9) for Cu1 and 83.74 (8)° for Cu2. Atoms Cu1 and Cu2 are 5.2050 (5) Å apart through the oxamide bridge. The binuclear fragments are bridged by the carboxylate groups in a nonplanar skew–skew fashion. The torsion angles Cu1—O1—C1—O2 [-148.5 (2)°] and Cu2ii—O2—C1—O1 [95.0 (3)°] [symmetry code: (ii) -x + 2, y + 1/2, -z + 1/2; Table 1] are similar to those found in other complexes with such carboxylate groups (Duan et al., 2006; Tong et al., 1997). The Cu···Cu separation through the carboxylate bridge is 5.0970 (5) Å.

The coordination environments of the two CuII ions are different. Atom Cu1, at the inner site of the cis-dmapob ligand, is located in a distorted [CuN3O] square-planar environment. The maximum displacement of the coordination atoms from their least-squares plane is 0.1990 (13) Å for atom N1, and the displacement of atom Cu1 from this plane is 0.1067 (11) Å. Atom Cu2 is in a slightly distorted [CuN3O2] square-pyramidal coordination geometry with a τ value of 0.11 [Reference for definition of τ?]. The basal plane consists of two exo O atoms from the oxamide group and two N atoms from the dabt ligand, with a maximum deviation from the least-squares plane of 0.0588 (9) Å (atom N5). The apical position is occupied by a carboxyl O atom [O2i; symmetry code: (i) -x + 2, y - 1/2, -z + 1/2]. In this disposition, atom Cu2 is displaced 0.1881 (10) Å out of the basal plane towards the apical site.

The oxamide ligand coordinates to atom Cu1 in a tetradentate manner, forming one five- and two six-membered chelate rings (Fig. 1). The five-membered ring is planar. Regarding the two six-membered rings, the one formed by the propylenediamine fragment adopts a half-chair conformation, with puckering parameters (Cremer & Pople, 1975) of Q = 0.539 (3) Å, θ = 127.3 (3)° and ϕ = 30.3 (5)°. The second six-membered ring has a boat conformation, with puckering parameters Q = 0.332 (3) Å, θ = 89.0 (3)° and ϕ = 119.7 (4)°. The Cu1—N1 and Cu1—N2 bonds are shorter than Cu1—N3, which is consistent with the stronger donor abilities of the sp2 N atoms over the sp3-hybridized N atoms (Jubert et al., 2002).

In the crystal structure, the (depleted) solvent water molecules and nitrate ions are assembled into a one-dimensional hydrogen-bonded chain parallel to the complex polymers (Fig. 2 and Table 2). The latter link to the chains through hydrogen bonds involving the amino groups of the dabt ligands, which gives rise to a two-dimensional classical hydrogen-bonding structure parallel to the (010) plane. Besides the hydrogen bonds, the layer contains an aromatic ππ stacking interaction between the thiazole ring containing atom S1 and the benzene ring of the dmapob ligand related by the symmetry operation (-x + 2, y - 1/2, -z + 1/2), (i). The smallest separation is 3.325 (3) Å (C2i, Table 3). Moreover, there is another kind of ππ interaction between the layers. It also involves the same S1-thiazole and benzene rings, but now the symmetry operation is (-x + 2, -y + 1, -z) (v). The minimum distance is 3.215 (4) Å (Table 3, C5v to the thiazole ring).

On comparing complex (I) with the copper(II)–manganese(II) heterotrinuclear polymer, (II), reported by Zang et al. (2003), it can be seen that the two complexes have a similar skeleton, viz. an oxamidate bridging structure. Both of them are simultaneously bridged by disymmetrical cis-oxamide and carboxylate groups on benzoates, and the main difference resides in the terminal ligand (dabt) in complex (I), which generates two distinct results. Firstly, the chelating terminal ligand reduces the number of coordination sites of the metal ions used for coordinating to the bridging groups, and this has an influence on the dimensionality of the complex polymer. As shown in Fig. 3, in complex (II), the structural unit is a heterotrinuclear CuII–MnII–CuII fragment, which leaves two uncoordinated O atoms of the coordinated carboxylate groups of atoms Cu1 and Cu2 and two spare coordination sites on atoms Cu2 and Mn. Consequently, complex (II) exists as a two-dimensional polymer, while in the unit of (I) only one donor O atom and one spare coordination site remain, thus giving rise to a one-dimensional complex chain. Secondly, the aromatic terminal ligands also affect the supramolecular structure due to ππ stacking interactions. In complex (II), the two-dimensional complex polymers are assembled only by hydrogen bonds to form a three-dimensional network. However, in complex (I), as depicted above, the aromatic stacking interactions make an important contribution to the three-dimensional supramolecular structure. This is a clear example of how terminal ligands may strongly affect the construction of metal complex polymers by influencing the coordination sites and intermolecular interactions, and further investigations on the subject are proceeding in our laboratory.

Experimental top

All chemicals were of analytical reagent grade. H3dmapob (0.0147 g, 0.05 mmol) was dissolved in methanol (5 ml). Piperidine (0.75 ml, 0.15 mmol) and a solution of Cu(NO3)2.3H2O (0.0242 g, 0.10 mmol) in methanol (5 ml) were added with continuous stirring. After 0.5 h, a solution of dabt (0.01 g, 0.05 mmol) in methanol (5 ml) was added dropwise. The reaction mixture was stirred at 333 K for 6 h and filtered. Green block-shaped crystals of (I) of suitable size for X-ray diffraction analysis were obtained by slow evaporation of the filtrate at room temperature for three weeks (yield 63%). Elemental analysis, calculated for C20H23.2Cu2N8O7.6S2: C 23.18, H 2.25, N 10.8%; found: C 25.02, H 2.46, N 10.03%.

Refinement top

The occupation of the depleted solvent water molecule (O8) was initially refined, and then fixed in the final stages of refinement. Water and amino H atoms were found in an electron-density difference map. Water H atoms were further idealized, with O—H = 0.82Å, and treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(O). Amino H atoms were refined with N—H restrained to 0.84 (2)Å and free isotropic displacement factors. The remaining H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene), and refined in riding mode, with Uiso(H) = 1.2 or 1.5Ueq(C)

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x + 2, y - 1/2, -z + 1/2; (ii) -x + 2, y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded structure of (I), parallel to (001), viewed perpendicular to the plane of the thiazole ring containing atom S1 of the dabt ligand. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity. Note that the solvent water molecule O8 is depleted, with an occupancy factor of 0.60. [Symmetry codes: (ii) -x + 2, y + 1/2, -z + 1/2; (iii) -x + 1, y - 1/2, -z + 1/2; (iv) x - 1, y, z.]
[Figure 3] Fig. 3. A schematic drawing of the bridging skeletons in complex polymers (I) and (II).
catena-Poly[[(2,2'-diamino-4,4'-bithiazole){µ3-cis-N- (2-carboxylatophenyl)-N'-[3- (dimethylamino)propyl]oxamidato(3-)}dicopper(II)] nitrate 0.6-hydrate] top
Crystal data top
[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2OF(000) = 1400
Mr = 688.51Dx = 1.787 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5918 reflections
a = 12.6991 (3) Åθ = 2.8–27.6°
b = 14.0263 (3) ŵ = 1.89 mm1
c = 15.0300 (3) ÅT = 296 K
β = 107.103 (2)°Block, green
V = 2558.77 (10) Å30.42 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5918 independent reflections
Radiation source: fine-focus sealed tube4589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.7°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 165
Tmin = 0.505, Tmax = 0.895k = 1812
11743 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.052P)2 + 0.209P]
where P = (Fo2 + 2Fc2)/3
5918 reflections(Δ/σ)max = 0.001
380 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2OV = 2558.77 (10) Å3
Mr = 688.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6991 (3) ŵ = 1.89 mm1
b = 14.0263 (3) ÅT = 296 K
c = 15.0300 (3) Å0.42 × 0.15 × 0.06 mm
β = 107.103 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4589 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.895Rint = 0.020
11743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
5918 reflectionsΔρmin = 0.31 e Å3
380 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.80644 (2)0.77569 (2)0.06620 (2)0.03570 (10)
Cu20.92063 (2)0.422539 (19)0.14770 (2)0.03447 (10)
S10.73503 (6)0.15529 (5)0.17342 (5)0.04937 (19)
S21.22572 (6)0.24913 (5)0.15945 (6)0.05001 (19)
O10.89280 (15)0.88794 (12)0.10392 (15)0.0511 (5)
O21.03816 (15)0.96004 (12)0.19550 (12)0.0433 (4)
O30.98983 (13)0.53969 (11)0.12039 (12)0.0373 (4)
O40.78541 (14)0.49798 (12)0.10834 (13)0.0433 (4)
N10.94052 (15)0.69787 (13)0.08385 (13)0.0303 (4)
N20.73403 (16)0.65385 (14)0.07024 (15)0.0380 (5)
N30.66686 (18)0.85655 (15)0.03676 (15)0.0419 (5)
N40.84917 (16)0.30036 (13)0.15780 (14)0.0333 (4)
N51.04864 (16)0.33884 (13)0.15382 (14)0.0345 (4)
N60.6681 (2)0.33799 (19)0.1545 (2)0.0506 (6)
N71.1913 (2)0.43835 (18)0.1410 (2)0.0532 (6)
C10.9972 (2)0.89549 (17)0.13940 (18)0.0364 (5)
C21.0730 (2)0.82771 (16)0.11232 (16)0.0343 (5)
C31.04591 (19)0.73288 (16)0.08606 (15)0.0310 (5)
C41.1236 (2)0.67630 (17)0.06215 (16)0.0358 (5)
H41.10580.61380.04310.043*
C51.2265 (2)0.7112 (2)0.06621 (18)0.0436 (6)
H51.27760.67180.05110.052*
C61.2536 (2)0.8043 (2)0.0926 (2)0.0494 (7)
H61.32250.82830.09460.059*
C71.1775 (2)0.86128 (19)0.11587 (19)0.0438 (6)
H71.19630.92380.13440.053*
C80.92245 (19)0.60850 (16)0.09978 (16)0.0303 (5)
C90.80415 (19)0.58473 (17)0.09291 (17)0.0334 (5)
C100.6168 (2)0.6315 (2)0.0569 (2)0.0546 (8)
H10A0.61100.58570.10360.066*
H10B0.58580.60270.00380.066*
C110.5523 (2)0.7191 (2)0.0642 (2)0.0574 (8)
H11A0.57580.74130.12820.069*
H11B0.47500.70210.04940.069*
C120.5638 (2)0.7999 (2)0.0018 (2)0.0552 (8)
H12A0.56080.77400.05880.066*
H12B0.50130.84240.00670.066*
C130.6695 (3)0.9296 (2)0.0339 (2)0.0605 (8)
H13A0.60780.97180.04250.091*
H13B0.66570.89880.09180.091*
H13C0.73670.96540.01310.091*
C140.6659 (3)0.9085 (2)0.1222 (2)0.0595 (8)
H14A0.73010.94820.14210.089*
H14B0.66590.86350.17040.089*
H14C0.60100.94740.10950.089*
C150.7502 (2)0.27719 (17)0.16171 (17)0.0370 (5)
C160.8684 (2)0.13758 (18)0.17172 (19)0.0453 (6)
H160.90260.07840.17610.054*
C170.9161 (2)0.22087 (16)0.16315 (16)0.0348 (5)
C181.0277 (2)0.24175 (16)0.16122 (17)0.0352 (5)
C191.1126 (2)0.18436 (19)0.16539 (19)0.0446 (6)
H191.11100.11840.17080.053*
C201.1497 (2)0.35367 (18)0.15132 (18)0.0391 (6)
N80.4748 (3)0.4700 (3)0.2113 (2)0.0708 (8)
O50.4399 (3)0.3879 (2)0.1945 (2)0.1055 (10)
O60.5700 (3)0.4876 (3)0.2522 (2)0.1182 (12)
O70.4099 (3)0.5346 (3)0.1799 (3)0.1353 (14)
O80.5261 (3)0.2093 (3)0.2242 (3)0.0782 (12)0.60
H8A0.48980.25640.22870.117*0.60
H8B0.51650.16750.25920.117*0.60
H6A0.683 (2)0.394 (2)0.158 (2)0.046 (9)*
H6B0.620 (3)0.319 (2)0.177 (2)0.050 (9)*
H7A1.154 (2)0.4860 (16)0.146 (2)0.052 (9)*
H7B1.2590 (15)0.4452 (19)0.1480 (18)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03122 (16)0.02373 (16)0.04998 (19)0.00493 (12)0.00857 (13)0.00315 (12)
Cu20.03250 (16)0.02073 (15)0.04951 (19)0.00206 (12)0.01100 (13)0.00255 (12)
S10.0498 (4)0.0288 (3)0.0703 (5)0.0064 (3)0.0189 (4)0.0028 (3)
S20.0416 (4)0.0389 (4)0.0706 (5)0.0130 (3)0.0182 (3)0.0037 (3)
O10.0385 (10)0.0233 (9)0.0883 (14)0.0031 (8)0.0135 (10)0.0034 (9)
O20.0535 (11)0.0253 (9)0.0514 (11)0.0015 (8)0.0161 (9)0.0007 (8)
O30.0331 (9)0.0223 (8)0.0564 (11)0.0053 (7)0.0132 (8)0.0074 (7)
O40.0328 (9)0.0263 (9)0.0698 (12)0.0002 (7)0.0133 (8)0.0077 (8)
N10.0302 (10)0.0215 (9)0.0386 (11)0.0015 (8)0.0094 (8)0.0016 (8)
N20.0283 (10)0.0284 (11)0.0559 (13)0.0032 (9)0.0100 (9)0.0050 (9)
N30.0372 (11)0.0330 (11)0.0529 (13)0.0091 (9)0.0094 (10)0.0060 (10)
N40.0352 (11)0.0244 (10)0.0401 (11)0.0009 (9)0.0109 (8)0.0011 (8)
N50.0342 (10)0.0258 (10)0.0423 (11)0.0029 (9)0.0092 (8)0.0000 (8)
N60.0414 (14)0.0324 (14)0.0832 (19)0.0023 (11)0.0262 (13)0.0013 (12)
N70.0363 (14)0.0356 (13)0.090 (2)0.0043 (11)0.0224 (13)0.0085 (12)
C10.0404 (14)0.0221 (11)0.0471 (14)0.0006 (10)0.0135 (11)0.0071 (10)
C20.0373 (13)0.0291 (12)0.0366 (12)0.0024 (10)0.0107 (10)0.0052 (10)
C30.0330 (12)0.0274 (12)0.0316 (12)0.0011 (10)0.0081 (9)0.0060 (9)
C40.0398 (13)0.0308 (13)0.0381 (13)0.0025 (11)0.0135 (10)0.0036 (10)
C50.0395 (14)0.0498 (16)0.0470 (15)0.0061 (12)0.0214 (12)0.0045 (12)
C60.0387 (15)0.0539 (17)0.0611 (18)0.0061 (13)0.0235 (13)0.0064 (14)
C70.0426 (15)0.0369 (14)0.0530 (16)0.0078 (12)0.0155 (12)0.0021 (12)
C80.0302 (12)0.0264 (11)0.0344 (12)0.0023 (10)0.0094 (9)0.0001 (9)
C90.0304 (12)0.0275 (12)0.0414 (13)0.0012 (10)0.0092 (10)0.0011 (10)
C100.0305 (14)0.0420 (16)0.090 (2)0.0002 (12)0.0153 (14)0.0061 (15)
C110.0310 (14)0.0492 (17)0.092 (2)0.0030 (13)0.0183 (15)0.0025 (16)
C120.0383 (15)0.0471 (17)0.072 (2)0.0104 (13)0.0027 (13)0.0059 (15)
C130.0598 (19)0.0473 (17)0.074 (2)0.0233 (15)0.0194 (16)0.0221 (15)
C140.062 (2)0.0535 (18)0.067 (2)0.0051 (16)0.0236 (16)0.0116 (15)
C150.0434 (14)0.0278 (12)0.0397 (13)0.0033 (11)0.0118 (11)0.0012 (10)
C160.0483 (16)0.0266 (13)0.0593 (17)0.0049 (12)0.0132 (13)0.0027 (12)
C170.0403 (13)0.0253 (12)0.0366 (13)0.0031 (10)0.0079 (10)0.0005 (10)
C180.0407 (13)0.0256 (12)0.0370 (13)0.0041 (11)0.0080 (10)0.0003 (10)
C190.0467 (15)0.0316 (13)0.0554 (16)0.0078 (12)0.0151 (12)0.0024 (12)
C200.0384 (14)0.0348 (13)0.0435 (14)0.0072 (11)0.0110 (11)0.0020 (11)
N80.0547 (18)0.080 (2)0.086 (2)0.0145 (18)0.0337 (16)0.0034 (18)
O50.110 (3)0.086 (2)0.136 (3)0.016 (2)0.062 (2)0.015 (2)
O60.071 (2)0.140 (3)0.124 (3)0.018 (2)0.0012 (17)0.052 (2)
O70.071 (2)0.101 (3)0.229 (4)0.020 (2)0.037 (2)0.025 (3)
O80.076 (3)0.083 (3)0.084 (3)0.003 (2)0.036 (2)0.010 (2)
Geometric parameters (Å, º) top
Cu1—N11.9737 (18)C2—C71.395 (3)
Cu1—N21.950 (2)C2—C31.401 (3)
Cu1—N32.040 (2)C3—C41.394 (3)
Cu2—N41.9658 (19)C4—C51.379 (4)
Cu2—N51.9853 (19)C4—H40.9300
Cu1—O11.9072 (18)C5—C61.379 (4)
Cu2—O2i2.3192 (18)C5—H50.9300
Cu2—O41.9547 (17)C6—C71.376 (4)
Cu2—O31.9629 (16)C6—H60.9300
S1—C161.719 (3)C7—H70.9300
S1—C151.735 (2)C8—C91.512 (3)
S2—C191.724 (3)C10—C111.499 (4)
S2—C201.740 (3)C10—H10A0.9700
O1—C11.280 (3)C10—H10B0.9700
O2—C11.242 (3)C11—C121.505 (4)
O2—Cu2ii2.3192 (18)C11—H11A0.9700
O3—C81.266 (3)C11—H11B0.9700
O4—C91.274 (3)C12—H12A0.9700
N1—C81.309 (3)C12—H12B0.9700
N1—C31.417 (3)C13—H13A0.9600
N2—C91.293 (3)C13—H13B0.9600
N2—C101.476 (3)C13—H13C0.9600
N3—C141.479 (4)C14—H14A0.9600
N3—C131.483 (3)C14—H14B0.9600
N3—C121.489 (4)C14—H14C0.9600
N4—C151.316 (3)C16—C171.340 (3)
N4—C171.390 (3)C16—H160.9300
N5—C201.312 (3)C17—C181.456 (4)
N5—C181.398 (3)C18—C191.332 (3)
N6—C151.326 (3)C19—H190.9300
N6—H6A0.80 (3)N8—O61.210 (4)
N6—H6B0.82 (3)N8—O71.222 (4)
N7—C201.327 (3)N8—O51.233 (4)
N7—H7A0.831 (17)O8—H8A0.8188
N7—H7B0.841 (17)O8—H8B0.8205
C1—C21.492 (3)
O1—Cu1—N2161.70 (9)C5—C6—H6120.4
O1—Cu1—N191.07 (8)C6—C7—C2121.7 (2)
N2—Cu1—N184.68 (8)C6—C7—H7119.1
O1—Cu1—N389.57 (8)C2—C7—H7119.1
N2—Cu1—N396.11 (8)O3—C8—N1129.2 (2)
N1—Cu1—N3175.36 (8)O3—C8—C9115.8 (2)
O4—Cu2—O383.74 (7)N1—C8—C9115.0 (2)
O4—Cu2—N496.36 (8)O4—C9—N2127.8 (2)
O3—Cu2—N4172.37 (8)O4—C9—C8115.7 (2)
O4—Cu2—N5165.60 (8)N2—C9—C8116.5 (2)
O3—Cu2—N595.39 (7)N2—C10—C11111.6 (2)
N4—Cu2—N582.60 (8)N2—C10—H10A109.3
O4—Cu2—O2i95.76 (7)C11—C10—H10A109.3
O3—Cu2—O2i92.38 (7)N2—C10—H10B109.3
N4—Cu2—O2i95.20 (7)C11—C10—H10B109.3
N5—Cu2—O2i98.63 (7)H10A—C10—H10B108.0
C16—S1—C1590.10 (13)C10—C11—C12114.6 (3)
C19—S2—C2089.66 (13)C10—C11—H11A108.6
C1—O1—Cu1128.82 (16)C12—C11—H11A108.6
C1—O2—Cu2ii116.66 (15)C10—C11—H11B108.6
C8—O3—Cu2112.17 (15)C12—C11—H11B108.6
C9—O4—Cu2112.18 (15)H11A—C11—H11B107.6
C8—N1—C3122.88 (19)N3—C12—C11114.7 (2)
C8—N1—Cu1111.31 (15)N3—C12—H12A108.6
C3—N1—Cu1125.67 (15)C11—C12—H12A108.6
C9—N2—C10117.8 (2)N3—C12—H12B108.6
C9—N2—Cu1111.78 (16)C11—C12—H12B108.6
C10—N2—Cu1130.36 (17)H12A—C12—H12B107.6
C14—N3—C13106.8 (2)N3—C13—H13A109.5
C14—N3—C12109.8 (2)N3—C13—H13B109.5
C13—N3—C12108.6 (2)H13A—C13—H13B109.5
C14—N3—Cu1108.29 (17)N3—C13—H13C109.5
C13—N3—Cu1109.77 (17)H13A—C13—H13C109.5
C12—N3—Cu1113.43 (16)H13B—C13—H13C109.5
C15—N4—C17112.0 (2)N3—C14—H14A109.5
C15—N4—Cu2133.42 (17)N3—C14—H14B109.5
C17—N4—Cu2114.55 (16)H14A—C14—H14B109.5
C20—N5—C18111.6 (2)N3—C14—H14C109.5
C20—N5—Cu2134.40 (17)H14A—C14—H14C109.5
C18—N5—Cu2114.03 (16)H14B—C14—H14C109.5
C15—N6—H6A117 (2)N4—C15—N6125.1 (2)
C15—N6—H6B115 (2)N4—C15—S1112.56 (19)
H6A—N6—H6B118 (3)N6—C15—S1122.3 (2)
C20—N7—H7A117 (2)C17—C16—S1110.5 (2)
C20—N7—H7B121.0 (19)C17—C16—H16124.7
H7A—N7—H7B119 (3)S1—C16—H16124.7
O2—C1—O1121.2 (2)C16—C17—N4114.8 (2)
O2—C1—C2118.4 (2)C16—C17—C18130.4 (2)
O1—C1—C2120.4 (2)N4—C17—C18114.8 (2)
C7—C2—C3118.9 (2)C19—C18—N5115.0 (2)
C7—C2—C1117.2 (2)C19—C18—C17131.0 (2)
C3—C2—C1123.9 (2)N5—C18—C17114.0 (2)
C4—C3—C2118.7 (2)C18—C19—S2110.8 (2)
C4—C3—N1122.2 (2)C18—C19—H19124.6
C2—C3—N1119.2 (2)S2—C19—H19124.6
C5—C4—C3121.3 (2)N5—C20—N7124.9 (2)
C5—C4—H4119.3N5—C20—S2113.06 (19)
C3—C4—H4119.3N7—C20—S2122.1 (2)
C6—C5—C4120.1 (2)O6—N8—O7120.4 (4)
C6—C5—H5119.9O6—N8—O5122.6 (4)
C4—C5—H5119.9O7—N8—O5116.9 (4)
C7—C6—C5119.3 (2)H8A—O8—H8B109.3
C7—C6—H6120.4
N2—Cu1—O1—C167.0 (4)C8—N1—C3—C2149.9 (2)
N1—Cu1—O1—C19.1 (2)Cu1—N1—C3—C225.4 (3)
N3—Cu1—O1—C1175.5 (2)C2—C3—C4—C51.7 (3)
O4—Cu2—O3—C85.89 (16)N1—C3—C4—C5178.9 (2)
N4—Cu2—O3—C897.1 (6)C3—C4—C5—C61.3 (4)
N5—Cu2—O3—C8171.45 (16)C4—C5—C6—C70.8 (4)
O2i—Cu2—O3—C889.65 (16)C5—C6—C7—C20.8 (4)
O3—Cu2—O4—C96.00 (17)C3—C2—C7—C61.3 (4)
N4—Cu2—O4—C9178.33 (17)C1—C2—C7—C6179.8 (2)
N5—Cu2—O4—C993.3 (3)Cu2—O3—C8—N1174.9 (2)
O2i—Cu2—O4—C985.77 (17)Cu2—O3—C8—C94.7 (2)
O1—Cu1—N1—C8155.23 (17)C3—N1—C8—O31.1 (4)
N2—Cu1—N1—C86.94 (16)Cu1—N1—C8—O3174.8 (2)
N3—Cu1—N1—C8106.9 (10)C3—N1—C8—C9179.19 (19)
O1—Cu1—N1—C320.53 (19)Cu1—N1—C8—C94.9 (2)
N2—Cu1—N1—C3177.30 (19)Cu2—O4—C9—N2176.6 (2)
N3—Cu1—N1—C377.4 (10)Cu2—O4—C9—C85.1 (3)
O1—Cu1—N2—C969.4 (3)C10—N2—C9—O42.3 (4)
N1—Cu1—N2—C97.79 (18)Cu1—N2—C9—O4174.5 (2)
N3—Cu1—N2—C9176.81 (18)C10—N2—C9—C8176.1 (2)
O1—Cu1—N2—C10106.9 (3)Cu1—N2—C9—C87.2 (3)
N1—Cu1—N2—C10176.0 (3)O3—C8—C9—O40.2 (3)
N3—Cu1—N2—C100.6 (3)N1—C8—C9—O4179.9 (2)
O1—Cu1—N3—C1457.43 (19)O3—C8—C9—N2178.8 (2)
N2—Cu1—N3—C14105.14 (19)N1—C8—C9—N21.5 (3)
N1—Cu1—N3—C14155.4 (9)C9—N2—C10—C11160.1 (3)
O1—Cu1—N3—C1358.8 (2)Cu1—N2—C10—C1116.0 (4)
N2—Cu1—N3—C13138.60 (19)N2—C10—C11—C1253.2 (4)
N1—Cu1—N3—C1339.1 (11)C14—N3—C12—C1166.6 (3)
O1—Cu1—N3—C12179.5 (2)C13—N3—C12—C11177.0 (2)
N2—Cu1—N3—C1217.0 (2)Cu1—N3—C12—C1154.7 (3)
N1—Cu1—N3—C1282.5 (10)C10—C11—C12—N379.3 (3)
O4—Cu2—N4—C1515.8 (2)C17—N4—C15—N6177.2 (2)
O3—Cu2—N4—C15106.2 (6)Cu2—N4—C15—N63.7 (4)
N5—Cu2—N4—C15178.6 (2)C17—N4—C15—S10.6 (3)
O2i—Cu2—N4—C1580.6 (2)Cu2—N4—C15—S1178.51 (13)
O4—Cu2—N4—C17165.08 (16)C16—S1—C15—N40.5 (2)
O3—Cu2—N4—C1774.7 (6)C16—S1—C15—N6177.4 (2)
N5—Cu2—N4—C170.46 (16)C15—S1—C16—C170.2 (2)
O2i—Cu2—N4—C1798.52 (16)S1—C16—C17—N40.0 (3)
O4—Cu2—N5—C2092.5 (4)S1—C16—C17—C18178.0 (2)
O3—Cu2—N5—C206.7 (2)C15—N4—C17—C160.4 (3)
N4—Cu2—N5—C20179.3 (3)Cu2—N4—C17—C16178.86 (18)
O2i—Cu2—N5—C2086.6 (2)C15—N4—C17—C18178.7 (2)
O4—Cu2—N5—C1886.5 (3)Cu2—N4—C17—C180.5 (3)
O3—Cu2—N5—C18172.30 (16)C20—N5—C18—C190.8 (3)
N4—Cu2—N5—C180.29 (16)Cu2—N5—C18—C19179.98 (18)
O2i—Cu2—N5—C1894.46 (16)C20—N5—C18—C17179.3 (2)
Cu2ii—O2—C1—O195.1 (2)Cu2—N5—C18—C170.1 (3)
Cu2ii—O2—C1—C286.2 (2)C16—C17—C18—C191.6 (5)
Cu1—O1—C1—O2148.44 (19)N4—C17—C18—C19179.6 (3)
Cu1—O1—C1—C233.0 (3)C16—C17—C18—N5178.3 (3)
O2—C1—C2—C727.7 (3)N4—C17—C18—N50.3 (3)
O1—C1—C2—C7150.9 (2)N5—C18—C19—S20.4 (3)
O2—C1—C2—C3150.7 (2)C17—C18—C19—S2179.7 (2)
O1—C1—C2—C330.7 (4)C20—S2—C19—C180.0 (2)
C7—C2—C3—C41.6 (3)C18—N5—C20—N7177.4 (3)
C1—C2—C3—C4180.0 (2)Cu2—N5—C20—N71.6 (4)
C7—C2—C3—N1178.9 (2)C18—N5—C20—S20.8 (3)
C1—C2—C3—N10.5 (3)Cu2—N5—C20—S2179.76 (13)
C8—N1—C3—C430.7 (3)C19—S2—C20—N50.5 (2)
Cu1—N1—C3—C4154.06 (18)C19—S2—C20—N7177.7 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O50.821.972.717 (5)152
O8—H8B···O7iii0.822.162.838 (6)140
N6—H6A···O40.80 (3)2.22 (3)2.889 (3)140 (3)
N6—H6B···O50.82 (3)2.56 (3)3.206 (4)136 (3)
N6—H6B···O80.82 (3)2.19 (3)2.953 (5)154 (3)
N7—H7A···O30.83 (2)2.15 (2)2.863 (3)144 (3)
N7—H7B···O5iv0.84 (2)2.34 (2)3.101 (4)151 (2)
N7—H7B···O7iv0.84 (2)2.22 (2)2.986 (4)151 (2)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C14H16N3O4)(C6H6N4S2)]NO3·0.6H2O
Mr688.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6991 (3), 14.0263 (3), 15.0300 (3)
β (°) 107.103 (2)
V3)2558.77 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.42 × 0.15 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.505, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
11743, 5918, 4589
Rint0.020
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.04
No. of reflections5918
No. of parameters380
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—N11.9737 (18)Cu1—O11.9072 (18)
Cu1—N21.950 (2)Cu2—O2i2.3192 (18)
Cu1—N32.040 (2)Cu2—O41.9547 (17)
Cu2—N41.9658 (19)Cu2—O31.9629 (16)
Cu2—N51.9853 (19)
Symmetry code: (i) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O50.821.972.717 (5)151.6
O8—H8B···O7ii0.822.162.838 (6)139.5
N6—H6A···O40.80 (3)2.22 (3)2.889 (3)140 (3)
N6—H6B···O50.82 (3)2.56 (3)3.206 (4)136 (3)
N6—H6B···O80.82 (3)2.19 (3)2.953 (5)154 (3)
N7—H7A···O30.831 (17)2.15 (2)2.863 (3)144 (3)
N7—H7B···O5iii0.841 (17)2.34 (2)3.101 (4)151 (2)
N7—H7B···O7iii0.841 (17)2.22 (2)2.986 (4)151 (2)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
Geometric parameters of the ππ stacking interactions in (I) top
First ringSecond ringC—C (Å)α (°)β (°)Separations (Å)
R1R2i3.6717 (14)12.18 (12)14.63C2i, 3.325 (3)
C3i, 3.585 (2)
C4i, 3.827 (3)
R1R2v3.9438 (14)22.46 (12)24.47C5v, 3.215 (3)
C6v, 3.717 (3)
R1 denotes the N4/C15/S1/C16/C17 thiazole ring and R2 is the C2–C7 benzene ring. C—C, α and β denote the inter-centroid separation, the dihedral angle between the ring planes and the offset angle, respectively. The separations are the distances between the atoms of the second ring and the first ring plane, these atoms being projected perpendicularly onto the first ring. Symmetry code: (i) -x + 2, y - 1/2, -z + 1/2; (v) -x + 2, -y + 1, -z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds