Download citation
Download citation
link to html
The title complex comprises two Ni2+ ions, four fluorinated ligands and two water mol­ecules in a centrosymmetric dinuclear complex. This compound was crystallized from benzene–CH2Cl2, and two types of crystals, viz. the title benzene tetra­solvate, [Ni2(C15HF10O2)4(H2O)2]·4C6H6, (I), and the previously reported benzene disolvate, [Ni2(C15HF10O2)4(H2O)2]·2C6H6, (II) [Hori et al. (2009). Bull. Chem. Soc. Jpn, 82, 96–98], were obtained as pseudopolymorphs. In the crystal structure of (I), the four benzene solvent mol­ecules inter­act closely with all the penta­fluoro­phenyl groups of the complex through arene–perfluoro­arene inter­actions. The mol­ecular structures of the two compounds show essentially the same conformation, although the benzene mol­ecules are accommodated in a columnar packing in (I), while they are isolated from each other in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109037184/bg3106sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109037184/bg3106Isup2.hkl
Contains datablock I

CCDC reference: 760055

Comment top

Coordination complexes with dibenzoylmethane (dbm) and transition metals (M = CoII, NiII, CuII or PdII) form isomorphs of the flat mononuclear complex M(dbm)2 (Vigato et al., 2009; Soldatov et al., 2001). While single crystals of M(dbm)2 have no crystallization solvent molecules, coordination complexes of bis(pentafluorophenyl)propane-1,3-dione (L), which is fully fluorinated dbm, produce unique crystals which take in benzene molecules abundantly when crystallized from a benzene–CH2Cl2 solvent mixture (Hori & Arii, 2007, Hori et al., 2009). For example, single crystals of [Cu(L)2] were obtained as [Cu(L)2].3C6H6 with 21 wt% benzene molecules. Complexation of L and NiII ions gave a dinuclear nickel(II) complex, and single crystals were obtained as [Ni2(L)4(H2O)2].2C6H6, (II), with 8 wt% benzene molecules. These high capacities for solvent occlusion are explained by the arene–perfluoroarene interaction, which is currently well known as an electrostatic interaction (Patrick & Prosser, 1960; Williams, 1993), between the pentafluorophenyl groups of the complex and the benzene molecules. In the crystal structure of (II) (Hori et al., 2009), however, the pentafluorophenyl groups are in close contact not only with benzene molecules, but also with other pentafluorophenyl groups by ππ stacking.

During detailed analysis of a series of complexes showing arene–perfluoroarene interactions, we accidentally found the title unique pseudopolymorph example of [Ni2(L)4(H2O)2].4C6H6, (I), with 15 wt% benzene molecules. Four benzene molecules are included in one complex unit. In this study, the two crystal forms, (I) and (II), are compared and discussed in relation to the arene–perfluoroarene interaction.

Two types of green crystals were obtained from a benzene–CH2Cl2 mixture. The shapes of the crystals were mainly blocks, but a few crystals showed prismatic forms. Most crystals were monoclinic, P21/n, a = 11.5848 (5) Å, b = 16.1079 (6) Å, c = 18.0508 (7) Å, β = 99.0500 (10)°, V = 3326.5 (2) Å3 and Z = 2, which are the cell parameters of [Ni2(L)4(H2O)2].2C6H6, (II). However, we found a crystal with different parameters, namely triclinic, P1, a = 12.0236 (13) Å, b = 12.4384 (14) Å, c = 14.0058 (15) Å, α = 82.9800 (10)°, β = 73.4110 (10)°, γ = 74.5360 (10)°, V = 1932.4 (4) Å3, and Z = 1. This is a benzene-rich pseudopolymorph of [Ni2(L)4(H2O)2].4C6H6, (I). Unfortunately, we could not control the ratio of the products to isolate (I).

The structure of the entire complex and the surrounding benzene molecules of (I) is shown in Fig. 1. The asymmetric unit contains one-half of the complex, one whole benzene molecule (C31–C36, benzene-1), and two half-benzene molecules (C37–C39, benzene-2; C40–C42, benzene-3). The complex is centrosymmetric and comprises two NiII ions, four L ligands and two water molecules to give a dinuclear nickel(II) complex. The compositions of the complexes in (I) and (II) are exactly the same. The same coordination mode exhibited by these complexes is also known for NiII ions and acetylacetonate ligands (Tahir et al., 2007). The geometries around the metal centres are pseudo-octahedral. The metal–metal separations are 3.115 Å in (I) and 3.139 Å in (II). The Ni1—O1, Ni1—O2, Ni1—O3, Ni1—O4 and Ni1—O4i [symmetry code: (i) -x, -y + 1, -z in (I) and -x + 1, -y, -z in (II)] distances are 1.9804 (13), 1.9974 (13), 2.0003 (13), 2.0401 (13) and 2.0922 (13) Å for (I), and 1.9842 (11), 2.0138 (12), 2.0087 (12), 2.0231 (11) and 2.1224 (12) Å for (II), respectively. The Ni1—O5water distances in (I) and (II) are 2.0854 (14) and 2.0829 (13) Å, respectively. The OC bond distances of (I) and (II) are very close to each other: O1—C7 = 1.267 (2), O2—C9 = 1.278 (2), O3—C22 = 1.251 (2) and O4—C24 = 1.288 (2) Å for (I); O1—C7 = 1.266 (2), O2—C9 = 1.271 (2), O3—C22 = 1.252 (2) and O4—C24 = 1.293 (2) Å for (II).

The pentafluorophenyl groups of (I) and (II) are highly twisted with respect to the coordination plane. The torsion angles C5—C6—C7—C8, C8—C9—C10—C15, C20—C21—C22—C23 and C23—C24—C25—C30 are 34.0 (3), 31.2 (3), 51.3 (3) and 67.1 (3)°, respectively, in (I), and 37.9 (2), 64.5 (2), 36.0 (2) and 67.2 (2)°, respectively, in (II); the two torsion angles C5—C6—C7—C8 and C23—C24—C25—C30 are almost the same. Thus, it is clearly shown that the direction and angles of the intramolecular ππ stacking between the two corresponding pentafluorophenyl rings, C1–C6 and C25–C30, are essentially the same. In the structure of (II), the C10–C15 ring is surrounded by four pentafluorophenyl groups of other molecules and no significant plane-to-plane stacking is observed. In contrast, all the pentafluorophenyl rings have intermolecular stacking with benzene molecules in the structure of (I). In particular, six pentafluorophenyl rings of the complex and three benzene molecules (two benzene-1 and one benzene-3) are columnar stacked along the c axis. The remaining two pentafluorophenyl rings (C16–C21) and benzene-2 are perpendicularly aligned with respect to the other rings.

The packing structures of (I) and (II) are shown in Figs. 2 and 3, respectively. In the crystal structure of (I), cavities exist along the b axis, and benzene-2 and benzene-3 are packed alternately in these cavities with the benzene planes twisted. No strong intermolecular interactions are observed between the benzene molecules in the cavities; the closest intermolecular H···H distances of the benzene molecules are around 2.78–2.93 Å. The cavity is surrounded by pentafluorophenyl rings from four directions to stabilize the benzene positions. The benzene-2 and benzene-3 molecules are sandwiched between the C16–C21 and C1–C6 pentafluorophenyl rings, respectively. Both of the average intermolecular plane-to-plane distances are around 3.5 Å, and the shortest F15···C38 distance is 3.07 Å and that of C1···C42 is 3.31 Å, indicating arene–perfluoroarene interaction. Benzene-1 is also stabilized between the two pentafluorophenyl rings, C10–C15 and C25–C30, and the average distance of the intermolecular stacking is around 3.5 Å. C—H···F interactions (Thalladi et al., 1998) are also observed as intermolecular interactions between the benzene and pentafluorophenyl rings, e.g. the F20···H31 and F20···H36 distances are 2.61 and 2.55 Å, respectively. Additionally, C—F···π interactions are observed between the pentafluorophenyl rings; the intermolecular distances of F14···C15, F13···C12 and F13···C13 are 3.16, 2.95 and 2.98 Å, respectively.

The crystal structure of (I) contains two types of benzene molecule; benzene-2 and benzene-3 are packed alternately in the cavity, and benzene-1 is adjacently packed in the same direction as benzene-3. In the crystal structure of (II), on the other hand, the benzene molecules are three-dimensionally isolated by pentafluorophenyl rings of the complex, as shown in Fig. 3. The benzene molecule is sandwiched by two pentafluorophenyl rings, C16–C21 and C25–C30, and the intermolecular plane-to-plane distances are around 3.4 Å. In both (I) and (II), the benzene molecules are stabilized by the arene–perfluoroarene interaction through a strong host–guest interaction.

Experimental top

The dinuclear nickel(II) complex was prepared as reported by Hori et al. (2009). The result of the elemental analysis showed the formation of the complex (calculated for C60H8F40Ni2O10: C 40.81, H 0.46%; found: C 40.98, H 0.47%]. The complex was crystallized from CH2Cl2 by the gas-phase diffusion of benzene to give green crystals of (I) and (II), in principle optically indistinguishable from each other, and suitable for X-ray structural work.

Refinement top

H atoms attached to C atoms were refined as riding on their idealized positions, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) [Please check added text]. Water atoms H5A and H5B were located in a difference Fourier density map and refined freely [O—H5A = 0.88 (3) Å and O5—H5B = 0.99 (4) Å].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The entire dinuclear nickel(II) complex, (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A crystal packing view of (I), projected along the c axis, showing the columnar arrangement of the benzene molecules linked by arene–perfluoroarene interactions between the pentafluorophenyl groups and the benzene solvent molecules.
[Figure 3] Fig. 3. A crystal packing view of (II) (Hori et al., 2009), projected along the c axis.
bis[µ-1,3-bis(pentafluorophenyl)propane-1,3-dionato]- κ3O,O':O';κ3O:O,O'- bis{aqua[1,3-bis(pentafluorophenyl)propane-1,3-dionato- κ2O,O']nickel(II)} benzene tetrasolvate top
Crystal data top
[Ni2(C15HF10O2)4(H2O)2]·4C6H6Z = 1
Mr = 2078.48F(000) = 1032
Triclinic, P1Dx = 1.786 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.0236 (13) ÅCell parameters from 7845 reflections
b = 12.4384 (14) Åθ = 2.2–27.6°
c = 14.0058 (15) ŵ = 0.65 mm1
α = 82.980 (1)°T = 100 K
β = 73.411 (1)°Prism, green
γ = 74.536 (1)°0.25 × 0.20 × 0.15 mm
V = 1932.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8387 independent reflections
Radiation source: fine-focus sealed tube6817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.333 pixels mm-1θmax = 27.1°, θmin = 2.0°
ϕ and ω scansh = 1515
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick 1996)
k = 1515
Tmin = 0.855, Tmax = 0.909l = 1717
21369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.918P]
where P = (Fo2 + 2Fc2)/3
8387 reflections(Δ/σ)max = 0.001
621 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni2(C15HF10O2)4(H2O)2]·4C6H6γ = 74.536 (1)°
Mr = 2078.48V = 1932.4 (4) Å3
Triclinic, P1Z = 1
a = 12.0236 (13) ÅMo Kα radiation
b = 12.4384 (14) ŵ = 0.65 mm1
c = 14.0058 (15) ÅT = 100 K
α = 82.980 (1)°0.25 × 0.20 × 0.15 mm
β = 73.411 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8387 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick 1996)
6817 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.909Rint = 0.023
21369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
8387 reflectionsΔρmin = 0.29 e Å3
621 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00116 (2)0.410022 (19)0.087777 (17)0.01701 (7)
O10.06914 (11)0.27984 (10)0.14248 (9)0.0181 (3)
O20.15215 (11)0.51274 (11)0.16044 (9)0.0200 (3)
O30.08529 (11)0.37625 (11)0.19468 (10)0.0212 (3)
O40.06909 (11)0.54509 (11)0.03721 (9)0.0186 (3)
O50.14767 (12)0.31271 (13)0.00840 (11)0.0251 (3)
C10.05628 (17)0.07334 (16)0.25328 (14)0.0216 (4)
C20.06490 (17)0.03333 (16)0.29060 (15)0.0231 (4)
C30.17241 (18)0.05077 (15)0.34902 (15)0.0232 (4)
C40.27162 (17)0.03806 (16)0.36960 (15)0.0229 (4)
C50.26185 (17)0.14316 (16)0.33049 (14)0.0212 (4)
C60.15453 (16)0.16564 (15)0.27212 (14)0.0188 (4)
C70.14225 (16)0.27988 (15)0.22797 (14)0.0177 (4)
C80.21252 (16)0.37416 (15)0.28141 (14)0.0190 (4)
H80.25610.36290.34850.023*
C90.22165 (16)0.48339 (15)0.24116 (13)0.0174 (4)
C100.32179 (17)0.57730 (16)0.29007 (14)0.0197 (4)
C110.30947 (17)0.68702 (17)0.27761 (14)0.0228 (4)
C120.40326 (19)0.77692 (16)0.31306 (15)0.0252 (4)
C130.51227 (18)0.75891 (16)0.36614 (15)0.0252 (4)
C140.52769 (17)0.65183 (18)0.38150 (15)0.0265 (4)
C150.43503 (18)0.56379 (16)0.34259 (15)0.0235 (4)
C160.27702 (17)0.23856 (17)0.27436 (15)0.0231 (4)
C170.33567 (18)0.18178 (17)0.34349 (16)0.0268 (4)
C180.35604 (17)0.24058 (17)0.41139 (15)0.0245 (4)
C190.32161 (17)0.35547 (17)0.40775 (14)0.0232 (4)
C200.26868 (17)0.41129 (16)0.33414 (14)0.0215 (4)
C210.24184 (16)0.35471 (16)0.26780 (14)0.0206 (4)
C220.17306 (17)0.41247 (16)0.19419 (14)0.0202 (4)
C230.21164 (17)0.50139 (17)0.13233 (14)0.0231 (4)
H230.27980.52050.14030.028*
C240.15817 (16)0.56236 (16)0.06154 (14)0.0190 (4)
C250.20685 (17)0.66029 (16)0.00974 (14)0.0212 (4)
C260.14104 (18)0.76875 (17)0.02604 (15)0.0264 (4)
C270.1862 (2)0.85962 (18)0.01646 (19)0.0367 (5)
C280.3000 (2)0.8419 (2)0.07911 (19)0.0400 (6)
C290.3672 (2)0.7356 (2)0.09809 (17)0.0379 (6)
C300.32053 (19)0.64587 (18)0.05342 (16)0.0293 (5)
C310.5354 (2)0.7238 (2)0.08381 (18)0.0380 (5)
H310.60420.66970.05200.046*
C320.5359 (2)0.8354 (2)0.07292 (19)0.0432 (6)
H320.60540.85810.03420.052*
C330.4349 (2)0.9144 (2)0.1184 (2)0.0454 (6)
H330.43560.99120.11100.055*
C340.3330 (2)0.8822 (2)0.17455 (17)0.0370 (5)
H340.26360.93670.20480.044*
C350.3329 (2)0.7696 (2)0.18638 (17)0.0361 (5)
H350.26330.74710.22530.043*
C360.4334 (2)0.6903 (2)0.14175 (18)0.0350 (5)
H360.43320.61340.15030.042*
C370.9668 (2)0.4303 (2)0.44925 (18)0.0396 (6)
H370.94410.38250.41420.048*
C381.0097 (2)0.3888 (2)0.53128 (19)0.0403 (6)
H381.01640.31250.55300.048*
C390.9569 (2)0.5413 (2)0.41813 (18)0.0402 (6)
H390.92710.56990.36180.048*
C400.0792 (2)0.8956 (2)0.48733 (17)0.0355 (5)
H400.13320.82400.47860.043*
C410.1142 (2)0.9893 (2)0.43793 (17)0.0357 (5)
H410.19270.98210.39540.043*
C420.0354 (2)1.0930 (2)0.45026 (17)0.0358 (5)
H420.05981.15700.41580.043*
F10.05228 (10)0.08518 (9)0.20182 (9)0.0286 (3)
F20.03185 (11)0.11903 (9)0.27132 (9)0.0311 (3)
F30.18009 (11)0.15337 (9)0.38715 (9)0.0313 (3)
F40.37591 (10)0.02181 (9)0.42704 (9)0.0309 (3)
F50.36339 (10)0.22482 (9)0.34957 (9)0.0283 (3)
F60.20381 (10)0.71082 (9)0.23051 (9)0.0300 (3)
F70.38674 (12)0.88024 (10)0.29644 (10)0.0361 (3)
F80.60317 (11)0.84391 (10)0.40384 (10)0.0340 (3)
F90.63544 (10)0.63517 (10)0.43230 (10)0.0384 (3)
F100.45929 (10)0.46316 (10)0.35450 (10)0.0357 (3)
F110.25902 (11)0.17869 (10)0.20925 (10)0.0345 (3)
F120.37338 (12)0.07036 (10)0.34506 (11)0.0398 (3)
F130.40947 (11)0.18648 (10)0.48103 (9)0.0329 (3)
F140.33847 (11)0.41106 (10)0.47627 (9)0.0306 (3)
F150.24082 (11)0.52320 (9)0.33078 (9)0.0286 (3)
F160.02907 (11)0.78803 (11)0.08585 (10)0.0378 (3)
F170.12123 (15)0.96378 (12)0.00224 (14)0.0592 (4)
F180.34468 (15)0.92954 (13)0.12210 (13)0.0629 (5)
F190.47805 (13)0.71798 (15)0.15911 (12)0.0601 (5)
F200.38947 (11)0.54283 (12)0.07312 (11)0.0451 (4)
H5A0.161 (2)0.348 (2)0.067 (2)0.055 (9)*
H5B0.164 (3)0.231 (3)0.014 (2)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01482 (12)0.01921 (13)0.01695 (13)0.00518 (9)0.00446 (9)0.00217 (9)
O10.0166 (6)0.0200 (7)0.0172 (6)0.0047 (5)0.0041 (5)0.0008 (5)
O20.0195 (7)0.0198 (7)0.0189 (7)0.0055 (5)0.0030 (5)0.0015 (5)
O30.0191 (7)0.0247 (7)0.0216 (7)0.0072 (6)0.0082 (5)0.0028 (5)
O40.0159 (6)0.0225 (7)0.0186 (6)0.0062 (5)0.0061 (5)0.0019 (5)
O50.0207 (7)0.0278 (8)0.0223 (8)0.0019 (6)0.0036 (6)0.0013 (6)
C10.0173 (9)0.0240 (10)0.0221 (10)0.0050 (8)0.0039 (7)0.0004 (8)
C20.0230 (10)0.0175 (9)0.0273 (10)0.0006 (8)0.0089 (8)0.0026 (8)
C30.0306 (11)0.0144 (9)0.0265 (10)0.0069 (8)0.0103 (8)0.0022 (8)
C40.0216 (10)0.0229 (10)0.0245 (10)0.0087 (8)0.0041 (8)0.0007 (8)
C50.0189 (9)0.0205 (10)0.0227 (10)0.0023 (8)0.0060 (8)0.0000 (8)
C60.0181 (9)0.0194 (9)0.0195 (9)0.0046 (7)0.0066 (7)0.0011 (7)
C70.0143 (9)0.0205 (9)0.0194 (9)0.0049 (7)0.0075 (7)0.0035 (7)
C80.0173 (9)0.0210 (9)0.0174 (9)0.0048 (7)0.0034 (7)0.0010 (7)
C90.0156 (9)0.0208 (9)0.0180 (9)0.0060 (7)0.0063 (7)0.0011 (7)
C100.0196 (9)0.0195 (9)0.0197 (9)0.0037 (7)0.0062 (7)0.0004 (7)
C110.0224 (10)0.0260 (10)0.0215 (10)0.0083 (8)0.0059 (8)0.0012 (8)
C120.0312 (11)0.0181 (10)0.0286 (11)0.0063 (8)0.0106 (9)0.0030 (8)
C130.0255 (10)0.0202 (10)0.0291 (11)0.0038 (8)0.0115 (8)0.0080 (8)
C140.0180 (10)0.0299 (11)0.0290 (11)0.0035 (8)0.0030 (8)0.0043 (9)
C150.0235 (10)0.0190 (10)0.0277 (10)0.0047 (8)0.0065 (8)0.0012 (8)
C160.0198 (10)0.0262 (10)0.0265 (10)0.0100 (8)0.0083 (8)0.0011 (8)
C170.0230 (10)0.0224 (10)0.0348 (12)0.0074 (8)0.0096 (9)0.0082 (9)
C180.0171 (9)0.0334 (11)0.0239 (10)0.0099 (8)0.0086 (8)0.0117 (8)
C190.0189 (9)0.0322 (11)0.0210 (10)0.0114 (8)0.0062 (8)0.0029 (8)
C200.0191 (9)0.0214 (10)0.0240 (10)0.0065 (8)0.0058 (8)0.0031 (8)
C210.0153 (9)0.0254 (10)0.0215 (10)0.0067 (8)0.0053 (7)0.0028 (8)
C220.0192 (9)0.0220 (10)0.0194 (9)0.0029 (8)0.0066 (7)0.0026 (7)
C230.0196 (10)0.0289 (11)0.0244 (10)0.0095 (8)0.0104 (8)0.0041 (8)
C240.0164 (9)0.0214 (10)0.0181 (9)0.0047 (7)0.0027 (7)0.0013 (7)
C250.0218 (10)0.0274 (10)0.0192 (9)0.0111 (8)0.0108 (8)0.0047 (8)
C260.0260 (11)0.0287 (11)0.0280 (11)0.0097 (9)0.0113 (9)0.0024 (9)
C270.0454 (14)0.0249 (12)0.0482 (14)0.0114 (10)0.0255 (12)0.0045 (10)
C280.0461 (14)0.0436 (14)0.0422 (14)0.0296 (12)0.0227 (12)0.0218 (11)
C290.0274 (12)0.0571 (16)0.0321 (12)0.0232 (11)0.0074 (10)0.0146 (11)
C300.0239 (11)0.0329 (12)0.0296 (11)0.0085 (9)0.0061 (9)0.0054 (9)
C310.0299 (12)0.0404 (14)0.0417 (14)0.0015 (10)0.0107 (10)0.0081 (11)
C320.0350 (13)0.0465 (15)0.0442 (15)0.0094 (11)0.0085 (11)0.0057 (12)
C330.0522 (16)0.0320 (13)0.0490 (15)0.0051 (12)0.0165 (13)0.0051 (11)
C340.0325 (12)0.0412 (14)0.0339 (13)0.0021 (10)0.0123 (10)0.0056 (10)
C350.0258 (11)0.0479 (14)0.0366 (13)0.0073 (10)0.0121 (10)0.0045 (11)
C360.0318 (12)0.0361 (13)0.0430 (13)0.0062 (10)0.0181 (10)0.0082 (10)
C370.0297 (12)0.0504 (16)0.0401 (14)0.0069 (11)0.0098 (10)0.0120 (11)
C380.0302 (12)0.0412 (14)0.0443 (14)0.0017 (10)0.0075 (11)0.0044 (11)
C390.0271 (12)0.0563 (16)0.0332 (13)0.0007 (11)0.0109 (10)0.0048 (11)
C400.0289 (12)0.0409 (13)0.0363 (13)0.0009 (10)0.0135 (10)0.0100 (10)
C410.0225 (11)0.0549 (15)0.0310 (12)0.0086 (10)0.0067 (9)0.0092 (11)
C420.0341 (12)0.0433 (14)0.0331 (12)0.0133 (11)0.0103 (10)0.0018 (10)
F10.0177 (6)0.0254 (6)0.0352 (7)0.0019 (5)0.0003 (5)0.0025 (5)
F20.0280 (6)0.0186 (6)0.0407 (7)0.0039 (5)0.0083 (5)0.0022 (5)
F30.0362 (7)0.0170 (6)0.0398 (7)0.0077 (5)0.0103 (6)0.0051 (5)
F40.0266 (6)0.0234 (6)0.0384 (7)0.0110 (5)0.0010 (5)0.0023 (5)
F50.0165 (6)0.0194 (6)0.0419 (7)0.0022 (4)0.0004 (5)0.0024 (5)
F60.0275 (6)0.0241 (6)0.0369 (7)0.0118 (5)0.0004 (5)0.0036 (5)
F70.0411 (8)0.0188 (6)0.0482 (8)0.0070 (5)0.0107 (6)0.0044 (5)
F80.0286 (7)0.0249 (6)0.0426 (7)0.0058 (5)0.0074 (6)0.0123 (5)
F90.0202 (6)0.0326 (7)0.0536 (8)0.0036 (5)0.0041 (6)0.0096 (6)
F100.0219 (6)0.0213 (6)0.0562 (8)0.0075 (5)0.0052 (6)0.0050 (6)
F110.0400 (7)0.0262 (6)0.0448 (8)0.0063 (5)0.0233 (6)0.0044 (6)
F120.0443 (8)0.0207 (6)0.0588 (9)0.0062 (6)0.0267 (7)0.0082 (6)
F130.0311 (7)0.0378 (7)0.0329 (7)0.0114 (6)0.0185 (5)0.0171 (6)
F140.0325 (7)0.0402 (7)0.0249 (6)0.0128 (6)0.0134 (5)0.0006 (5)
F150.0356 (7)0.0217 (6)0.0324 (7)0.0062 (5)0.0164 (5)0.0003 (5)
F160.0294 (7)0.0325 (7)0.0467 (8)0.0044 (6)0.0026 (6)0.0085 (6)
F170.0676 (11)0.0249 (7)0.0897 (13)0.0127 (7)0.0301 (10)0.0047 (8)
F180.0716 (11)0.0562 (10)0.0764 (12)0.0462 (9)0.0316 (9)0.0358 (9)
F190.0342 (8)0.0802 (12)0.0579 (10)0.0287 (8)0.0049 (7)0.0183 (9)
F200.0268 (7)0.0425 (8)0.0522 (9)0.0036 (6)0.0048 (6)0.0020 (7)
Geometric parameters (Å, º) top
Ni1—O11.9804 (13)C19—F141.337 (2)
Ni1—O21.9974 (13)C19—C201.384 (3)
Ni1—O32.0003 (13)C20—F151.340 (2)
Ni1—O42.0401 (13)C20—C211.384 (3)
Ni1—O52.0854 (14)C21—C221.501 (3)
Ni1—O4i2.0922 (13)C22—C231.414 (3)
O1—C71.267 (2)C23—C241.375 (3)
O2—C91.278 (2)C23—H230.9500
O3—C221.251 (2)C24—C251.508 (3)
O4—C241.288 (2)C25—C301.379 (3)
O4—Ni1i2.0922 (13)C25—C261.379 (3)
O5—H5A0.88 (3)C26—F161.343 (2)
O5—H5B0.99 (4)C26—C271.380 (3)
C1—F11.336 (2)C27—F171.336 (3)
C1—C21.385 (3)C27—C281.375 (4)
C1—C61.399 (3)C28—F181.344 (2)
C2—F21.339 (2)C28—C291.365 (4)
C2—C31.375 (3)C29—F191.340 (3)
C3—F31.338 (2)C29—C301.384 (3)
C3—C41.380 (3)C30—F201.340 (3)
C4—F41.334 (2)C31—C321.379 (3)
C4—C51.376 (3)C31—C361.399 (3)
C5—F51.346 (2)C31—H310.9500
C5—C61.395 (3)C32—C331.386 (4)
C6—C71.506 (3)C32—H320.9500
C7—C81.405 (3)C33—C341.383 (4)
C8—C91.394 (3)C33—H330.9500
C8—H80.9500C34—C351.391 (3)
C9—C101.503 (3)C34—H340.9500
C10—C151.394 (3)C35—C361.381 (3)
C10—C111.396 (3)C35—H350.9500
C11—F61.346 (2)C36—H360.9500
C11—C121.383 (3)C37—C381.380 (3)
C12—F71.335 (2)C37—C391.380 (4)
C12—C131.371 (3)C37—H370.9500
C13—F81.335 (2)C38—C39ii1.384 (3)
C13—C141.376 (3)C38—H380.9500
C14—F91.345 (2)C39—C38ii1.384 (3)
C14—C151.373 (3)C39—H390.9500
C15—F101.340 (2)C40—C411.382 (3)
C16—F111.341 (2)C40—C42iii1.386 (3)
C16—C171.375 (3)C40—H400.9500
C16—C211.392 (3)C41—C421.379 (3)
C17—F121.338 (2)C41—H410.9500
C17—C181.378 (3)C42—C40iii1.386 (3)
C18—F131.336 (2)C42—H420.9500
C18—C191.377 (3)
O1—Ni1—O290.24 (5)F13—C18—C19119.60 (19)
O1—Ni1—O387.64 (5)F13—C18—C17120.21 (18)
O2—Ni1—O399.14 (5)C19—C18—C17120.19 (18)
O1—Ni1—O4177.63 (5)F14—C19—C18119.38 (17)
O2—Ni1—O488.91 (5)F14—C19—C20121.18 (18)
O3—Ni1—O490.31 (5)C18—C19—C20119.43 (19)
O1—Ni1—O592.56 (6)F15—C20—C19117.55 (17)
O2—Ni1—O5170.92 (6)F15—C20—C21120.66 (17)
O3—Ni1—O589.60 (6)C19—C20—C21121.77 (18)
O4—Ni1—O588.62 (6)C20—C21—C16117.02 (17)
O1—Ni1—O4i99.98 (5)C20—C21—C22123.10 (17)
O2—Ni1—O4i85.44 (5)C16—C21—C22119.82 (17)
O3—Ni1—O4i171.13 (5)O3—C22—C23126.41 (17)
O4—Ni1—O4i82.15 (5)O3—C22—C21115.41 (16)
O5—Ni1—O4i85.57 (5)C23—C22—C21118.18 (16)
C7—O1—Ni1121.36 (12)C24—C23—C22125.07 (18)
C9—O2—Ni1123.15 (12)C24—C23—H23117.5
C22—O3—Ni1125.02 (12)C22—C23—H23117.5
C24—O4—Ni1124.01 (12)O4—C24—C23126.12 (17)
C24—O4—Ni1i134.13 (12)O4—C24—C25117.26 (16)
Ni1—O4—Ni1i97.85 (5)C23—C24—C25116.60 (17)
Ni1—O5—H5A108.8 (18)C30—C25—C26116.83 (18)
Ni1—O5—H5B125.4 (19)C30—C25—C24121.70 (18)
H5A—O5—H5B112 (3)C26—C25—C24121.44 (17)
F1—C1—C2116.69 (17)F16—C26—C25119.53 (18)
F1—C1—C6121.10 (17)F16—C26—C27118.08 (19)
C2—C1—C6122.14 (17)C25—C26—C27122.4 (2)
F2—C2—C3120.04 (17)F17—C27—C28119.8 (2)
F2—C2—C1120.04 (17)F17—C27—C26121.1 (2)
C3—C2—C1119.91 (17)C28—C27—C26119.1 (2)
F3—C3—C2119.94 (17)F18—C28—C29120.1 (2)
F3—C3—C4120.22 (18)F18—C28—C27119.8 (2)
C2—C3—C4119.84 (17)C29—C28—C27120.1 (2)
F4—C4—C5120.46 (17)F19—C29—C28120.3 (2)
F4—C4—C3120.10 (17)F19—C29—C30120.0 (2)
C5—C4—C3119.44 (18)C28—C29—C30119.7 (2)
F5—C5—C4116.24 (16)F20—C30—C25120.15 (18)
F5—C5—C6120.75 (16)F20—C30—C29118.00 (19)
C4—C5—C6122.99 (17)C25—C30—C29121.9 (2)
C5—C6—C1115.66 (17)C32—C31—C36120.0 (2)
C5—C6—C7123.78 (16)C32—C31—H31120.0
C1—C6—C7120.53 (16)C36—C31—H31120.0
O1—C7—C8126.52 (17)C31—C32—C33120.0 (2)
O1—C7—C6114.43 (16)C31—C32—H32120.0
C8—C7—C6119.02 (16)C33—C32—H32120.0
C9—C8—C7123.44 (17)C34—C33—C32120.4 (2)
C9—C8—H8118.3C34—C33—H33119.8
C7—C8—H8118.3C32—C33—H33119.8
O2—C9—C8125.00 (17)C33—C34—C35119.6 (2)
O2—C9—C10114.30 (16)C33—C34—H34120.2
C8—C9—C10120.65 (16)C35—C34—H34120.2
C15—C10—C11115.44 (17)C36—C35—C34120.3 (2)
C15—C10—C9123.26 (17)C36—C35—H35119.8
C11—C10—C9121.05 (17)C34—C35—H35119.8
F6—C11—C12116.11 (17)C35—C36—C31119.7 (2)
F6—C11—C10121.22 (17)C35—C36—H36120.2
C12—C11—C10122.67 (18)C31—C36—H36120.2
F7—C12—C13120.54 (18)C38—C37—C39119.9 (2)
F7—C12—C11119.88 (18)C38—C37—H37120.0
C13—C12—C11119.58 (18)C39—C37—H37120.0
F8—C13—C12120.75 (18)C37—C38—C39ii119.8 (2)
F8—C13—C14119.67 (19)C37—C38—H38120.1
C12—C13—C14119.57 (18)C39ii—C38—H38120.1
F9—C14—C15120.63 (18)C37—C39—C38ii120.2 (2)
F9—C14—C13119.14 (18)C37—C39—H39119.9
C15—C14—C13120.19 (19)C38ii—C39—H39119.9
F10—C15—C14116.73 (17)C41—C40—C42iii119.5 (2)
F10—C15—C10120.77 (17)C41—C40—H40120.3
C14—C15—C10122.47 (18)C42iii—C40—H40120.3
F11—C16—C17117.86 (18)C42—C41—C40120.2 (2)
F11—C16—C21120.12 (17)C42—C41—H41119.9
C17—C16—C21121.94 (19)C40—C41—H41119.9
F12—C17—C16120.64 (19)C41—C42—C40iii120.3 (2)
F12—C17—C18119.89 (18)C41—C42—H42119.8
C16—C17—C18119.47 (18)C40iii—C42—H42119.8
O2—Ni1—O1—C732.04 (13)C9—C10—C15—F101.9 (3)
O3—Ni1—O1—C767.10 (13)C11—C10—C15—C141.4 (3)
O5—Ni1—O1—C7156.60 (13)C9—C10—C15—C14175.83 (18)
O1—Ni1—O2—C927.32 (14)F11—C16—C17—F120.1 (3)
O3—Ni1—O2—C960.33 (14)C21—C16—C17—F12176.85 (18)
O4—Ni1—O2—C9150.47 (14)F11—C16—C17—C18179.82 (17)
O4i—Ni1—O2—C9127.31 (14)C21—C16—C17—C182.9 (3)
O1—Ni1—O3—C22162.49 (15)F12—C17—C18—F132.4 (3)
O2—Ni1—O3—C22107.65 (15)C16—C17—C18—F13177.86 (17)
O4—Ni1—O3—C2218.71 (15)F12—C17—C18—C19177.48 (18)
O5—Ni1—O3—C2269.91 (15)C16—C17—C18—C192.3 (3)
O2—Ni1—O4—C24114.24 (14)F13—C18—C19—F142.3 (3)
O3—Ni1—O4—C2415.10 (14)C17—C18—C19—F14177.79 (17)
O5—Ni1—O4—C2474.50 (14)F13—C18—C19—C20178.58 (17)
O4i—Ni1—O4—C24160.21 (17)C17—C18—C19—C201.3 (3)
O2—Ni1—O4—Ni1i85.55 (6)F14—C19—C20—F153.5 (3)
O3—Ni1—O4—Ni1i175.31 (5)C18—C19—C20—F15177.41 (17)
O5—Ni1—O4—Ni1i85.71 (6)F14—C19—C20—C21174.65 (17)
O4i—Ni1—O4—Ni1i0.0C18—C19—C20—C214.4 (3)
F1—C1—C2—F22.4 (3)F15—C20—C21—C16178.12 (17)
C6—C1—C2—F2179.41 (18)C19—C20—C21—C163.8 (3)
F1—C1—C2—C3176.34 (17)F15—C20—C21—C224.7 (3)
C6—C1—C2—C30.6 (3)C19—C20—C21—C22173.40 (18)
F2—C2—C3—F30.4 (3)F11—C16—C21—C20176.78 (17)
C1—C2—C3—F3178.34 (17)C17—C16—C21—C200.1 (3)
F2—C2—C3—C4179.29 (18)F11—C16—C21—C226.0 (3)
C1—C2—C3—C40.5 (3)C17—C16—C21—C22177.17 (18)
F3—C3—C4—F40.5 (3)Ni1—O3—C22—C2315.0 (3)
C2—C3—C4—F4179.35 (18)Ni1—O3—C22—C21165.46 (12)
F3—C3—C4—C5179.43 (18)C20—C21—C22—O3128.3 (2)
C2—C3—C4—C50.6 (3)C16—C21—C22—O348.8 (2)
F4—C4—C5—F53.2 (3)C20—C21—C22—C2351.3 (3)
C3—C4—C5—F5176.87 (17)C16—C21—C22—C23131.6 (2)
F4—C4—C5—C6178.31 (18)O3—C22—C23—C240.4 (3)
C3—C4—C5—C61.6 (3)C21—C22—C23—C24179.97 (18)
F5—C5—C6—C1176.96 (17)Ni1—O4—C24—C237.6 (3)
C4—C5—C6—C11.5 (3)Ni1i—O4—C24—C23159.70 (15)
F5—C5—C6—C71.0 (3)Ni1—O4—C24—C25174.14 (12)
C4—C5—C6—C7179.48 (18)Ni1i—O4—C24—C2522.0 (3)
F1—C1—C6—C5177.17 (17)C22—C23—C24—O43.5 (3)
C2—C1—C6—C50.3 (3)C22—C23—C24—C25174.81 (18)
F1—C1—C6—C74.8 (3)O4—C24—C25—C30114.4 (2)
C2—C1—C6—C7178.41 (18)C23—C24—C25—C3067.1 (3)
Ni1—O1—C7—C820.8 (2)O4—C24—C25—C2667.8 (2)
Ni1—O1—C7—C6161.17 (11)C23—C24—C25—C26110.7 (2)
C5—C6—C7—O1144.21 (18)C30—C25—C26—F16179.13 (18)
C1—C6—C7—O133.7 (2)C24—C25—C26—F163.0 (3)
C5—C6—C7—C834.0 (3)C30—C25—C26—C271.4 (3)
C1—C6—C7—C8148.08 (18)C24—C25—C26—C27176.50 (19)
O1—C7—C8—C98.1 (3)F16—C26—C27—F170.8 (3)
C6—C7—C8—C9169.85 (17)C25—C26—C27—F17178.7 (2)
Ni1—O2—C9—C810.0 (2)F16—C26—C27—C28179.0 (2)
Ni1—O2—C9—C10172.71 (11)C25—C26—C27—C281.5 (3)
C7—C8—C9—O214.2 (3)F17—C27—C28—F180.8 (3)
C7—C8—C9—C10162.99 (17)C26—C27—C28—F18179.1 (2)
O2—C9—C10—C15146.20 (18)F17—C27—C28—C29179.6 (2)
C8—C9—C10—C1531.2 (3)C26—C27—C28—C290.5 (4)
O2—C9—C10—C1127.9 (2)F18—C28—C29—F190.4 (4)
C8—C9—C10—C11154.63 (18)C27—C28—C29—F19180.0 (2)
C15—C10—C11—F6178.25 (17)F18—C28—C29—C30179.9 (2)
C9—C10—C11—F67.2 (3)C27—C28—C29—C300.5 (4)
C15—C10—C11—C121.2 (3)C26—C25—C30—F20179.68 (18)
C9—C10—C11—C12173.40 (18)C24—C25—C30—F202.4 (3)
F6—C11—C12—F72.4 (3)C26—C25—C30—C290.4 (3)
C10—C11—C12—F7178.17 (18)C24—C25—C30—C29177.49 (19)
F6—C11—C12—C13176.82 (17)F19—C29—C30—F200.2 (3)
C10—C11—C12—C132.6 (3)C28—C29—C30—F20179.4 (2)
F7—C12—C13—F81.3 (3)F19—C29—C30—C25179.9 (2)
C11—C12—C13—F8177.90 (18)C28—C29—C30—C250.5 (3)
F7—C12—C13—C14179.32 (18)C36—C31—C32—C330.8 (4)
C11—C12—C13—C141.5 (3)C31—C32—C33—C340.3 (4)
F8—C13—C14—F91.7 (3)C32—C33—C34—C350.9 (4)
C12—C13—C14—F9178.97 (18)C33—C34—C35—C360.5 (3)
F8—C13—C14—C15179.62 (18)C34—C35—C36—C310.5 (3)
C12—C13—C14—C151.0 (3)C32—C31—C36—C351.1 (3)
F9—C14—C15—F102.6 (3)C39—C37—C38—C39ii0.2 (4)
C13—C14—C15—F10175.33 (19)C38—C37—C39—C38ii0.2 (4)
F9—C14—C15—C10179.55 (18)C42iii—C40—C41—C420.4 (4)
C13—C14—C15—C102.5 (3)C40—C41—C42—C40iii0.4 (4)
C11—C10—C15—F10176.35 (17)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C15HF10O2)4(H2O)2]·4C6H6
Mr2078.48
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.0236 (13), 12.4384 (14), 14.0058 (15)
α, β, γ (°)82.980 (1), 73.411 (1), 74.536 (1)
V3)1932.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick 1996)
Tmin, Tmax0.855, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
21369, 8387, 6817
Rint0.023
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03
No. of reflections8387
No. of parameters621
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Comparison of selected bond lengths (Å) for (I) and (II). top
(I)(II)
Ni1—O11.9804 (13)1.9842 (11)
Ni1—O21.9974 (13)2.0138 (12)
Ni1—O32.0003 (13)2.0087 (12)
Ni1—O42.0401 (13)2.0231 (11)
Ni1—O4i2.0922 (13)2.1224 (12)
Ni1—O52.0854 (14)2.0829 (13)
O1—C71.267 (2)1.266 (2)
O2—C91.278 (2)1.271 (2)
O3—C221.251 (2)1.252 (2)
O4—C241.288 (2)1.293 (2)
C5—C6—C7—C834.0 (3)37.9 (2)
C8—C9—C10—C1531.2 (3)64.5 (2)
C20—C21—C22—C2351.3 (3)36.0 (2)
C23—C24—C25—C3067.1 (3)67.2 (2)
Symmetry code: (i) -x, -y+1, -z in (I) and -x+1, -y, -z in (II).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds