Download citation
Download citation
link to html
The title complex, [Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2, consists of a circular tetra­copper(II) cation with an embedded inversion centre and two uncoordinated picrate (2,4,6-trinitro­phenolate) anions. The CuII cations at the inner sites of N-(2-amino­eth­yl)-N′-(2-carboxyl­atophenyl)oxamidate(3−) (oxbe) have square-planar environments and those at the outer sites are in square-pyramidal geometries. The separations of pairs of CuII cations bridged by cis-oxamide and carboxyl­ate groups are 5.2217 (5) and 5.2871 (5) Å, respectively. The tetracopper(II) cations and picrate anions are connected by N—H...O hydrogen bonds into a two-dimensional network parallel to the (010) plane, and these two-dimensional networks are assembled by two types of π–π stacking interactions into a three-dimensional supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110026491/bg3125sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110026491/bg3125IIsup2.hkl
Contains datablock II

CCDC reference: 757227

Comment top

Many studies have been devoted to the crystal engineering of metal coordination complexes with supramolecular architectures formed through relatively weak interactions such as hydrogen bonds and ππ stacking interactions (Blake et al., 1999; Lin et al., 2003). N,N'-Bis(substituted)oxamides, which can afford symmetric and asymmetric oxamidate bridges by the cistrans conformational change (Ojima & Nonoyama, 1988; Ruiz et al., 1999), have a typical ability to form three-dimensional supramolecular architectures (Zhang et al., 2001; Delgado et al., 2006; Sun et al., 2007, 2008). Compared with studies dealing with symmetric N,N'-bis(substituted)oxamide polynuclear systems (Nakatani et al., 1991; Lloret et al., 1992; Santana et al., 2004; Tang et al., 2005), relatively few studies of asymmetric N,N'-bis(substituted)oxamide polynuclear complexes have been reported to date, owing to difficulties in their synthesis (Matović et al., 2005; Zang et al., 2003). However, polynuclear complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands containing aromatic groups are characterized by connecting into a three-dimensional supramolecular structure via hydrogen bonds and ππ stacking, while they have shown outstanding properties [What sorts of properties?] (Yu et al., 1989, 1991; Larionova et al., 1997; Zang et al., 2003; Tao, Zang, Cheng et al., 2003; Tao, Zang, Hu et al., 2003; Tao, Zang, Mei et al., 2003; Tao et al., 2004; Matović et al., 2005; Zhu et al., 2007), which prompted us to design and synthesize this type of polynuclear complex to explore their particular structures and functionalities.

Recently, we first reported the crystal structure of a cyclic tetracopper(II) complex bridged by the N-benzoato-N'-(2-amino-2-methylethyl)oxamide (H3oxbm) ligand and end-capped with 2,2'-bipyridine (bpy), namely, [Cu2(oxbm)(bpy)Cl]2.2H2O, (I). That study revealed that the terminal ligands (bpy) and counterions (Cl-) played a dominant role in the construction of the three-dimensional supramolecular structure (Gu et al., 2009). In order to understand better the influence of terminal ligands and counterions on the crystal structure of these compounds, it was found necessary to synthesize a series of tetranuclear compexes of essentially analogous skeletal structure except for the terminal ligands and counterions. As an extension of our work, in this paper the title novel tetranuclear copper(II) complex, [Cu2(oxbe)(dabt)]2.(pic)2, (II), has been synthesized using sodium N-benzoato-N'-(2-aminoethyl)oxamidocopper(II), {Na[Cu(oxbe)]} as a bridging ligand, and 2,2'-diamino-4,4'-bithiazole (dabt) and picrate anions (pic-) as terminal ligands and counterions, respectively, and its crystal structure is reported here.

A perspective view of (II) is depicted in Fig. 1, and selected bond distances and angles are listed in Table 1. The molecular structure of (II) consists of a circular tetranuclear copper(II) cation, [Cu2(oxbe)(dabt)]22+, located on an inversion centre and two uncoordinated symmetrically related pic- anions. The tetracopper(II) cation can be considered as a pair of cis-oxamidate-bridged dinuclear copper(II) complexes assembled through carboxyl bridges to form an end-to-end circular system. The separations of the CuII cations through the oxamide and carboxyl bridges are 5.2217 (5) and 5.2871 (5) Å, respectively. The oxamide group chelates to atoms Cu1 and Cu2 with the usual bite angles of 84.42 (10) and 83.44 (8)°, respectively. The carboxyl group bridges the CuII cations in a skew–skew fashion, with torsion angles of Cu1—O1—C1—O2 = -157.0 (2)° and Cu2i—O2—C1—O1 = 104.8 (3)° [symmetry code: (i) -x, 1 - y, 1 - z], which are similar to those found in other related complexes (Duan et al., 2006; Tong et al., 1997; Gu et al., 2009).

In complex (II), the two CuII cations are in different coordination environments, which are distinct from those in complex (I). Atom Cu1, at the inner site of oxbe3- ligand, has a distorted square-planar geometry formed by atoms N1, N2, N3 and O1, of which the maximum displacement from the coordination plane is 0.0401 (15) Å for atom N2. Atom Cu1 is displaced only 0.0770 (14) Å from the plane towards atom O11, with a Cu1···O11 distance of 2.770 (3) Å. Such a distance is too long to be considered a coordination bond. Furthermore, the bond valences (Shields et al., 2000) around atom Cu1 are 0.550, 0.468, 0.598 and 0.467 for atoms O1, N1, N2 and N3, respectively, with a sum of 2.083. In comparison, atom O11 only contributes 0.049 to the bond valence, less than 3% of the total Cu1 valence, and can thus be reasonably ignored. In complex (I), instead, atom Cu1 has a square-pyramidal geometry and the corresponding displacement from the basal plane is 0.2403 (13) Å, with an axial Cu—Cl bond of 2.6832 (16) Å. The bond valence of the apical Cl atom is 0.158. In complex (II), the environment around atom Cu2 can be best described as a distorted square-pyramidal geometry, similar to that in complex (I), with τ values of 0.12 (Addison et al., 1984). Atom Cu2 is coordinated by the exo O atoms (O3 and O4) of the oxamide group and atoms N4 and N5 of the dabt molecule, which define the basal plane with deviations in the range 0.0037 (11)–0.0041 (12) Å. Atom Cu2 is displaced 0.2004 (12) Å out of the basal plane towards apical carboxyl atom O2i, with a Cu2—O2i bond length of 2.341 (2) Å [symmetry code: (i) ? Please complete].

The oxbe3- ligand coordinates atoms Cu1 with a six-membered and two five-membered chelate rings. The Cu1/N2/C10/C11/N3 five-membered ring has a twist conformation, with puckering parameters (Cremer & Pople, 1975) of Q = 0.302 (4) Å and ϕ = 122.0 (6)°, and the remaining Cu1/N1/C8/C9/N2 five-membered ring is almost planar, as expected. The puckering parameters of the Cu1/O1/C1–C3/N1 six-membered ring are Q = 0.205 (3) Å, θ = 78.1 (8)° and ϕ = 112.4 (7)°. The Cu1—N3 bond [2.045 (2) Å] is longer than the Cu1—N1 [1.985 (2) Å] and Cu1—N2 bonds [1.894 (2) Å], which is consistent with the stronger donor abilities of the deprotonated amide N atoms compared with the primary amine N atoms (Jubert et al., 2002).

Comparison of complex (II) with the previously reported complex (I) shows that they share the same metal ion and an analogous oxamidate-bridged skeletal structure. The main differences between them are the terminal ligands and the counterions [dabt and pic- in (II) and bpy and Cl- in (I)]. The substitution of Cl- by pic- contributes not only to changing the coordination geometries of the CuII cations (due to the larger space occupied by pic-) but also affects the intermolecular interactions. The picrate anions and dabt terminal ligands are better hydrogen-bond acceptors and donors than chloride anions and bpy ligands, which results in a stronger two-dimensional network formed by N—H···O hydrogen bonds, parallel to the (010) plane (Fig. 2 and Table 2). Furthermore, there are two kinds of offset ππ stacking interactions in complex (II) (Table 3 and Fig. 3). One is observed between the two thiazole rings containing atoms S1 and S1v [symmetry code: (v) -1 - x, -y, -z], with a closest separation of 3.375 (4) Å (C13v). The other is between the S1 thiazole ring and the picratevi benzene ring [symmetry code: (vi) -x, -y, 1 - z]; the closest distance between atom C20vi and the thiazole plane is 3.436 (4) Å. These stackings form stronger interlayer interactions than those in complex (I), where only one kind of ππ stacking occurs with a nearest separation of 3.421 (4) Å. These stacking interactions assemble the hydrogen-bonded layers into a three-dimensional supramolecular structure.

It is clear from the above discussion that terminal ligands and counterions play an important role in the construction of the three-dimensional supramolecular structures of these compounds, and further investigations involving different sets are in progress in our laboratory.

Related literature top

For related literature, see: Addison et al. (1984); Blake et al. (1999); Cremer & Pople (1975); Delgado et al. (2006); Duan et al. (2006); Gu et al. (2009); Jubert et al. (2002); Larionova et al. (1997); Lin et al. (2003); Lloret et al. (1992); Matović et al. (2005); Nakatani et al. (1991); Ojima & Nonoyama (1988); Ruiz et al. (1999); Santana et al. (2004); Shields et al. (2000); Sun et al. (2007, 2008); Tang et al. (2005); Tao et al. (2004); Tao, Zang, Cheng, Wang, Hu, Niu & Liao (2003); Tao, Zang, Hu, Wang, Cheng, Niu & Liao (2003); Tao, Zang, Mei, Wang, Lou, Niu, Cheng & Liao (2003); Tong et al. (1997); Yu et al. (1989, 1991); Zang et al. (2003); Zhang et al. (2001); Zhu et al. (2007).

Experimental top

All reagents were of analytical reagent grade. The Na[Cu(oxbe)] ligand was prepared according to the method of Tao, Zang, Mei et al. (2003). The title complex, [Cu4(oxbe)2(dabt)2](pic)2, (II), was obtained as follows. A methanol solution (5 ml) of Cu(pic)2.6H2O (0.0628 g, 0.1 mmol) was added dropwise to an aqueous solution (5 ml) of Na[Cu(oxbe)] (0.0335 g, 0.1 mmol) with continuous stirring. The mixture was stirred quickly for 1 h and then dabt (0.0199 g, 0.1 mmol) in methanol (5 ml) was further added dropwise. The solution obtained was stirred at 333 K for 6 h. The resulting solution was then filtered and the filtrate allowed to stand at room temperature for two weeks to give well shaped green crystals of (II) suitable for X-ray analysis (yield 69%). Analysis, calculated for C46H36Cu4N20O22S4: C 34.46, H 2.26, N 17.47%; found: C 34.61, H 2.18, N 17.71%.

Refinement top

H atoms on primary amine N atom were found in a difference Fourier map. All other H atoms were placed in calculated positions, with N—H = 0.86 Å and C—H = 0.93 (aromatic) or 0.97 Å (methylene). All H atoms were refined in riding mode, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dotted lines indicate hydrogen bonds. [Symmetry code: (i) -x, -y + 1, -z + 1.]
[Figure 2] Fig. 2. A view of a two-dimensional hydrogen-bonded structure of (II), parallel to the a0c plane. Hydrogen bonds are shown as dotted lines and H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z - 1.]
[Figure 3] Fig. 3. A perspective view of the ππ stacking interactions in (II), viewed perpendicular to the thiazole ring containing atom S1. H atoms have been omitted for clarity. [Symmetry codes: (v) -x - 1, -y, -z; (vi) -x, -y, -z + 1.]
3-cis-N-(2-Aminoethyl)-N'-(2- carboxylatophenyl)oxamidato(3-)]bis(2,2'-diamino-4,4'- bithiazole)tetracopper(II) bis(2,4,6-trinitrophenolate) top
Crystal data top
[Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2Z = 1
Mr = 1603.34F(000) = 1616
Triclinic, P1Dx = 1.895 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5528 (2) ÅCell parameters from 4260 reflections
b = 10.9391 (2) Åθ = 2.2–27.3°
c = 13.1938 (2) ŵ = 1.74 mm1
α = 102.367 (1)°T = 296 K
β = 98.134 (1)°Block, green
γ = 105.059 (1)°0.15 × 0.13 × 0.11 mm
V = 1404.91 (4) Å3
Data collection top
Bruker APEX area-detector
diffractometer
6527 independent reflections
Radiation source: fine-focus sealed tube4897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1213
Tmin = 0.780, Tmax = 0.831k = 1413
13345 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.7576P]
where P = (Fo2 + 2Fc2)/3
6527 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2γ = 105.059 (1)°
Mr = 1603.34V = 1404.91 (4) Å3
Triclinic, P1Z = 1
a = 10.5528 (2) ÅMo Kα radiation
b = 10.9391 (2) ŵ = 1.74 mm1
c = 13.1938 (2) ÅT = 296 K
α = 102.367 (1)°0.15 × 0.13 × 0.11 mm
β = 98.134 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
6527 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4897 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.831Rint = 0.021
13345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.69 e Å3
6527 reflectionsΔρmin = 0.50 e Å3
433 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22895 (3)0.41106 (4)0.46732 (3)0.03526 (11)
Cu20.26026 (3)0.14071 (3)0.26626 (3)0.03419 (11)
S10.38321 (9)0.14325 (8)0.06068 (6)0.0467 (2)
S20.66596 (9)0.03211 (9)0.33423 (7)0.0524 (2)
O10.3204 (2)0.5277 (2)0.59916 (16)0.0448 (5)
O20.3329 (2)0.6768 (2)0.74471 (16)0.0429 (5)
O30.16820 (18)0.2453 (2)0.41578 (15)0.0365 (5)
O40.08239 (19)0.1913 (2)0.23957 (16)0.0436 (5)
N10.0520 (2)0.3633 (2)0.50777 (18)0.0309 (5)
N20.1319 (2)0.3107 (3)0.32969 (19)0.0417 (6)
N30.3836 (3)0.4377 (3)0.3888 (2)0.0512 (7)
H3A0.40630.51760.37020.061*
H3B0.45970.43740.42030.061*
N40.3270 (2)0.0126 (2)0.12505 (18)0.0345 (5)
N50.4364 (2)0.0505 (2)0.28938 (18)0.0347 (5)
N60.1632 (3)0.0623 (3)0.0255 (2)0.0637 (9)
H6A0.11390.12860.07600.076*
H6B0.13740.04280.03330.076*
N70.4540 (3)0.1706 (3)0.4526 (2)0.0573 (8)
H7A0.37370.22210.46330.069*
H7B0.50210.18170.49920.069*
C10.2701 (3)0.5724 (3)0.6772 (2)0.0354 (6)
C20.1346 (3)0.4971 (3)0.6914 (2)0.0340 (6)
C30.0312 (3)0.4010 (3)0.6121 (2)0.0315 (6)
C40.0898 (3)0.3456 (3)0.6401 (2)0.0404 (7)
H40.15790.28080.58910.049*
C50.1106 (4)0.3848 (3)0.7415 (3)0.0488 (8)
H50.19300.34870.75750.059*
C60.0090 (4)0.4775 (3)0.8191 (3)0.0515 (9)
H60.02170.50310.88780.062*
C70.1106 (3)0.5314 (3)0.7936 (2)0.0452 (8)
H70.17870.59340.84640.054*
C80.0429 (3)0.2918 (3)0.4250 (2)0.0307 (6)
C90.0062 (3)0.2619 (3)0.3221 (2)0.0346 (6)
C100.2024 (3)0.2938 (4)0.2424 (3)0.0550 (9)
H10A0.17350.20280.20150.066*
H10B0.18460.34740.19560.066*
C110.3447 (3)0.3347 (4)0.2907 (3)0.0665 (12)
H11A0.36860.25910.30460.080*
H11B0.39580.36480.24040.080*
C120.2785 (3)0.0093 (3)0.0381 (2)0.0396 (7)
C130.4978 (3)0.1673 (3)0.0187 (2)0.0433 (7)
H130.57960.23310.00060.052*
C140.4525 (3)0.0777 (3)0.1124 (2)0.0330 (6)
C150.5151 (3)0.0528 (3)0.2039 (2)0.0349 (6)
C160.6385 (3)0.1089 (3)0.2153 (3)0.0462 (8)
H160.70120.18010.16560.055*
C170.5034 (3)0.0742 (3)0.3645 (2)0.0383 (7)
O50.4570 (3)0.2887 (3)0.6403 (2)0.0698 (8)
O60.6094 (3)0.4168 (3)0.8458 (3)0.1073 (13)
O70.4962 (3)0.5427 (3)0.9042 (2)0.0782 (9)
O80.0844 (3)0.2525 (3)0.9667 (2)0.0783 (9)
O90.0432 (3)0.0973 (3)0.8332 (2)0.0737 (8)
O100.1325 (4)0.0136 (3)0.5140 (2)0.0843 (9)
O110.2391 (4)0.1629 (3)0.4759 (2)0.0838 (10)
N80.5042 (3)0.4390 (3)0.8536 (3)0.0607 (8)
N90.0618 (3)0.1872 (3)0.8752 (2)0.0554 (8)
N100.1995 (4)0.1024 (3)0.5396 (2)0.0585 (8)
C180.3652 (4)0.2681 (3)0.6916 (3)0.0480 (8)
C190.3788 (3)0.3362 (3)0.8004 (3)0.0479 (8)
C200.2815 (3)0.3142 (3)0.8582 (3)0.0462 (8)
H200.29530.36470.92750.055*
C210.1621 (3)0.2159 (3)0.8123 (3)0.0438 (7)
C220.1367 (3)0.1444 (3)0.7084 (3)0.0442 (7)
H220.05610.07850.67810.053*
C230.2344 (4)0.1732 (3)0.6502 (2)0.0456 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02283 (18)0.0445 (2)0.03250 (19)0.00595 (14)0.00735 (14)0.00180 (15)
Cu20.02342 (18)0.0438 (2)0.02905 (19)0.00451 (14)0.00783 (13)0.00173 (15)
S10.0491 (5)0.0471 (4)0.0360 (4)0.0111 (4)0.0119 (3)0.0038 (3)
S20.0407 (5)0.0534 (5)0.0584 (5)0.0015 (4)0.0287 (4)0.0084 (4)
O10.0260 (10)0.0541 (13)0.0408 (12)0.0039 (9)0.0078 (9)0.0063 (10)
O20.0362 (11)0.0421 (12)0.0383 (11)0.0051 (9)0.0001 (9)0.0015 (9)
O30.0229 (10)0.0512 (12)0.0305 (10)0.0062 (9)0.0069 (8)0.0059 (9)
O40.0252 (10)0.0616 (14)0.0316 (11)0.0042 (9)0.0078 (8)0.0037 (10)
N10.0254 (11)0.0371 (12)0.0285 (12)0.0078 (10)0.0080 (9)0.0057 (10)
N20.0251 (12)0.0612 (16)0.0310 (13)0.0060 (11)0.0105 (10)0.0015 (12)
N30.0270 (13)0.0674 (18)0.0454 (16)0.0026 (12)0.0130 (11)0.0035 (14)
N40.0300 (12)0.0385 (13)0.0305 (12)0.0067 (10)0.0099 (10)0.0020 (10)
N50.0295 (12)0.0407 (13)0.0337 (13)0.0091 (10)0.0109 (10)0.0079 (11)
N60.0458 (17)0.083 (2)0.0380 (16)0.0101 (15)0.0216 (13)0.0073 (15)
N70.0395 (15)0.078 (2)0.0417 (16)0.0036 (14)0.0208 (12)0.0022 (14)
C10.0288 (14)0.0422 (16)0.0335 (15)0.0117 (12)0.0007 (12)0.0089 (13)
C20.0336 (15)0.0371 (15)0.0331 (15)0.0118 (12)0.0077 (12)0.0108 (12)
C30.0305 (14)0.0354 (14)0.0297 (14)0.0110 (12)0.0078 (11)0.0087 (12)
C40.0371 (16)0.0421 (16)0.0360 (16)0.0020 (13)0.0118 (13)0.0072 (13)
C50.050 (2)0.0526 (19)0.0434 (18)0.0067 (16)0.0236 (15)0.0130 (15)
C60.064 (2)0.056 (2)0.0331 (17)0.0116 (17)0.0213 (16)0.0083 (15)
C70.0485 (19)0.0480 (18)0.0321 (16)0.0088 (15)0.0055 (14)0.0046 (14)
C80.0247 (13)0.0367 (15)0.0325 (14)0.0108 (11)0.0089 (11)0.0088 (12)
C90.0263 (14)0.0429 (16)0.0308 (14)0.0085 (12)0.0071 (11)0.0038 (12)
C100.0306 (16)0.081 (3)0.0408 (18)0.0077 (16)0.0154 (14)0.0033 (17)
C110.0335 (18)0.097 (3)0.048 (2)0.0007 (19)0.0191 (15)0.010 (2)
C120.0390 (17)0.0456 (17)0.0292 (15)0.0094 (14)0.0092 (12)0.0024 (13)
C130.0413 (17)0.0368 (16)0.0447 (18)0.0067 (13)0.0112 (14)0.0009 (14)
C140.0283 (14)0.0323 (14)0.0378 (15)0.0079 (11)0.0102 (12)0.0075 (12)
C150.0330 (15)0.0313 (14)0.0403 (16)0.0068 (12)0.0119 (12)0.0098 (12)
C160.0415 (18)0.0398 (17)0.0498 (19)0.0007 (14)0.0176 (15)0.0053 (14)
C170.0315 (15)0.0486 (17)0.0388 (16)0.0129 (13)0.0146 (12)0.0140 (14)
O50.0757 (19)0.0700 (17)0.0762 (18)0.0212 (14)0.0547 (16)0.0204 (15)
O60.0511 (19)0.089 (2)0.163 (4)0.0109 (17)0.036 (2)0.002 (2)
O70.094 (2)0.0533 (16)0.080 (2)0.0110 (15)0.0258 (17)0.0089 (15)
O80.0647 (18)0.116 (2)0.0380 (14)0.0047 (16)0.0253 (13)0.0044 (15)
O90.0419 (15)0.111 (2)0.0522 (15)0.0015 (15)0.0178 (12)0.0139 (15)
O100.107 (3)0.073 (2)0.0594 (18)0.0158 (18)0.0294 (17)0.0030 (15)
O110.146 (3)0.087 (2)0.0523 (16)0.063 (2)0.0524 (19)0.0327 (16)
N80.058 (2)0.0536 (19)0.070 (2)0.0095 (16)0.0299 (17)0.0153 (16)
N90.0442 (17)0.088 (2)0.0411 (16)0.0198 (16)0.0196 (13)0.0255 (16)
N100.079 (2)0.062 (2)0.0513 (18)0.0397 (18)0.0318 (17)0.0152 (16)
C180.059 (2)0.0466 (18)0.055 (2)0.0263 (17)0.0319 (17)0.0216 (16)
C190.0467 (19)0.0477 (18)0.057 (2)0.0178 (15)0.0217 (16)0.0186 (16)
C200.050 (2)0.056 (2)0.0396 (17)0.0214 (16)0.0183 (15)0.0141 (15)
C210.0417 (18)0.061 (2)0.0398 (17)0.0218 (16)0.0201 (14)0.0222 (15)
C220.0460 (18)0.0529 (19)0.0416 (17)0.0198 (15)0.0168 (14)0.0176 (15)
C230.062 (2)0.0520 (19)0.0364 (17)0.0306 (17)0.0228 (15)0.0152 (15)
Geometric parameters (Å, º) top
Cu1—O11.876 (2)C2—C31.414 (4)
Cu1—N11.985 (2)C3—C41.400 (4)
Cu1—N21.894 (2)C4—C51.382 (4)
Cu1—N32.045 (2)C4—H40.9300
Cu2—O2i2.341 (2)C5—C61.381 (5)
Cu2—O32.0145 (19)C5—H50.9300
Cu2—O41.919 (2)C6—C71.368 (5)
Cu2—N41.982 (2)C6—H60.9300
Cu2—N51.964 (2)C7—H70.9300
C8—O31.265 (3)C10—C111.456 (5)
C8—N11.313 (3)C10—H10A0.9700
C8—C91.522 (4)C10—H10B0.9700
C9—O41.278 (3)C11—H11A0.9700
C9—N21.275 (4)C11—H11B0.9700
S1—C131.715 (3)C13—C141.337 (4)
S1—C121.732 (3)C13—H130.9300
S2—C161.715 (3)C14—C151.465 (4)
S2—C171.739 (3)C15—C161.332 (4)
O1—C11.285 (3)C16—H160.9300
O2—C11.242 (3)O5—C181.259 (4)
N1—C31.415 (3)O6—N81.210 (4)
N2—C101.462 (4)O7—N81.217 (4)
N3—C111.448 (4)O8—N91.218 (4)
N3—H3A0.9381O9—N91.236 (4)
N3—H3B0.8517O10—N101.228 (4)
N4—C121.323 (4)O11—N101.230 (4)
N4—C141.394 (3)N8—C191.461 (5)
N5—C171.317 (4)N9—C211.447 (4)
N5—C151.393 (4)N10—C231.443 (4)
N6—C121.319 (4)C18—C191.437 (5)
N6—H6A0.8600C18—C231.442 (5)
N6—H6B0.8600C19—C201.367 (4)
N7—C171.324 (4)C20—C211.383 (5)
N7—H7A0.8600C20—H200.9300
N7—H7B0.8600C21—C221.376 (4)
C1—C21.513 (4)C22—C231.382 (4)
C2—C71.397 (4)C22—H220.9300
O1—Cu1—N195.46 (9)C6—C7—H7118.7
N1—Cu1—N284.42 (10)C2—C7—H7118.7
N2—Cu1—N381.51 (10)O3—C8—N1131.1 (3)
O3—Cu2—O483.44 (8)O3—C8—C9114.5 (2)
N4—Cu2—N582.54 (9)N1—C8—C9114.4 (2)
O2i—Cu2—O4102.56 (9)N2—C9—O4128.2 (3)
O2i—Cu2—N589.85 (9)N2—C9—C8115.2 (2)
O2i—Cu2—N4107.11 (9)O4—C9—C8116.6 (2)
O2i—Cu2—O385.08 (8)C11—C10—N2106.4 (3)
C1—O1—Cu1127.92 (18)C11—C10—H10A110.5
C1—O2—Cu2i116.40 (19)N2—C10—H10A110.5
O1—Cu1—N2173.15 (11)C11—C10—H10B110.5
O1—Cu1—N398.33 (9)N2—C10—H10B110.5
N1—Cu1—N3165.85 (10)H10A—C10—H10B108.6
O4—Cu2—N5167.33 (10)N3—C11—C10114.3 (3)
O4—Cu2—N491.25 (9)N3—C11—H11A108.7
N5—Cu2—O3100.37 (9)C10—C11—H11A108.7
N4—Cu2—O3167.55 (9)N3—C11—H11B108.7
C13—S1—C1290.33 (14)C10—C11—H11B108.7
C16—S2—C1789.88 (15)H11A—C11—H11B107.6
C8—O3—Cu2111.99 (17)N6—C12—N4124.6 (3)
C9—O4—Cu2113.42 (17)N6—C12—S1122.4 (2)
C8—N1—C3124.6 (2)N4—C12—S1113.0 (2)
C8—N1—Cu1111.00 (18)C14—C13—S1110.2 (2)
C3—N1—Cu1124.39 (18)C14—C13—H13124.9
C9—N2—C10125.2 (3)S1—C13—H13124.9
C9—N2—Cu1114.98 (19)C13—C14—N4115.7 (3)
C10—N2—Cu1119.81 (19)C13—C14—C15131.0 (3)
C11—N3—Cu1108.12 (19)N4—C14—C15113.2 (2)
C11—N3—H3A106.7C16—C15—N5115.2 (3)
Cu1—N3—H3A115.1C16—C15—C14129.7 (3)
C11—N3—H3B106.8N5—C15—C14114.9 (2)
Cu1—N3—H3B117.9C15—C16—S2110.7 (2)
H3A—N3—H3B101.5C15—C16—H16124.6
C12—N4—C14110.8 (2)S2—C16—H16124.6
C12—N4—Cu2134.5 (2)N5—C17—N7123.8 (3)
C14—N4—Cu2114.69 (18)N5—C17—S2112.8 (2)
C17—N5—C15111.4 (2)N7—C17—S2123.4 (2)
C17—N5—Cu2133.8 (2)O6—N8—O7123.7 (4)
C15—N5—Cu2114.45 (18)O6—N8—C19118.9 (3)
C12—N6—H6A120.0O7—N8—C19117.4 (3)
C12—N6—H6B120.0O8—N9—O9123.1 (3)
H6A—N6—H6B120.0O8—N9—C21118.7 (3)
C17—N7—H7A120.0O9—N9—C21118.2 (3)
C17—N7—H7B120.0O10—N10—O11123.7 (3)
H7A—N7—H7B120.0O10—N10—C23118.9 (3)
O2—C1—O1121.0 (3)O11—N10—C23117.4 (3)
O2—C1—C2118.0 (3)O5—C18—C19123.7 (3)
O1—C1—C2121.0 (2)O5—C18—C23125.0 (3)
C7—C2—C3118.2 (3)C19—C18—C23111.3 (3)
C7—C2—C1115.0 (3)C20—C19—C18124.8 (3)
C3—C2—C1126.8 (3)C20—C19—N8116.8 (3)
C4—C3—C2118.3 (3)C18—C19—N8118.4 (3)
C4—C3—N1121.9 (2)C19—C20—C21119.0 (3)
C2—C3—N1119.8 (2)C19—C20—H20120.5
C5—C4—C3121.6 (3)C21—C20—H20120.5
C5—C4—H4119.2C22—C21—C20121.5 (3)
C3—C4—H4119.2C22—C21—N9119.3 (3)
C6—C5—C4119.9 (3)C20—C21—N9119.2 (3)
C6—C5—H5120.0C21—C22—C23118.1 (3)
C4—C5—H5120.0C21—C22—H22120.9
C7—C6—C5119.2 (3)C23—C22—H22120.9
C7—C6—H6120.4C22—C23—C18125.0 (3)
C5—C6—H6120.4C22—C23—N10116.1 (3)
C6—C7—C2122.7 (3)C18—C23—N10118.8 (3)
Cu1—O1—C1—O2157.0 (2)C4—C5—C6—C71.3 (5)
Cu2i—O2—C1—O1104.8 (3)C5—C6—C7—C20.4 (5)
O1—C1—C2—C322.1 (5)C3—C2—C7—C61.1 (5)
O1—C1—C2—C7160.2 (3)C1—C2—C7—C6176.8 (3)
O2—C1—C2—C3159.8 (3)Cu2—O3—C8—N1179.3 (3)
O2—C1—C2—C717.9 (4)Cu2—O3—C8—C91.9 (3)
O6—N8—C19—C1847.5 (5)C3—N1—C8—O32.7 (5)
O6—N8—C19—C20133.9 (4)Cu1—N1—C8—O3177.5 (3)
O7—N8—C19—C18133.0 (4)C3—N1—C8—C9178.5 (2)
O7—N8—C19—C2045.6 (5)Cu1—N1—C8—C91.3 (3)
O8—N9—C21—C201.5 (5)C10—N2—C9—O40.7 (6)
O8—N9—C21—C22178.8 (3)Cu1—N2—C9—O4179.6 (3)
O9—N9—C21—C20178.7 (3)C10—N2—C9—C8179.0 (3)
O9—N9—C21—C221.0 (5)Cu1—N2—C9—C80.6 (4)
O10—N10—C23—C18142.4 (4)Cu2—O4—C9—N2179.7 (3)
O10—N10—C23—C2238.3 (5)Cu2—O4—C9—C80.5 (3)
O11—N10—C23—C1837.8 (5)O3—C8—C9—N2178.4 (3)
O11—N10—C23—C22141.6 (3)N1—C8—C9—N20.6 (4)
N1—Cu1—O1—C110.6 (3)O3—C8—C9—O41.7 (4)
N3—Cu1—O1—C1166.2 (3)N1—C8—C9—O4179.3 (3)
O4—Cu2—O3—C81.4 (2)C9—N2—C10—C11165.2 (3)
N5—Cu2—O3—C8166.41 (19)Cu1—N2—C10—C1114.4 (4)
N4—Cu2—O3—C863.9 (5)Cu1—N3—C11—C1034.3 (4)
O2i—Cu2—O3—C8104.6 (2)N2—C10—C11—N331.6 (5)
N5—Cu2—O4—C9108.0 (4)C14—N4—C12—N6178.2 (3)
N4—Cu2—O4—C9168.3 (2)Cu2—N4—C12—N63.0 (5)
O3—Cu2—O4—C90.4 (2)C14—N4—C12—S11.4 (3)
O2i—Cu2—O4—C983.8 (2)Cu2—N4—C12—S1177.46 (17)
O1—Cu1—N1—C8171.8 (2)C13—S1—C12—N6178.3 (3)
N2—Cu1—N1—C81.3 (2)C13—S1—C12—N41.2 (3)
N3—Cu1—N1—C84.8 (6)C12—S1—C13—C140.7 (3)
O1—Cu1—N1—C38.4 (2)S1—C13—C14—N40.1 (4)
N2—Cu1—N1—C3178.5 (2)S1—C13—C14—C15176.5 (3)
N3—Cu1—N1—C3175.4 (4)C12—N4—C14—C130.8 (4)
N1—Cu1—N2—C91.0 (2)Cu2—N4—C14—C13178.2 (2)
N3—Cu1—N2—C9177.5 (3)C12—N4—C14—C15176.2 (3)
N1—Cu1—N2—C10178.6 (3)Cu2—N4—C14—C154.7 (3)
N3—Cu1—N2—C102.9 (3)C17—N5—C15—C161.8 (4)
O1—Cu1—N3—C11167.3 (3)Cu2—N5—C15—C16175.4 (2)
N2—Cu1—N3—C1119.7 (3)C17—N5—C15—C14174.5 (3)
N1—Cu1—N3—C1125.8 (6)Cu2—N5—C15—C140.9 (3)
O4—Cu2—N4—C1213.3 (3)C13—C14—C15—C164.6 (6)
N5—Cu2—N4—C12177.8 (3)N4—C14—C15—C16171.9 (3)
O3—Cu2—N4—C1277.7 (5)C13—C14—C15—N5179.9 (3)
O2i—Cu2—N4—C1290.3 (3)N4—C14—C15—N53.6 (4)
O4—Cu2—N4—C14165.5 (2)N5—C15—C16—S21.6 (4)
N5—Cu2—N4—C143.4 (2)C14—C15—C16—S2174.0 (3)
O3—Cu2—N4—C14101.1 (4)C17—S2—C16—C150.7 (3)
O2i—Cu2—N4—C1490.9 (2)C15—N5—C17—N7177.2 (3)
O4—Cu2—N5—C17128.4 (4)Cu2—N5—C17—N75.3 (5)
N4—Cu2—N5—C17170.4 (3)C15—N5—C17—S21.1 (3)
O3—Cu2—N5—C1721.8 (3)Cu2—N5—C17—S2173.04 (16)
O2i—Cu2—N5—C1763.1 (3)C16—S2—C17—N50.2 (3)
O4—Cu2—N5—C1559.9 (5)C16—S2—C17—N7178.1 (3)
N4—Cu2—N5—C151.3 (2)O5—C18—C19—C20178.9 (3)
O3—Cu2—N5—C15166.4 (2)C23—C18—C19—C200.4 (5)
O2i—Cu2—N5—C15108.6 (2)O5—C18—C19—N82.5 (5)
Cu2i—O2—C1—C277.1 (3)C23—C18—C19—N8178.1 (3)
Cu1—O1—C1—C225.0 (4)C18—C19—C20—C213.0 (5)
C7—C2—C3—C40.2 (4)N8—C19—C20—C21178.5 (3)
C1—C2—C3—C4177.5 (3)C19—C20—C21—C223.3 (5)
C7—C2—C3—N1179.8 (3)C19—C20—C21—N9176.5 (3)
C1—C2—C3—N12.6 (4)C20—C21—C22—C230.1 (5)
C8—N1—C3—C411.6 (4)N9—C21—C22—C23179.6 (3)
Cu1—N1—C3—C4168.2 (2)C21—C22—C23—C183.7 (5)
C8—N1—C3—C2168.5 (3)C21—C22—C23—N10175.6 (3)
Cu1—N1—C3—C211.8 (4)O5—C18—C23—C22175.5 (3)
C2—C3—C4—C51.5 (5)C19—C18—C23—C223.8 (5)
N1—C3—C4—C5178.6 (3)O5—C18—C23—N105.2 (5)
C3—C4—C5—C62.2 (5)C19—C18—C23—N10175.5 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1ii0.852.313.025 (3)141
N3—H3A···O5ii0.942.283.161 (4)157
N6—H6A···O40.862.072.772 (3)138
N6—H6B···O9iii0.862.253.043 (4)152
N7—H7A···O30.862.313.050 (3)145
N7—H7B···O5iv0.862.142.932 (3)153
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2
Mr1603.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.5528 (2), 10.9391 (2), 13.1938 (2)
α, β, γ (°)102.367 (1), 98.134 (1), 105.059 (1)
V3)1404.91 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.780, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
13345, 6527, 4897
Rint0.021
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.04
No. of reflections6527
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.50

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O11.876 (2)Cu2—O32.0145 (19)
Cu1—N11.985 (2)Cu2—O41.919 (2)
Cu1—N21.894 (2)Cu2—N41.982 (2)
Cu1—N32.045 (2)Cu2—N51.964 (2)
Cu2—O2i2.341 (2)
O1—Cu1—N195.46 (9)O2i—Cu2—O385.08 (8)
N1—Cu1—N284.42 (10)O1—Cu1—N2173.15 (11)
N2—Cu1—N381.51 (10)O1—Cu1—N398.33 (9)
O3—Cu2—O483.44 (8)N1—Cu1—N3165.85 (10)
N4—Cu2—N582.54 (9)O4—Cu2—N5167.33 (10)
O2i—Cu2—O4102.56 (9)O4—Cu2—N491.25 (9)
O2i—Cu2—N589.85 (9)N5—Cu2—O3100.37 (9)
O2i—Cu2—N4107.11 (9)N4—Cu2—O3167.55 (9)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1ii0.852.313.025 (3)141.3
N3—H3A···O5ii0.942.283.161 (4)156.8
N6—H6A···O40.862.072.772 (3)138.4
N6—H6B···O9iii0.862.253.043 (4)152.3
N7—H7A···O30.862.313.050 (3)144.7
N7—H7B···O5iv0.862.142.932 (3)153.2
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x1, y, z.
The geometric parameters of the ππ stacking interactions in (II) top
First ringSecond ringCg—CgαβSeparation
R1R1v3.4785 (17)013.78C13v[3.375 (4)], C14v[3.378 (3)]
R1R2vi3.7852 (18)5.70 (16)21.55C20vi[3.436 (4)], C21vi[3.529 (4)]
Notes: R1 denotes the thiazole ring consisting of atoms N4/C12/S1/C13/C14. R2 is the C18–C23 benzene ring. Cg—Cg, α and β denote the centroid-to-centroid separation, the dihedral angle between the ring planes and the offset angle, respectively. The separation is the perpendicular distance of the specified atom of the second ring from the plane of the first ring. Symmetry codes: (v) -x - 1, -y, -z; (vi) -x, -y, 1 - z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds