Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the tetra­nuclear copper complex tetra­kis­[μ-3,5-bis­(2-pyrid­yl)-1,2,4-triazolido]bis­[3,5-bis­(2-pyrid­yl)-1,2,4-triazolido]dicopper(I)dicopper(II) dihydrate, [CuI2CuII2(C12H8N5)6]·2H2O, the asymmetric unit is composed of one CuI center, one CuII center, three anionic 3,5-bis­(2-pyrid­yl)-1,2,4-triazole (2-BPT) ligands and one solvent water mol­ecule. The CuI and CuII centers exhibit [CuIN4] tetra­hedral and [CuIIN6] octa­hedral coordination environments, respectively. The three independent 2-BPT ligands adopt different chelating modes, which link the copper centers to generate a chair-like tetra­nuclear metallomacrocycle with metal–metal distances of about 4.4 × 6.2 Å disposed about a crystallographic inversion center. Furthermore, strong π–π stacking inter­actions and O—H...N hydrogen-bonding systems link the tetra­copper clusters into a two-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110030313/bg3127sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110030313/bg3127Isup2.hkl
Contains datablock I

CCDC reference: 796063

Comment top

In the past decade, pyridyl- and/or carboxylate-containing organic ligands have been mostly utilized in the synthesis of functional metal–organic coordination compounds (Kitagawa et al., 2004; Ye et al., 2005). Among these ligands, dipyridyl-type building blocks have been identified as excellent connectors to construct polynuclear clusters or one- to three-dimensional frameworks upon metalation. More recently, work on the modification of dipyridyl via the introduction of different spacers between two terminal pyridyl groups has produced several unexpected metal–organic architectures. In this regard, a series of angular dipyridyl derivatives, namely 2,5-bis(2/3/4-pyridyl)-1,3,4-oxadiazole or 4-R-3,5-bis(2/3/4-pyridyl)-1,2,4-triazole (R = H, NH2, phenyl, pyridyl etc.) have been intensively investigated (Dong et al., 2005, and references therein; Du et al., 2008, and references therein). Because of the specific geometry of such diazole- or triazole-containing ligands and the coordination preferences of transition metals, many new types of coordination complexes with unprecedented topologies and potential applications have been prepared. As part of our ongoing research project dealing with the coordination chemistry of polyazaheteroaromatic ligands, we have synthesized a series of d10 transition metal (CuI, AgI, ZnII and CdII) triazolates utilizing dialkyl–substituted 1,2,4-triazole ligands (Zhai et al., 2007, and references therein). This has encouraged us to continue this project and expand from dialkyl–substituted ligands to dipyridyl–substituted ligands. By controlling the reaction temperatures, the self-assembly of AgNO3 and 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole under hydrothermal conditions has produced three novel high-dimensional coordination polymers (Zhai et al., 2009). We report here the structure of the title complex, (I), in which a mixed-valence chair-like tetranuclear cluster is observed along with three independent 3,5-bis(2-pyridyl)-1,2,4-triazole (2-BPT) ligands; this may be regarded as the first example that exhibits three different chelating modes of 2-BPT in the same structure.

Compound (I) was separated from the hydrothermal reaction of CuCN and 2-BPT ligands as pure brown block-like crystals. The absence of characteristic bands at about 2100 cm-1 for the cyanide groups indicates that the CN- ions are absent from the structure of (I). The structural analysis shows that (I) possesses a centrosymmetrical, tetranuclear metallomacrocycle structure. As shown in Fig. 1, one CuI center, one CuII center, three anionic 2-BPT ligands and one solvent water molecule occupy the asymmetric unit of (I). The CuI ion is in a distorted [CuIN4] tetrahedral environment with Cu—N distances and N—Cu—N angles spanning the ranges 1.957 (4)–2.179 (4) Å and 80.14 (15)–140.54 (17)°, respectively. The CuII center is six-coordinated by three pyridyl N atoms and three triazole N atoms to form an octahedral environment [Cu—N = 2.103 (4)–2.225 (4) Å, N—Cu—N (trans) = 163.13 (14)–169.46 (15)° and N—Cu—N (cis) = 75.99 (14)– 100.13 (15)°]. The three 2-BPT ligands adopt distinct linking modes: cisoid–cisoid tetradentate, cisoid–transoid tetradentate and transoid bidentate. The cisoid–cisoid and cisoid–transoid 2-BPT ligands both act as µ2-bridges to connect two copper centers, and the transoid bidentate 2-BPT serves as a terminal ligand to finish the CuII octahedron. Because the two bidentate chelating sites are both fused to a five-membered ring, the central triazole ring and two 2-pyridyl groups are basically coplanar in the two tetradentate ligands. However, the dihedral angle between two pyridyl groups in the terminal bidentate 2-BPT ligand is about 50°, which is comparable to waht is found in other structurally characterized complexes with similar chelating behavior (Dong et al., 2005; Du et al., 2008).

Compared with the commonly expected grid-like tetranuclear architectures, this chair-like structure of (I) displays several unique features. The four metal centers in (I) define a quadrangle [Cu1···Cu2 = 4.4197 (11) Å, Cu1···Cu2i = 6.1869 (9) Å and Cu2···Cu1···Cu2i = 74.638 (13)°; symmetry code: (i) -x + 1, -y + 1, -z + 1; Fig. 2]. The two inversely-related cisoid–transoid ligands are engaged in a strong intramolecular face-to-face ππ interaction (ca 3.6 Å), which may effectively stabilize the chair-like metallomacrocycle. It is noted that such face-to-face separations should be close to the intermetallic distances in the regular grid-like structures, but can be shortened when the square distorts into a rhomb. Furthermore, intermolecular aromatic ππ stacking interactions between 2-pyridyl rings from terminal 2-BPT ligands are observed with a center-to-center distance of about 3.8 Å, which link adjacent tetranuclear clusters into a one-dimensional chain. On the other hand, the chair-like clusters are also connected through O—H···N [O1···N3 = 2.9201 (1) Å and O1···N10 = 3.089 (8) Å] hydrogen-bonding systems to give the other one-dimensional chain. Ultimately, two kinds of chains interweave with each other to form a two-dimensional supramolecular network as depicted in Fig. 3.

To the best of our knowledge, although the squares, grids and circular helicates have been extensively studied, such a chair-like metallomacrocycle has been rarely described previously. Zhang et al. have created two similar chair-like tetranuclear compounds {[CuI4(2-BPT)4], (II) (Zhang et al., 2005a), and [CuI2CuII2(2-BPT)4(2-pa)2].2H2O, (III) (2-Hpa is pyridine-2-carboxylic acid; Zhang et al., 2005b)} with the same ligands generated via in situ oxidative cycloaddition of 2-cyanopyridine and ammonia under solvothermal conditions. Just like the title compound, (II) crystallizes in the space group P21/c, but four tetrahedral copper(I) centers form a quasi-rectangle with a Cu2···Cu1···Cu2i angle of 90.7°. If the pyridine-2-carboxylic acid ligands take the place of the two terminal 2-BPT ligands in (I), compound (III) will be generated. However, this difference leads (III) to crystallize in the P1 space group. As pointed out by Zhang et al. (2005a), the unique structure of 2-BPT usually gives a five-membered ring upon metalation, but a six-membered ring is commonly observed for a grid and a long and flexible ring is required for a helicate. Thus, no grid or other hypothetical circular helicate compounds have been synthesized with 2-BPT ligands to date.

Upon excitation of solid samples of (I) at λ = 278 nm, intense bands in the emission spectra are observed at 380 nm. To understand more thoroughly the nature of the emission band, we also investigated the luminescence of the organic ligand. The rigid 2-BPT exhibits an emission with a maximum at λ = 420 nm upon excitation at λ = 357 nm. In our opinion, the emission of complex (I) is neither metal-to-ligand charge transfer nor ligand-to-metal charge transfer in nature, and may be assigned to intraligand fluorescence emission. Compared with the organic ligands, the enhancement and marked blueshifts are probably due to the unique coordination of the organic ligands to the copper center, increasing the ligand conformational rigidity, thereby reducing the nonradiative decay of the intraligand (ππ*) excited state (Ding et al., 2006).

Related literature top

For related literature, see: Ding et al. (2006); Dong et al. (2005); Du et al. (2008); Kitagawa et al. (2004); Ye et al. (2005); Zhai et al. (2007, 2009).

Experimental top

A mixture of CuCN (0.09 g, 1.0 mmol), K4Fe(CN)6.3H2O (0.42 g, 1.0 mmol) and 3,5-bis(2-pyridyl)-1,2,4-triazole (2-BPT; 0.33 g, 1.5 mmol) in water (10 ml) was introduced into a Parr Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 453 K for 5 d under autogenous pressure. After the reaction mixture had been cooled to room temperature over a period of 72 h, brown block-like crystals of (I) were produced (yield 68%, based on Cu). Analysis calculated for C72H52Cu4N30O2: C 53.26, H 3.23, N 25.88%; found: C 53.35, H 3.18, N 25.63%. IR (KBr, cm-1): 3418 (m), 3062 (w), 1600 (s), 1566 (m), 1516 (w), 1493 (s), 1461 (s), 1436 (m), 1412 (s), 1276 (w), 1255 (w), 1188 (w), 1168 (w), 1091 (w), 1047 (w), 1011 (w), 797 (s), 748(s), 724 (m), 634 (w), 563 (w), 464 (w).

Refinement top

H atoms were positioned geometrically and included in the refinement using a riding model [C—H = 0.93 Å and O—H = 0.85 Å, and Uiso(H) = 1.2Ueq(parent atom)]. The directions of the O—H vectors were aligned with peaks initially located from difference maps. The maximum residual electrondensity is located 0.70 Å from atom Cu2 and the minimum density lies 0.42 Å from atom Cu1.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I), shown with 30% probability displacement ellipsoids. All H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z = 1.]
[Figure 2] Fig. 2. The chair-like tetranuclear metallomacrocycle structure of (I).
[Figure 3] Fig. 3. The two-dimensional supramolecular network of (I) generated by ππ interactions (green broken lines in the electronic versoin of the journal) and hydrogen bonds (red broken lines in the electronic version). All H atoms have been omitted for clarity.
tetrakis[µ-3,5-bis(2-pyridyl)-1,2,4-triazolido]bis[3,5-bis(2-pyridyl)- 1,2,4-triazolido]dicopper(I)dicopper(II) dihydrate top
Crystal data top
[Cu4(C12H8N5)6]·2H2OF(000) = 1652
Mr = 1623.60Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6045 reflections
a = 10.5696 (10) Åθ = 2.2–26.8°
b = 27.589 (2) ŵ = 1.28 mm1
c = 12.6090 (14) ÅT = 298 K
β = 109.039 (2)°Block, brown
V = 3475.7 (6) Å30.23 × 0.20 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
6122 independent reflections
Radiation source: sealed tube4601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 1.5°
CCD_Profile_fitting scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3232
Tmin = 0.757, Tmax = 0.948l = 1115
17303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.081P)2 + 8.7617P]
where P = (Fo2 + 2Fc2)/3
6122 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Cu4(C12H8N5)6]·2H2OV = 3475.7 (6) Å3
Mr = 1623.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.5696 (10) ŵ = 1.28 mm1
b = 27.589 (2) ÅT = 298 K
c = 12.6090 (14) Å0.23 × 0.20 × 0.04 mm
β = 109.039 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6122 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4601 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.948Rint = 0.029
17303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.07Δρmax = 0.65 e Å3
6122 reflectionsΔρmin = 1.16 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37902 (6)0.58314 (2)0.19970 (5)0.0375 (2)
Cu20.50421 (7)0.61595 (2)0.56237 (6)0.0444 (2)
C10.6728 (5)0.65882 (17)0.4575 (4)0.0294 (10)
C20.6292 (4)0.63789 (17)0.2914 (4)0.0293 (10)
C30.6283 (5)0.62927 (17)0.1764 (4)0.0301 (10)
C40.7295 (5)0.6450 (2)0.1366 (4)0.0415 (12)
H40.80200.66250.18250.050*
C50.7199 (5)0.6341 (2)0.0274 (4)0.0433 (13)
H50.78590.64440.00150.052*
C60.6126 (6)0.6082 (2)0.0379 (4)0.0439 (13)
H60.60480.60040.11150.053*
C70.5159 (5)0.59375 (18)0.0072 (4)0.0346 (11)
H70.44360.57590.03770.042*
C80.7301 (5)0.67954 (17)0.5699 (4)0.0304 (10)
C90.8324 (5)0.71324 (19)0.5977 (4)0.0382 (12)
H90.86890.72420.54420.046*
C100.8795 (5)0.7303 (2)0.7067 (4)0.0461 (13)
H100.94860.75290.72770.055*
C110.8230 (6)0.7136 (2)0.7831 (5)0.0549 (16)
H110.85440.72390.85740.066*
C120.7193 (7)0.6813 (2)0.7477 (5)0.0567 (16)
H120.67950.67090.79960.068*
C130.1954 (5)0.68421 (17)0.1757 (4)0.0341 (11)
C140.1285 (4)0.62822 (18)0.0573 (4)0.0316 (10)
C150.1235 (5)0.58149 (18)0.0018 (4)0.0328 (11)
C160.0156 (5)0.5672 (2)0.0909 (4)0.0445 (13)
H160.05760.58750.12110.053*
C170.0212 (6)0.5224 (2)0.1361 (5)0.0567 (17)
H170.04990.51170.19690.068*
C180.1308 (7)0.4932 (2)0.0922 (5)0.0536 (15)
H180.13560.46290.12310.064*
C190.2339 (6)0.50995 (19)0.0010 (5)0.0472 (14)
H190.30890.49040.02860.057*
C200.2745 (5)0.71548 (17)0.2686 (4)0.0379 (12)
C210.4065 (6)0.72670 (19)0.2863 (5)0.0485 (14)
H210.45160.71380.24050.058*
C220.4715 (7)0.7579 (2)0.3747 (6)0.069 (2)
H220.56140.76550.38990.082*
C230.4019 (9)0.7769 (2)0.4381 (6)0.070 (2)
H230.44270.79810.49650.084*
C240.2703 (8)0.7642 (2)0.4145 (5)0.0584 (17)
H240.22300.77780.45770.070*
C250.5772 (4)0.44836 (17)0.2976 (4)0.0293 (10)
C260.4231 (4)0.48975 (17)0.3216 (4)0.0280 (10)
C270.3169 (4)0.51056 (17)0.3583 (4)0.0307 (10)
C280.2685 (5)0.4878 (2)0.4351 (5)0.0433 (13)
H280.30080.45770.46480.052*
C290.1704 (6)0.5114 (2)0.4665 (5)0.0526 (15)
H290.13600.49730.51830.063*
C300.1250 (6)0.5550 (2)0.4212 (5)0.0540 (15)
H300.05840.57090.44100.065*
C310.1782 (5)0.5760 (2)0.3451 (5)0.0442 (13)
H310.14680.60620.31530.053*
C320.6701 (5)0.40807 (17)0.3115 (4)0.0320 (10)
C330.7696 (5)0.4061 (2)0.2629 (5)0.0440 (13)
H330.78150.43140.21830.053*
C340.8510 (6)0.3656 (2)0.2819 (5)0.0551 (16)
H340.91890.36340.25020.066*
C350.8318 (6)0.3289 (2)0.3473 (5)0.0508 (14)
H350.88590.30150.36090.061*
C360.7304 (6)0.33337 (19)0.3927 (5)0.0455 (13)
H360.71730.30830.43720.055*
N10.5326 (4)0.61899 (13)0.3245 (3)0.0267 (8)
N20.5609 (4)0.63229 (14)0.4337 (3)0.0281 (8)
N30.7200 (4)0.66360 (15)0.3709 (3)0.0327 (9)
N40.5211 (4)0.60410 (13)0.1124 (3)0.0286 (8)
N50.6716 (4)0.66388 (16)0.6436 (3)0.0405 (10)
N60.0309 (4)0.66061 (17)0.0326 (4)0.0456 (11)
N70.0741 (4)0.69702 (16)0.1099 (4)0.0455 (11)
N80.2368 (4)0.64114 (13)0.1459 (3)0.0292 (8)
N90.2308 (4)0.55295 (14)0.0465 (3)0.0344 (9)
N100.2063 (5)0.73370 (16)0.3336 (4)0.0459 (11)
N110.4676 (4)0.51426 (14)0.2484 (3)0.0299 (8)
N120.5687 (4)0.48716 (14)0.2324 (3)0.0304 (9)
N130.4875 (4)0.44809 (14)0.3547 (3)0.0295 (8)
N140.2739 (4)0.55421 (15)0.3130 (3)0.0327 (9)
N150.6502 (4)0.37172 (14)0.3761 (3)0.0361 (9)
O11.0018 (6)0.6638 (2)0.3795 (6)0.113 (2)
H1A0.92120.67140.37130.135*
H1B1.04070.68810.36250.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0359 (4)0.0363 (4)0.0404 (4)0.0025 (3)0.0125 (3)0.0001 (3)
Cu20.0537 (4)0.0464 (4)0.0422 (4)0.0129 (3)0.0279 (3)0.0050 (3)
C10.032 (2)0.034 (2)0.022 (2)0.004 (2)0.0095 (19)0.0005 (19)
C20.029 (2)0.036 (3)0.023 (2)0.006 (2)0.0095 (19)0.001 (2)
C30.031 (2)0.034 (2)0.026 (2)0.002 (2)0.011 (2)0.000 (2)
C40.037 (3)0.055 (3)0.034 (3)0.013 (2)0.013 (2)0.001 (2)
C50.044 (3)0.058 (3)0.036 (3)0.004 (3)0.024 (2)0.002 (3)
C60.058 (3)0.047 (3)0.031 (3)0.005 (3)0.021 (3)0.006 (2)
C70.041 (3)0.036 (3)0.026 (3)0.005 (2)0.009 (2)0.005 (2)
C80.033 (2)0.034 (2)0.024 (2)0.001 (2)0.0088 (19)0.002 (2)
C90.035 (3)0.047 (3)0.034 (3)0.009 (2)0.013 (2)0.000 (2)
C100.041 (3)0.054 (3)0.039 (3)0.014 (3)0.007 (2)0.011 (3)
C110.071 (4)0.061 (4)0.031 (3)0.019 (3)0.014 (3)0.012 (3)
C120.079 (4)0.066 (4)0.031 (3)0.025 (3)0.026 (3)0.006 (3)
C130.039 (3)0.030 (2)0.037 (3)0.003 (2)0.017 (2)0.002 (2)
C140.025 (2)0.039 (3)0.030 (3)0.001 (2)0.009 (2)0.003 (2)
C150.031 (3)0.040 (3)0.030 (3)0.010 (2)0.014 (2)0.001 (2)
C160.036 (3)0.059 (4)0.038 (3)0.010 (3)0.011 (2)0.002 (3)
C170.057 (4)0.070 (4)0.041 (3)0.030 (3)0.013 (3)0.014 (3)
C180.070 (4)0.043 (3)0.049 (4)0.018 (3)0.022 (3)0.014 (3)
C190.056 (3)0.034 (3)0.054 (4)0.009 (3)0.021 (3)0.005 (3)
C200.047 (3)0.027 (2)0.038 (3)0.008 (2)0.011 (2)0.004 (2)
C210.047 (3)0.035 (3)0.063 (4)0.006 (2)0.016 (3)0.001 (3)
C220.060 (4)0.043 (3)0.086 (5)0.014 (3)0.000 (4)0.003 (4)
C230.106 (6)0.043 (4)0.053 (4)0.011 (4)0.013 (4)0.013 (3)
C240.092 (5)0.042 (3)0.042 (3)0.001 (3)0.023 (3)0.005 (3)
C250.028 (2)0.036 (3)0.026 (2)0.004 (2)0.0125 (19)0.001 (2)
C260.027 (2)0.034 (3)0.025 (2)0.0068 (19)0.0099 (19)0.0003 (19)
C270.026 (2)0.038 (3)0.029 (2)0.007 (2)0.0112 (19)0.005 (2)
C280.040 (3)0.047 (3)0.048 (3)0.004 (2)0.022 (2)0.003 (3)
C290.049 (3)0.068 (4)0.053 (4)0.010 (3)0.033 (3)0.000 (3)
C300.045 (3)0.064 (4)0.067 (4)0.005 (3)0.037 (3)0.017 (3)
C310.037 (3)0.043 (3)0.058 (4)0.004 (2)0.023 (3)0.010 (3)
C320.033 (2)0.034 (3)0.029 (2)0.003 (2)0.010 (2)0.001 (2)
C330.042 (3)0.048 (3)0.052 (3)0.007 (2)0.028 (3)0.012 (3)
C340.051 (3)0.058 (4)0.068 (4)0.010 (3)0.036 (3)0.006 (3)
C350.050 (3)0.044 (3)0.060 (4)0.011 (3)0.021 (3)0.002 (3)
C360.057 (3)0.033 (3)0.050 (3)0.001 (2)0.021 (3)0.009 (2)
N10.0274 (19)0.030 (2)0.0224 (19)0.0058 (16)0.0074 (15)0.0018 (16)
N20.032 (2)0.031 (2)0.0224 (19)0.0030 (17)0.0108 (16)0.0004 (16)
N30.030 (2)0.044 (2)0.027 (2)0.0108 (18)0.0123 (17)0.0033 (18)
N40.030 (2)0.030 (2)0.025 (2)0.0025 (16)0.0086 (16)0.0012 (16)
N50.052 (3)0.046 (2)0.026 (2)0.015 (2)0.0163 (19)0.0026 (19)
N60.034 (2)0.053 (3)0.045 (3)0.008 (2)0.006 (2)0.002 (2)
N70.039 (3)0.047 (3)0.047 (3)0.013 (2)0.010 (2)0.002 (2)
N80.030 (2)0.0254 (19)0.032 (2)0.0022 (16)0.0098 (17)0.0042 (16)
N90.033 (2)0.032 (2)0.038 (2)0.0080 (18)0.0112 (18)0.0034 (18)
N100.062 (3)0.038 (2)0.040 (3)0.005 (2)0.019 (2)0.001 (2)
N110.030 (2)0.033 (2)0.030 (2)0.0013 (17)0.0130 (17)0.0032 (17)
N120.032 (2)0.033 (2)0.030 (2)0.0006 (17)0.0153 (17)0.0041 (17)
N130.028 (2)0.033 (2)0.030 (2)0.0036 (17)0.0122 (16)0.0022 (17)
N140.029 (2)0.036 (2)0.036 (2)0.0023 (17)0.0146 (17)0.0064 (18)
N150.043 (2)0.032 (2)0.037 (2)0.0010 (18)0.0192 (19)0.0039 (18)
O10.079 (4)0.111 (5)0.148 (6)0.014 (4)0.037 (4)0.026 (4)
Geometric parameters (Å, º) top
Cu1—N12.103 (4)C18—C191.381 (8)
Cu1—N112.119 (4)C18—H180.9300
Cu1—N82.149 (4)C19—N91.334 (7)
Cu1—N42.209 (4)C19—H190.9300
Cu1—N92.215 (4)C20—N101.352 (7)
Cu1—N142.225 (4)C20—C211.375 (8)
Cu2—N21.957 (4)C21—C221.398 (9)
Cu2—N13i2.040 (4)C21—H210.9300
Cu2—N15i2.051 (4)C22—C231.356 (11)
Cu2—N52.179 (4)C22—H220.9300
C1—N21.339 (6)C23—C241.369 (10)
C1—N31.347 (6)C23—H230.9300
C1—C81.463 (6)C24—N101.326 (8)
C2—N11.328 (6)C24—H240.9300
C2—N31.342 (6)C25—N121.334 (6)
C2—C31.467 (6)C25—N131.366 (6)
C3—N41.349 (6)C25—C321.456 (7)
C3—C41.391 (7)C26—N131.332 (6)
C4—C51.381 (7)C26—N111.346 (6)
C4—H40.9300C26—C271.463 (6)
C5—C61.366 (8)C27—N141.347 (6)
C5—H50.9300C27—C281.385 (7)
C6—C71.381 (7)C28—C291.387 (8)
C6—H60.9300C28—H280.9300
C7—N41.341 (6)C29—C301.352 (9)
C7—H70.9300C29—H290.9300
C8—N51.345 (6)C30—C311.387 (8)
C8—C91.382 (7)C30—H300.9300
C9—C101.382 (7)C31—N141.347 (6)
C9—H90.9300C31—H310.9300
C10—C111.369 (8)C32—N151.351 (6)
C10—H100.9300C32—C331.380 (7)
C11—C121.370 (8)C33—C341.383 (8)
C11—H110.9300C33—H330.9300
C12—N51.333 (7)C34—C351.361 (8)
C12—H120.9300C34—H340.9300
C13—N71.328 (6)C35—C361.375 (8)
C13—N81.361 (6)C35—H350.9300
C13—C201.475 (7)C36—N151.329 (7)
C14—N61.323 (6)C36—H360.9300
C14—N81.360 (6)N1—N21.361 (5)
C14—C151.460 (7)N6—N71.370 (6)
C15—N91.344 (6)N11—N121.372 (5)
C15—C161.397 (7)N13—Cu2i2.040 (4)
C16—C171.371 (9)N15—Cu2i2.051 (4)
C16—H160.9300O1—H1A0.8497
C17—C181.370 (9)O1—H1B0.8500
C17—H170.9300
N1—Cu1—N476.41 (14)C22—C21—H21120.8
N1—Cu1—N8100.13 (15)C23—C22—C21119.2 (7)
N1—Cu1—N9169.46 (15)C23—C22—H22120.4
N1—Cu1—N1192.56 (15)C21—C22—H22120.4
N1—Cu1—N1496.53 (14)C22—C23—C24118.8 (6)
N4—Cu1—N993.81 (14)C22—C23—H23120.6
N4—Cu1—N14167.72 (14)C24—C23—H23120.6
N8—Cu1—N499.63 (14)N10—C24—C23123.8 (6)
N8—Cu1—N977.39 (15)N10—C24—H24118.1
N8—Cu1—N1491.44 (14)C23—C24—H24118.1
N9—Cu1—N1493.78 (14)N12—C25—N13114.2 (4)
N11—Cu1—N494.10 (14)N12—C25—C32126.5 (4)
N11—Cu1—N992.04 (15)N13—C25—C32119.3 (4)
N11—Cu1—N8163.13 (14)N13—C26—N11113.1 (4)
N11—Cu1—N1475.99 (14)N13—C26—C27127.3 (4)
N2—Cu2—N580.14 (15)N11—C26—C27119.7 (4)
N2—Cu2—N13i130.59 (16)N14—C27—C28123.4 (4)
N2—Cu2—N15i140.54 (17)N14—C27—C26113.9 (4)
N13i—Cu2—N5113.08 (16)C28—C27—C26122.7 (5)
N13i—Cu2—N15i81.75 (15)C27—C28—C29118.0 (5)
N15i—Cu2—N5110.23 (17)C27—C28—H28121.0
N2—C1—N3113.9 (4)C29—C28—H28121.0
N2—C1—C8119.1 (4)C30—C29—C28119.4 (5)
N3—C1—C8127.0 (4)C30—C29—H29120.3
N1—C2—N3114.1 (4)C28—C29—H29120.3
N1—C2—C3119.3 (4)C29—C30—C31119.8 (5)
N3—C2—C3126.6 (4)C29—C30—H30120.1
N4—C3—C4122.7 (4)C31—C30—H30120.1
N4—C3—C2114.0 (4)N14—C31—C30122.3 (5)
C4—C3—C2123.3 (4)N14—C31—H31118.9
C5—C4—C3118.5 (5)C30—C31—H31118.9
C5—C4—H4120.8N15—C32—C33122.0 (5)
C3—C4—H4120.8N15—C32—C25114.1 (4)
C6—C5—C4119.4 (5)C33—C32—C25123.9 (4)
C6—C5—H5120.3C32—C33—C34118.4 (5)
C4—C5—H5120.3C32—C33—H33120.8
C5—C6—C7118.9 (5)C34—C33—H33120.8
C5—C6—H6120.5C35—C34—C33119.9 (5)
C7—C6—H6120.5C35—C34—H34120.1
N4—C7—C6123.3 (5)C33—C34—H34120.1
N4—C7—H7118.3C34—C35—C36118.5 (5)
C6—C7—H7118.3C34—C35—H35120.8
N5—C8—C9122.6 (4)C36—C35—H35120.8
N5—C8—C1113.9 (4)N15—C36—C35123.3 (5)
C9—C8—C1123.5 (4)N15—C36—H36118.3
C8—C9—C10118.7 (5)C35—C36—H36118.3
C8—C9—H9120.6C2—N1—N2105.9 (3)
C10—C9—H9120.6C2—N1—Cu1115.8 (3)
C11—C10—C9119.1 (5)N2—N1—Cu1138.1 (3)
C11—C10—H10120.4C1—N2—N1105.1 (3)
C9—C10—H10120.4C1—N2—Cu2115.3 (3)
C10—C11—C12118.4 (5)N1—N2—Cu2138.7 (3)
C10—C11—H11120.8C2—N3—C1100.9 (4)
C12—C11—H11120.8C7—N4—C3117.1 (4)
N5—C12—C11124.1 (5)C7—N4—Cu1128.5 (3)
N5—C12—H12117.9C3—N4—Cu1114.3 (3)
C11—C12—H12117.9C12—N5—C8117.0 (4)
N7—C13—N8113.0 (4)C12—N5—Cu2132.1 (4)
N7—C13—C20121.5 (4)C8—N5—Cu2110.8 (3)
N8—C13—C20125.5 (4)C14—N6—N7105.9 (4)
N6—C14—N8113.5 (4)C13—N7—N6106.2 (4)
N6—C14—C15125.4 (4)C14—N8—C13101.3 (4)
N8—C14—C15121.0 (4)C14—N8—Cu1112.3 (3)
N9—C15—C16122.2 (5)C13—N8—Cu1144.9 (3)
N9—C15—C14115.0 (4)C19—N9—C15118.3 (4)
C16—C15—C14122.8 (5)C19—N9—Cu1127.7 (4)
C17—C16—C15117.9 (6)C15—N9—Cu1113.9 (3)
C17—C16—H16121.1C24—N10—C20117.6 (5)
C15—C16—H16121.1C26—N11—N12106.9 (4)
C18—C17—C16120.5 (5)C26—N11—Cu1115.4 (3)
C18—C17—H17119.7N12—N11—Cu1137.5 (3)
C16—C17—H17119.7C25—N12—N11104.2 (3)
C17—C18—C19118.2 (6)C26—N13—C25101.6 (4)
C17—C18—H18120.9C26—N13—Cu2i147.2 (3)
C19—C18—H18120.9C25—N13—Cu2i110.7 (3)
N9—C19—C18122.9 (6)C27—N14—C31117.1 (4)
N9—C19—H19118.6C27—N14—Cu1115.0 (3)
C18—C19—H19118.6C31—N14—Cu1127.8 (4)
N10—C20—C21122.1 (5)C36—N15—C32117.9 (4)
N10—C20—C13115.0 (5)C36—N15—Cu2i128.2 (3)
C21—C20—C13122.8 (5)C32—N15—Cu2i113.9 (3)
C20—C21—C22118.5 (6)H1A—O1—H1B108.9
C20—C21—H21120.8
N1—C2—C3—N43.4 (6)C11—C12—N5—C80.3 (9)
N3—C2—C3—N4176.8 (5)C11—C12—N5—Cu2176.4 (5)
N1—C2—C3—C4175.9 (5)C9—C8—N5—C121.9 (8)
N3—C2—C3—C43.9 (8)C1—C8—N5—C12179.9 (5)
N4—C3—C4—C50.4 (8)C9—C8—N5—Cu2175.0 (4)
C2—C3—C4—C5178.8 (5)C1—C8—N5—Cu23.2 (5)
C3—C4—C5—C60.3 (8)N2—Cu2—N5—C12175.2 (6)
C4—C5—C6—C70.3 (8)N13i—Cu2—N5—C1254.8 (6)
C5—C6—C7—N40.4 (8)N15i—Cu2—N5—C1234.7 (6)
N2—C1—C8—N58.5 (6)N2—Cu2—N5—C81.1 (3)
N3—C1—C8—N5172.1 (5)N13i—Cu2—N5—C8128.9 (3)
N2—C1—C8—C9169.8 (5)N15i—Cu2—N5—C8141.6 (3)
N3—C1—C8—C99.6 (8)N8—C14—N6—N71.3 (6)
N5—C8—C9—C102.2 (8)C15—C14—N6—N7175.7 (4)
C1—C8—C9—C10179.7 (5)N8—C13—N7—N60.6 (6)
C8—C9—C10—C110.4 (9)C20—C13—N7—N6179.1 (4)
C9—C10—C11—C121.6 (10)C14—N6—N7—C130.4 (6)
C10—C11—C12—N52.0 (11)N6—C14—N8—C131.5 (5)
N6—C14—C15—N9175.3 (5)C15—C14—N8—C13175.6 (4)
N8—C14—C15—N91.4 (6)N6—C14—N8—Cu1170.9 (3)
N6—C14—C15—C164.7 (8)C15—C14—N8—Cu16.2 (5)
N8—C14—C15—C16178.5 (4)N7—C13—N8—C141.3 (5)
N9—C15—C16—C170.4 (7)C20—C13—N8—C14179.7 (5)
C14—C15—C16—C17179.7 (5)N7—C13—N8—Cu1164.0 (4)
C15—C16—C17—C181.2 (8)C20—C13—N8—Cu117.5 (9)
C16—C17—C18—C190.8 (9)N1—Cu1—N8—C14175.5 (3)
C17—C18—C19—N90.6 (9)N11—Cu1—N8—C1446.3 (7)
N7—C13—C20—N1045.9 (7)N4—Cu1—N8—C1497.7 (3)
N8—C13—C20—N10135.8 (5)N9—Cu1—N8—C146.0 (3)
N7—C13—C20—C21132.1 (6)N14—Cu1—N8—C1487.6 (3)
N8—C13—C20—C2146.2 (7)N1—Cu1—N8—C1322.8 (6)
N10—C20—C21—C220.2 (8)N11—Cu1—N8—C13115.4 (6)
C13—C20—C21—C22178.0 (5)N4—Cu1—N8—C13100.5 (5)
C20—C21—C22—C231.6 (9)N9—Cu1—N8—C13167.7 (6)
C21—C22—C23—C241.1 (10)N14—Cu1—N8—C1374.1 (6)
C22—C23—C24—N100.9 (10)C18—C19—N9—C151.4 (8)
N13—C26—C27—N14177.7 (4)C18—C19—N9—Cu1175.0 (4)
N11—C26—C27—N140.3 (6)C16—C15—N9—C190.9 (7)
N13—C26—C27—C280.5 (8)C14—C15—N9—C19179.1 (4)
N11—C26—C27—C28178.5 (4)C16—C15—N9—Cu1176.0 (4)
N14—C27—C28—C290.2 (8)C14—C15—N9—Cu14.0 (5)
C26—C27—C28—C29178.2 (5)N1—Cu1—N9—C19100.5 (9)
C27—C28—C29—C300.4 (9)N11—Cu1—N9—C1915.3 (4)
C28—C29—C30—C310.9 (9)N8—Cu1—N9—C19177.9 (4)
C29—C30—C31—N140.7 (9)N4—Cu1—N9—C1978.9 (4)
N12—C25—C32—N15175.2 (4)N14—Cu1—N9—C1991.4 (4)
N13—C25—C32—N154.6 (6)N1—Cu1—N9—C1583.0 (9)
N12—C25—C32—C334.1 (8)N11—Cu1—N9—C15161.2 (3)
N13—C25—C32—C33176.1 (5)N8—Cu1—N9—C155.5 (3)
N15—C32—C33—C340.4 (8)N4—Cu1—N9—C15104.5 (3)
C25—C32—C33—C34179.5 (5)N14—Cu1—N9—C1585.1 (3)
C32—C33—C34—C350.1 (9)C23—C24—N10—C202.3 (9)
C33—C34—C35—C360.1 (9)C21—C20—N10—C241.7 (8)
C34—C35—C36—N150.1 (9)C13—C20—N10—C24176.3 (5)
N3—C2—N1—N20.8 (5)N13—C26—N11—N120.3 (5)
C3—C2—N1—N2179.1 (4)C27—C26—N11—N12178.0 (4)
N3—C2—N1—Cu1175.2 (3)N13—C26—N11—Cu1176.1 (3)
C3—C2—N1—Cu15.0 (6)C27—C26—N11—Cu12.2 (5)
N11—Cu1—N1—C297.1 (3)N1—Cu1—N11—C2693.9 (3)
N8—Cu1—N1—C294.0 (3)N8—Cu1—N11—C2645.0 (7)
N4—Cu1—N1—C23.5 (3)N4—Cu1—N11—C26170.5 (3)
N9—Cu1—N1—C218.7 (10)N9—Cu1—N11—C2695.6 (3)
N14—Cu1—N1—C2173.3 (3)N14—Cu1—N11—C262.2 (3)
N11—Cu1—N1—N288.7 (4)N1—Cu1—N11—N1280.2 (4)
N8—Cu1—N1—N280.2 (4)N8—Cu1—N11—N12140.9 (5)
N4—Cu1—N1—N2177.7 (5)N4—Cu1—N11—N123.6 (4)
N9—Cu1—N1—N2155.6 (7)N9—Cu1—N11—N1290.3 (4)
N14—Cu1—N1—N212.5 (4)N14—Cu1—N11—N12176.3 (5)
N3—C1—N2—N10.2 (5)N13—C25—N12—N110.4 (5)
C8—C1—N2—N1179.2 (4)C32—C25—N12—N11179.8 (4)
N3—C1—N2—Cu2170.9 (3)C26—N11—N12—C250.1 (5)
C8—C1—N2—Cu29.6 (6)Cu1—N11—N12—C25174.4 (4)
C2—N1—N2—C10.6 (5)N11—C26—N13—C250.5 (5)
Cu1—N1—N2—C1174.0 (4)C27—C26—N13—C25177.6 (4)
C2—N1—N2—Cu2167.3 (4)N11—C26—N13—Cu2i169.8 (4)
Cu1—N1—N2—Cu218.1 (7)C27—C26—N13—Cu2i12.0 (9)
N13i—Cu2—N2—C1106.4 (3)N12—C25—N13—C260.6 (5)
N15i—Cu2—N2—C1115.6 (4)C32—C25—N13—C26179.6 (4)
N5—Cu2—N2—C15.7 (3)N12—C25—N13—Cu2i173.8 (3)
N13i—Cu2—N2—N160.7 (5)C32—C25—N13—Cu2i6.0 (5)
N15i—Cu2—N2—N177.3 (5)C28—C27—N14—C310.3 (7)
N5—Cu2—N2—N1172.7 (5)C26—C27—N14—C31178.5 (4)
N1—C2—N3—C10.6 (5)C28—C27—N14—Cu1176.6 (4)
C3—C2—N3—C1179.2 (5)C26—C27—N14—Cu11.6 (5)
N2—C1—N3—C20.2 (5)C30—C31—N14—C270.1 (7)
C8—C1—N3—C2179.6 (5)C30—C31—N14—Cu1176.6 (4)
C6—C7—N4—C31.1 (7)N1—Cu1—N14—C2789.0 (3)
C6—C7—N4—Cu1178.8 (4)N11—Cu1—N14—C272.0 (3)
C4—C3—N4—C71.1 (7)N8—Cu1—N14—C27170.7 (3)
C2—C3—N4—C7178.1 (4)N4—Cu1—N14—C2734.8 (8)
C4—C3—N4—Cu1179.1 (4)N9—Cu1—N14—C2793.2 (3)
C2—C3—N4—Cu10.2 (5)N1—Cu1—N14—C3187.6 (4)
N1—Cu1—N4—C7176.0 (4)N11—Cu1—N14—C31178.6 (4)
N11—Cu1—N4—C784.3 (4)N8—Cu1—N14—C3112.8 (4)
N8—Cu1—N4—C785.8 (4)N4—Cu1—N14—C31141.7 (6)
N9—Cu1—N4—C78.0 (4)N9—Cu1—N14—C3190.2 (4)
N14—Cu1—N4—C7120.1 (7)C35—C36—N15—C320.2 (8)
N1—Cu1—N4—C31.7 (3)C35—C36—N15—Cu2i179.8 (4)
N11—Cu1—N4—C393.4 (3)C33—C32—N15—C360.4 (7)
N8—Cu1—N4—C396.5 (3)C25—C32—N15—C36179.7 (4)
N9—Cu1—N4—C3174.3 (3)C33—C32—N15—Cu2i179.9 (4)
N14—Cu1—N4—C357.6 (8)C25—C32—N15—Cu2i0.7 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.852.142.945 (7)159
O1—H1B···N10ii0.852.283.089 (8)159
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(C12H8N5)6]·2H2O
Mr1623.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.5696 (10), 27.589 (2), 12.6090 (14)
β (°) 109.039 (2)
V3)3475.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.23 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
17303, 6122, 4601
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.170, 1.07
No. of reflections6122
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—N12.103 (4)Cu1—N142.225 (4)
Cu1—N112.119 (4)Cu2—N21.957 (4)
Cu1—N82.149 (4)Cu2—N13i2.040 (4)
Cu1—N42.209 (4)Cu2—N15i2.051 (4)
Cu1—N92.215 (4)Cu2—N52.179 (4)
N1—Cu1—N476.41 (14)N11—Cu1—N494.10 (14)
N1—Cu1—N8100.13 (15)N11—Cu1—N992.04 (15)
N1—Cu1—N9169.46 (15)N11—Cu1—N8163.13 (14)
N1—Cu1—N1192.56 (15)N11—Cu1—N1475.99 (14)
N1—Cu1—N1496.53 (14)N2—Cu2—N580.14 (15)
N4—Cu1—N993.81 (14)N2—Cu2—N13i130.59 (16)
N4—Cu1—N14167.72 (14)N2—Cu2—N15i140.54 (17)
N8—Cu1—N499.63 (14)N13i—Cu2—N5113.08 (16)
N8—Cu1—N977.39 (15)N13i—Cu2—N15i81.75 (15)
N8—Cu1—N1491.44 (14)N15i—Cu2—N5110.23 (17)
N9—Cu1—N1493.78 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N30.852.142.945 (7)159.0
O1—H1B···N10ii0.852.283.089 (8)159.3
Symmetry code: (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds