Download citation
Download citation
link to html
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine-coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxyl­ate groups of isonicotinate (IN) and benzene-1,2-dicarboxyl­ate (BDC2−) ligands to form La–carboxyl­ate chains, which are further expanded into a three-dimensional framework with nanometre-sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta- and hepta­dentate chelating–bridging modes, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109043856/bg3111sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109043856/bg3111Isup2.hkl
Contains datablock I

CCDC reference: 763586

Comment top

The rational design and construction of metal–organic coordination networks have aroused great interest owing to their intriguing topological architectures and their potential application as functional materials (Meares & Wensel, 1984; Scott & Horrocks, 1992; Reineke et al., 1999; Eddaoudi et al., 2001). Carboxylate lanthanide networks in particular have attracted increasing attention due to their ability to both chelate to a metal and simultaneously bridge to adjacent metals, especially with the larger and less rigid coordination spheres of rare earth elements. To design such coordination polymers, an effective synthetic approach is based on the deliberate combination of appropriate metal ions and multifunctional ligands. Up to now, a variety of multicarboxylate ligands such as pyridinecarboxylate, imidazoledicarboxylic acid and pyrazinecarboxylic acid etc. have been successfully employed as bridging groups to construct one-, two- and three-dimensional networks (Choi et al., 1998; MacGillivray et al., 1998; Evans et al., 1999; Chen et al., 2001; Suresh et al., 2001; Kumagai et al., 2002; Lu & Babb, 2003; Song et al., 2003). Our interest is to explore the cooperativity of mixed organic ligands in coordinating metal centres, and to construct novel coordination polymers with interesting and complicated architectures and topologies. As a continuation of our previous work (Wang, Li et al., 2007; Wang, Huang et al., 2007), here we report a new lanthanide coordination polymer, [La2(C6H4NO2)2(C8H4O4)2]n, (I), which displays an interesting three-dimensional coordination framework with nanometre-sized channels.

As shown in Fig. 1, the asymmetric unit contains two unique lanthanum(III) atoms, two BDC2- ligands and two IN- ligands. The La1 and La2 atoms are both nine-coordinate with distorted tricapped trigonal prismatic geometries. Each La atom is surrounded by two carboxylate O atoms from two IN ligands, six carboxylate O atoms from four BDC ligands and one pyridyl N atom. Interestingly, there are no hydroxo or aqua ligands within the structure, despite the synthesis being carried out in aqueous condition. The La—O bond distances are rather disperse and range from 2.366 (3) to 2.811 (3) Å; the La—N bond distances, however, are more even, with a range of 2.734 (4)-2.782 (4) Å.

The BDC ligands in the asymmetric unit exhibit two types of coordination modes as depicted in Fig. 2: one coordinates four LaIII ions in a pentadentate chelating–bridging mode (Fig. 2a), while the other binds to four LaIII ions in a heptadentate chelating–bridging mode (Fig. 2b). The IN ligands, however, adopt the same tridentate bridging mode with both carboxylate groups adopting a bimonodenate coordination mode, connecting two LaIII ions, while the N atom simultaneously coordinates a third LaIII centre (Fig. 2c). On the basis of these connection schemes of the BDC ligands, the lanthanum centres are bridged by oxo groups to form an infinite ladder-like chain along the a axis, with separations between adjacent LaIII ions of 4.326 (3), 4.375 (1), 4.499 (7) and 5.572 (1) Å, respectively (Fig. 3a). The remaining coordination sites of LaIII ions, however, are filled by the IN ligands. Thus, an interesting one-dimensional La–carboxylate chain with mixed ligands is formed (Fig. 3b), which is somewhat similar to that of {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)].H2O} n (Ln = Er and Tm) (Wang, Huang et al., 2007). However, what makes the difference is that the pyridyl N atom in that case is free and noncoordinated, thus making no contribution to the expansion of such chains into high-dimensional architecture, whereas the IN ligands in the present structure, acting as tri-connectors, not only afford the carboxylate groups as donor atoms, but also provide their pyridyl N atoms to covalently coordinate the LaIII ions. It is worth noting that carboxylate O atoms usually prefer to bind hard lanthanide ions while the softer N atom is ideally suited to bind soft transition metal ions such as Ag and Cu, according to the hard–soft acid–base theory. A search of the literature and the Cambridge Structural Database (CSD, Februry 2009; Allen, 2002) reveals that, despite the existence of several 3d–4f and 4d–4f heterometallic Ln–TM [TM = transition metal?] coordination polymers incorporating the IN ligand (Zhang et al., 2005; Luo et al., 2006; Gu & Xue, 2006; Liu et al., 2006; Gu & Xue, 2007a,b; Cheng et al., 2008; Wang et al., 2008; Lian et al., 2009), the lanthanide frameworks directly assembled from the covalent N—Ln linkage mode are relatively rare (Gu & Xue, 2007a,b). In the title compound, however, adjacent La–carboxylate chains are directly interconnected with each other by the covalent N—Ln linkages, forming a three-dimensional framework and leaving in between rectangular one-dimensional channels parallel to the chains, in part occupied by BDC ligands and with approximate dimensions 12 x 17 Å, as defined by the limiting La centres (Fig. 4).

Related literature top

For related literature, see: Chen et al. (2001); Cheng et al. (2008); Choi & Suh (1998); Eddaoudi et al. (2001); Evans et al. (1999); Gu & Xue (2006, 2007a,b); Kumagai et al. (2002); Lian et al. (2009); Liu et al. (2006); Lu & Babb (2003); Luo et al. (2006); MacGillivray et al. (1998); Meares & Wensel (1984); Reineke et al. (1999); Scott & Horrocks (1992); Song et al. (2003); Suresh et al. (2001); Wang, Li et al. (2007); Wang, Huang et al. (2007); Zhang et al. (2005).

Experimental top

The title compound was synthesized under mild hydrothermal conditions. Typically, La2O3 (0.5 mmol, 0.163 g), HIN (2.30 mmol, 0.284 g), H2BDC (0.75 mmol, 0.122 g) and H2O (10 ml) were sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 9 d. The yellow prism-like crystals obtained were recovered by filtration, washed with distilled water and dried in air.

Refinement top

All H atoms bound to C atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 2 - x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) 1 - x, -1/2 + y, 1/2 - z.
[Figure 2] Fig. 2. Coordination modes of IN and BDC ligands in (I).
[Figure 3] Fig. 3. Different views of the one-dimensional infinite chains constructed from the BDC ligands only (a), and those from IN and BDC mixed ligands (b).
[Figure 4] Fig. 4. A view of the three-dimensional La–carboxylate framework with one-dimensional rectangle-like channels.
Poly[bis(µ4-benzene-1,2-dicarboxylato)di-µ3-isonicotinato- dilanthanum(III)] top
Crystal data top
[La2(C8H4O4)2(C6H4NO2)2]F(000) = 1632
Mr = 850.25Dx = 2.124 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20786 reflections
a = 9.9357 (3) Åθ = 1.9–26.5°
b = 12.4348 (5) ŵ = 3.24 mm1
c = 21.6047 (3) ÅT = 295 K
β = 95.067 (4)°Prism, yellow
V = 2658.80 (14) Å30.25 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5502 independent reflections
Radiation source: fine-focus sealed tube4666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.498, Tmax = 0.697k = 1515
20786 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.5719P]
where P = (Fo2 + 2Fc2)/3
5502 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[La2(C8H4O4)2(C6H4NO2)2]V = 2658.80 (14) Å3
Mr = 850.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9357 (3) ŵ = 3.24 mm1
b = 12.4348 (5) ÅT = 295 K
c = 21.6047 (3) Å0.25 × 0.13 × 0.12 mm
β = 95.067 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
5502 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4666 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.697Rint = 0.049
20786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 1.08 e Å3
5502 reflectionsΔρmin = 1.02 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.46777 (3)0.46595 (2)0.401637 (12)0.01631 (8)
La20.90824 (3)0.44818 (2)0.405811 (12)0.01683 (8)
O10.0605 (3)0.4668 (3)0.32027 (16)0.0253 (8)
O20.2654 (4)0.5299 (3)0.34815 (17)0.0328 (9)
O30.5565 (4)0.4610 (3)0.29888 (16)0.0270 (8)
O40.7745 (3)0.5028 (3)0.30861 (15)0.0285 (8)
O50.5362 (3)0.6585 (3)0.37493 (15)0.0252 (8)
O60.7022 (3)0.5700 (3)0.42640 (16)0.0233 (7)
O70.6876 (3)0.6504 (3)0.54723 (15)0.0289 (8)
O80.9108 (3)0.6722 (3)0.55799 (16)0.0283 (8)
O90.5872 (3)0.4120 (3)0.50911 (14)0.0213 (7)
O100.6893 (3)0.3420 (3)0.43266 (15)0.0216 (7)
O110.9024 (3)0.4232 (3)0.52382 (15)0.0242 (7)
O121.0246 (3)0.3584 (3)0.60537 (16)0.0277 (8)
C10.1563 (5)0.5289 (4)0.3139 (2)0.0218 (10)
C20.1443 (5)0.6107 (4)0.2622 (2)0.0232 (11)
C30.0291 (5)0.6155 (4)0.2212 (2)0.0322 (12)
H3A0.04150.56710.22390.039*
C40.0227 (5)0.6943 (4)0.1764 (2)0.0333 (13)
H4A0.05470.69730.14890.040*
C50.2289 (5)0.7586 (4)0.2087 (3)0.0325 (13)
H5A0.29940.80640.20410.039*
C60.2449 (5)0.6842 (4)0.2558 (2)0.0310 (12)
H6A0.32290.68370.28300.037*
C70.6562 (5)0.5149 (4)0.2854 (2)0.0196 (10)
C80.6316 (5)0.6018 (4)0.2385 (2)0.0208 (10)
C90.5290 (5)0.5985 (4)0.1916 (2)0.0335 (13)
H9A0.47430.53790.18630.040*
C100.5077 (6)0.6852 (5)0.1526 (3)0.0391 (14)
H10A0.43810.68120.12100.047*
C110.6813 (6)0.7757 (5)0.2016 (3)0.0484 (17)
H11A0.73480.83710.20540.058*
C120.7117 (6)0.6929 (4)0.2420 (3)0.0375 (14)
H12A0.78550.69780.27160.045*
C130.6465 (5)0.6575 (4)0.4081 (2)0.0206 (10)
C140.7107 (5)0.7629 (4)0.4263 (2)0.0213 (10)
C150.6956 (5)0.8483 (4)0.3846 (3)0.0324 (12)
H15A0.64350.83960.34700.039*
C160.7578 (6)0.9465 (4)0.3986 (3)0.0395 (15)
H16A0.75101.00230.36990.047*
C170.8295 (6)0.9602 (4)0.4556 (3)0.0410 (15)
H17A0.86801.02670.46600.049*
C180.8448 (5)0.8757 (4)0.4973 (2)0.0304 (12)
H18A0.89680.88510.53480.036*
C190.7835 (5)0.7773 (4)0.4839 (2)0.0208 (10)
C200.7943 (5)0.6912 (3)0.5331 (2)0.0183 (10)
C210.6643 (4)0.3428 (4)0.4891 (2)0.0189 (10)
C220.7124 (5)0.2529 (4)0.5313 (2)0.0195 (10)
C230.6270 (5)0.1657 (4)0.5363 (2)0.0299 (12)
H23A0.54450.16320.51240.036*
C240.6638 (6)0.0839 (5)0.5762 (3)0.0434 (15)
H24A0.60530.02630.57990.052*
C250.7856 (6)0.0855 (5)0.6108 (3)0.0423 (15)
H25A0.81020.02870.63750.051*
C260.8719 (5)0.1711 (4)0.6062 (2)0.0327 (12)
H26A0.95410.17250.63040.039*
C270.8374 (5)0.2550 (4)0.5660 (2)0.0205 (10)
C280.9286 (5)0.3505 (4)0.5645 (2)0.0223 (10)
N10.1191 (4)0.7665 (3)0.16935 (19)0.0284 (10)
N20.5802 (5)0.7735 (4)0.1574 (2)0.0364 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01523 (15)0.01797 (14)0.01548 (15)0.00097 (10)0.00009 (10)0.00008 (10)
La20.01534 (15)0.01883 (15)0.01610 (15)0.00079 (10)0.00009 (10)0.00103 (10)
O10.0210 (18)0.0292 (19)0.0262 (19)0.0026 (15)0.0052 (15)0.0046 (15)
O20.026 (2)0.038 (2)0.033 (2)0.0015 (16)0.0067 (16)0.0108 (17)
O30.032 (2)0.0280 (19)0.0215 (19)0.0030 (15)0.0049 (15)0.0014 (14)
O40.0252 (19)0.036 (2)0.0234 (19)0.0030 (16)0.0030 (15)0.0031 (16)
O50.0249 (18)0.0256 (18)0.0239 (19)0.0046 (14)0.0043 (15)0.0008 (15)
O60.0235 (18)0.0188 (17)0.0277 (19)0.0038 (14)0.0023 (14)0.0020 (14)
O70.0280 (19)0.034 (2)0.0251 (19)0.0086 (16)0.0042 (15)0.0035 (16)
O80.0239 (19)0.0289 (19)0.031 (2)0.0036 (15)0.0047 (15)0.0021 (15)
O90.0197 (17)0.0220 (17)0.0221 (18)0.0028 (14)0.0021 (14)0.0009 (14)
O100.0236 (18)0.0224 (17)0.0189 (18)0.0007 (14)0.0030 (13)0.0017 (14)
O110.0251 (18)0.0218 (17)0.0256 (19)0.0032 (15)0.0022 (15)0.0024 (15)
O120.0219 (18)0.0272 (19)0.032 (2)0.0025 (15)0.0072 (15)0.0017 (15)
C10.017 (2)0.029 (3)0.020 (3)0.006 (2)0.0044 (19)0.003 (2)
C20.026 (3)0.022 (3)0.022 (3)0.000 (2)0.005 (2)0.001 (2)
C30.023 (3)0.039 (3)0.033 (3)0.007 (2)0.005 (2)0.007 (2)
C40.027 (3)0.044 (3)0.026 (3)0.010 (2)0.011 (2)0.012 (2)
C50.030 (3)0.029 (3)0.038 (3)0.006 (2)0.001 (2)0.015 (2)
C60.021 (3)0.034 (3)0.037 (3)0.001 (2)0.005 (2)0.008 (2)
C70.022 (3)0.021 (2)0.016 (2)0.001 (2)0.0023 (19)0.0033 (19)
C80.021 (2)0.023 (2)0.019 (3)0.006 (2)0.0037 (19)0.001 (2)
C90.035 (3)0.031 (3)0.032 (3)0.004 (2)0.011 (2)0.009 (2)
C100.044 (4)0.037 (3)0.033 (3)0.006 (3)0.008 (3)0.005 (3)
C110.050 (4)0.033 (3)0.060 (4)0.013 (3)0.004 (3)0.014 (3)
C120.034 (3)0.031 (3)0.047 (4)0.000 (2)0.003 (3)0.008 (3)
C130.022 (2)0.027 (3)0.013 (2)0.006 (2)0.0035 (19)0.0008 (19)
C140.020 (2)0.021 (2)0.023 (3)0.0032 (19)0.0036 (19)0.004 (2)
C150.033 (3)0.027 (3)0.036 (3)0.001 (2)0.007 (2)0.008 (2)
C160.045 (4)0.028 (3)0.043 (4)0.011 (3)0.004 (3)0.017 (3)
C170.042 (4)0.022 (3)0.056 (4)0.011 (2)0.012 (3)0.004 (3)
C180.029 (3)0.027 (3)0.034 (3)0.008 (2)0.005 (2)0.002 (2)
C190.019 (2)0.024 (2)0.020 (3)0.000 (2)0.0029 (19)0.002 (2)
C200.025 (3)0.016 (2)0.013 (2)0.0015 (19)0.0017 (19)0.0036 (18)
C210.016 (2)0.016 (2)0.024 (3)0.0025 (18)0.0015 (19)0.0005 (19)
C220.022 (2)0.020 (2)0.017 (2)0.0001 (19)0.0053 (19)0.0014 (19)
C230.026 (3)0.028 (3)0.036 (3)0.004 (2)0.001 (2)0.005 (2)
C240.041 (3)0.032 (3)0.058 (4)0.009 (3)0.010 (3)0.017 (3)
C250.049 (4)0.027 (3)0.050 (4)0.003 (3)0.008 (3)0.019 (3)
C260.028 (3)0.033 (3)0.036 (3)0.003 (2)0.006 (2)0.008 (2)
C270.021 (2)0.018 (2)0.022 (3)0.0019 (19)0.004 (2)0.0027 (19)
C280.021 (3)0.023 (3)0.024 (3)0.002 (2)0.006 (2)0.003 (2)
N10.030 (2)0.030 (2)0.027 (2)0.0041 (19)0.0065 (19)0.0079 (19)
N20.041 (3)0.036 (3)0.034 (3)0.011 (2)0.012 (2)0.012 (2)
Geometric parameters (Å, º) top
La1—O22.366 (3)C5—H5A0.9300
La1—O32.461 (3)C6—H6A0.9300
La1—O52.569 (3)C7—C81.487 (6)
La1—O62.677 (3)C8—C91.373 (6)
La1—O7i2.449 (3)C8—C121.383 (7)
La1—O9i2.551 (3)C9—C101.374 (7)
La1—O92.601 (3)C9—H9A0.9300
La1—O102.723 (3)C10—N21.312 (7)
La1—N2ii2.734 (4)C10—H10A0.9300
La2—O1iii2.500 (3)C11—N21.324 (7)
La2—O42.479 (3)C11—C121.366 (8)
La2—O62.616 (3)C11—H11A0.9300
La2—O8iv2.416 (3)C12—H12A0.9300
La2—O102.652 (3)C13—C141.495 (6)
La2—O112.574 (3)C14—C151.393 (7)
La2—O11iv2.811 (3)C14—C191.394 (6)
La2—O12iv2.513 (3)C15—C161.389 (7)
La2—N1ii2.782 (4)C15—H15A0.9300
O1—C11.243 (6)C16—C171.377 (8)
O2—C11.258 (6)C16—H16A0.9300
O3—C71.251 (6)C17—C181.384 (7)
O4—C71.246 (6)C17—H17A0.9300
O5—C131.255 (5)C18—C191.385 (6)
O6—C131.268 (5)C18—H18A0.9300
O7—C201.238 (5)C19—C201.506 (6)
O8—C201.255 (5)C21—C221.494 (6)
O10—C211.266 (5)C22—C231.387 (7)
O11—C281.272 (6)C22—C271.392 (6)
O12—C281.245 (5)C23—C241.362 (7)
C1—C21.508 (7)C23—H23A0.9300
C2—C61.370 (7)C24—C251.365 (8)
C2—C31.385 (6)C24—H24A0.9300
C3—C41.375 (7)C25—C261.376 (7)
C3—H3A0.9300C25—H25A0.9300
C4—N11.331 (6)C26—C271.382 (7)
C4—H4A0.9300C26—H26A0.9300
C5—N11.326 (6)C27—C281.495 (6)
C5—C61.375 (7)
O2—La1—O7i82.91 (12)C6—C2—C1120.9 (4)
O2—La1—O385.67 (12)C3—C2—C1120.6 (4)
O7i—La1—O3133.05 (11)C4—C3—C2117.7 (5)
O2—La1—O9i86.54 (12)C4—C3—H3A121.1
O7i—La1—O9i79.90 (11)C2—C3—H3A121.1
O3—La1—O9i144.55 (10)N1—C4—C3124.9 (5)
O2—La1—O578.89 (11)N1—C4—H4A117.6
O7i—La1—O5147.33 (11)C3—C4—H4A117.6
O3—La1—O572.40 (11)N1—C5—C6124.0 (5)
O9i—La1—O572.17 (10)N1—C5—H5A118.0
O2—La1—O9145.46 (11)C6—C5—H5A118.0
O7i—La1—O972.61 (10)C2—C6—C5119.1 (5)
O3—La1—O9128.86 (11)C2—C6—H6A120.5
O9i—La1—O965.79 (11)C5—C6—H6A120.5
O5—La1—O9109.40 (10)O4—C7—O3125.4 (5)
O2—La1—O6128.46 (11)O4—C7—C8117.0 (4)
O7i—La1—O6140.12 (11)O3—C7—C8117.5 (4)
O3—La1—O679.49 (11)C9—C8—C12116.9 (5)
O9i—La1—O678.58 (10)C9—C8—C7123.2 (4)
O5—La1—O649.57 (10)C12—C8—C7119.9 (4)
O9—La1—O668.02 (10)C8—C9—C10119.5 (5)
O2—La1—O10160.78 (11)C8—C9—H9A120.3
O7i—La1—O1094.75 (11)C10—C9—H9A120.3
O3—La1—O1082.05 (10)N2—C10—C9123.7 (5)
O9i—La1—O10111.92 (10)N2—C10—H10A118.1
O5—La1—O10111.03 (10)C9—C10—H10A118.1
O9—La1—O1048.61 (9)N2—C11—C12123.8 (6)
O6—La1—O1063.51 (10)N2—C11—H11A118.1
O2—La1—N2ii87.75 (14)C12—C11—H11A118.1
O7i—La1—N2ii66.60 (12)C11—C12—C8119.2 (5)
O3—La1—N2ii67.57 (12)C11—C12—H12A120.4
O9i—La1—N2ii146.47 (12)C8—C12—H12A120.4
O5—La1—N2ii138.56 (12)O5—C13—O6121.5 (4)
O9—La1—N2ii103.77 (13)O5—C13—C14118.2 (4)
O6—La1—N2ii128.97 (12)O6—C13—C14120.3 (4)
O10—La1—N2ii73.92 (12)O5—C13—La159.5 (2)
O8iv—La2—O4140.53 (12)O6—C13—La164.5 (2)
O8iv—La2—O1iii79.36 (11)C14—C13—La1162.9 (3)
O4—La2—O1iii70.26 (11)C15—C14—C19119.8 (4)
O8iv—La2—O12iv115.34 (11)C15—C14—C13118.6 (4)
O4—La2—O12iv77.47 (11)C19—C14—C13121.6 (4)
O1iii—La2—O12iv69.95 (11)C16—C15—C14120.5 (5)
O8iv—La2—O1171.68 (11)C16—C15—H15A119.8
O4—La2—O11144.59 (11)C14—C15—H15A119.8
O1iii—La2—O11144.22 (11)C17—C16—C15119.3 (5)
O12iv—La2—O11103.89 (11)C17—C16—H16A120.3
O8iv—La2—O6151.03 (11)C15—C16—H16A120.3
O4—La2—O667.45 (11)C16—C17—C18120.4 (5)
O1iii—La2—O6127.26 (10)C16—C17—H17A119.8
O12iv—La2—O671.36 (10)C18—C17—H17A119.8
O11—La2—O679.35 (11)C17—C18—C19120.9 (5)
O8iv—La2—O10102.81 (11)C17—C18—H18A119.5
O4—La2—O1086.18 (11)C19—C18—H18A119.5
O1iii—La2—O10140.28 (10)C18—C19—C14118.9 (4)
O12iv—La2—O10136.66 (10)C18—C19—C20118.6 (4)
O11—La2—O1068.45 (10)C14—C19—C20122.5 (4)
O6—La2—O1065.30 (10)O7—C20—O8126.5 (4)
O8iv—La2—N1ii73.56 (12)O7—C20—C19117.2 (4)
O4—La2—N1ii73.19 (12)O8—C20—C19116.2 (4)
O1iii—La2—N1ii71.22 (11)O9—C21—O10121.0 (4)
O12iv—La2—N1ii137.25 (12)O9—C21—C22118.4 (4)
O11—La2—N1ii118.07 (11)O10—C21—C22120.2 (4)
O6—La2—N1ii122.15 (11)O9—C21—La159.0 (2)
O10—La2—N1ii71.55 (11)O10—C21—La164.6 (2)
O8iv—La2—O11iv74.59 (11)C22—C21—La1156.6 (3)
O4—La2—O11iv125.81 (11)C23—C22—C27119.7 (4)
O1iii—La2—O11iv85.83 (10)C23—C22—C21117.8 (4)
O12iv—La2—O11iv48.46 (10)C27—C22—C21122.4 (4)
O11—La2—O11iv66.77 (11)C24—C23—C22120.1 (5)
O6—La2—O11iv94.29 (10)C24—C23—H23A120.0
O10—La2—O11iv133.44 (10)C22—C23—H23A120.0
N1ii—La2—O11iv143.52 (11)C23—C24—C25120.7 (5)
C1—O1—La2v131.2 (3)C23—C24—H24A119.6
C1—O2—La1159.3 (3)C25—C24—H24A119.6
C7—O3—La1123.4 (3)C24—C25—C26120.0 (5)
C7—O4—La2142.2 (3)C24—C25—H25A120.0
C13—O5—La195.6 (3)C26—C25—H25A120.0
C13—O6—La2140.4 (3)C25—C26—C27120.5 (5)
C13—O6—La190.2 (3)C25—C26—H26A119.7
La2—O6—La1111.49 (11)C27—C26—H26A119.7
C20—O7—La1i160.3 (3)C26—C27—C22118.9 (4)
C20—O8—La2iv152.5 (3)C26—C27—C28119.7 (4)
C21—O9—La1i147.9 (3)C22—C27—C28121.1 (4)
C21—O9—La196.6 (3)O12—C28—O11122.1 (4)
La1i—O9—La1114.21 (11)O12—C28—C27118.4 (4)
C21—O10—La2116.2 (3)O11—C28—C27119.5 (4)
C21—O10—La190.5 (3)O12—C28—La2iv54.6 (2)
La2—O10—La1108.97 (11)O11—C28—La2iv68.3 (3)
C28—O11—La2138.5 (3)C27—C28—La2iv165.5 (3)
C28—O11—La2iv86.8 (3)C5—N1—C4115.9 (4)
La2—O11—La2iv113.23 (11)C5—N1—La2vi117.8 (3)
C28—O12—La2iv101.6 (3)C4—N1—La2vi125.5 (3)
O1—C1—O2124.7 (5)C10—N2—C11116.8 (5)
O1—C1—C2119.3 (4)C10—N2—La1vi128.6 (4)
O2—C1—C2115.9 (4)C11—N2—La1vi114.1 (4)
C6—C2—C3118.4 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[La2(C8H4O4)2(C6H4NO2)2]
Mr850.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.9357 (3), 12.4348 (5), 21.6047 (3)
β (°) 95.067 (4)
V3)2658.80 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.25 × 0.13 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.498, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
20786, 5502, 4666
Rint0.049
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.03
No. of reflections5502
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 1.02

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
La1—O22.366 (3)La2—O1iii2.500 (3)
La1—O32.461 (3)La2—O42.479 (3)
La1—O52.569 (3)La2—O62.616 (3)
La1—O62.677 (3)La2—O8iv2.416 (3)
La1—O7i2.449 (3)La2—O102.652 (3)
La1—O9i2.551 (3)La2—O112.574 (3)
La1—O92.601 (3)La2—O11iv2.811 (3)
La1—O102.723 (3)La2—O12iv2.513 (3)
La1—N2ii2.734 (4)La2—N1ii2.782 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds