Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecular structures of the two mononuclear title complexes, namely (4-methoxy­benzene­thiol­ato-κS)oxido[2,2′-(3-phenyl­propyl­imino)bis­(ethanethiol­ato)-κ3S,N,S′]technetium(V), [Tc(C14H21NS2)(C7H7OS)O], (I), and (4-methoxy­benzene­thiol­ato-κS)oxido[2,2′-(propyl­imino)bis­(ethanethiol­ato)-κ3S,N,S′]technetium(V), [Tc(C7H15NS2)(C7H7OS)O], (II), exhibit the same coordination environment for the central Tc atoms. The atoms are five-coordinated (TcNOS3) with a square-pyramidal geometry comprising a tridentate 2,2′-(3-phenyl­prop­ylimino)bis­(ethanethiolate) or 2,2′-(propyl­imino)­bis­(ethanethiolate) ligand, a 4-methoxy­benzene­thiolate ligand and an additional oxide O atom. Inter­molecular C—H...O and C—H...S hydrogen bonds between the monomeric units result in two-dimensional layers with a parallel arrangement.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107052870/bg3060sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052870/bg3060Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052870/bg3060IIsup3.hkl
Contains datablock II

CCDC references: 672404; 672405

Comment top

Recently a new method has been described that allows the use of metal complexes as a prosthetic group in 18F labelling of biologically relevant molecules (Noll et al., 2002). The principle is based on labelling a tridentate dithiole ligand with 18F and combining it with a monodentate thiole ligand to form mixed-ligand technetium complexes (see scheme). To understand the reaction route, a non-radioactive fluorine model compound was prepared and all by-products obtained were characterized by X-ray crystal structure analysis. Here we describe only the metal complexes of the by-products, the title compounds, (I) and (II).

The molecular structures of (I) and (II) reveal that they are neutral square-pyramidal mononuclear complexes, depicted in Figs. 1 and 2. Similar Re complexes are currently under study for various applications (Bouziotis et al., 1999; Chelminiak et al., 2005; Femia et al., 2000; Friebe et al., 2000; Heimbold et al., 2002; Jung et al., 2002; Maresca et al., 2002; Marsh, 2005; Nock, Maina, Tisato, Papadopoulos et al., 1999; Nock, Maina, Tisato, Raptopoulou et al., 1999; Papadopoulos et al., 1999; Tsoukalas et al., 1999). In the case of the title compounds, the Tc atom is coordinated by two S atoms and an N atom from the tridentate ligand, another S atom provided by the 4-methoxybenzenethiol ligand and an additional O atom to complete the coordination environment. The cation environments in both structures are comparable, with axial Tc—O distances of 1.657 (6) Å in (I) and 1.671 (3) Å in (II), Tc—N distances of 2.213 (6) Å in (I) and 2.201 (4) Å in (II), and Tc—S bond lengths in the range 2.241 (3)–2.308 (3) Å in (I) and 2.2801 (19)–2.3093 (19) Å in (II). The values mentioned above are in good agreement with those reported in the Cambridge Structural Database (Version?; Allen, 2002) (TC—O = 1.654–1.670 Å, mean 1.663 Å; Tc—N = 1.996–2.259 Å, mean 2.194 Å; Tc—S = 2.280–2.359 Å, mean 2.304 Å). The Tc1—S3—C5 angles between the methoxyphenyl moiety and the central Tc atom are nearly similar [109.6 (3)° in (I) and 109.2 (2)° in (II)], whereas the S2—Tc1—S3—C5 torsion angles of -164.02 (35) and 45.49 (21)° in (I) and (II), respectively, indicate the opposite positions of the methoxyphenyl moiety.

The analysis of the crystal packing of the title complexes reveals that the monomeric units are linked via non-classical C—H···O hydrogen bonds in complexes (I) and (II) and C—H···S hydrogen bonds in complex (II) only, to result in a two-dimensional layer structure. Thus, each complex is linked to four others, forming a sheet parallel to (110). The relevant hydrogen-bonding geometries and symmetry codes are listed in Tables 2 and 4.

As illustrated in Figs. 3 and 4, the head-to-tail arrangement of the molecules within the layers leads to a zigzag formation of the Tc atoms, along the a axis in the crystal structure of compound (I) and along the b axis in case of compound (II), with Tc···Tc distances of 6.760 (13) Å and 7.042 (16) Å and 6.102 (4) Å, respectively. [Three values for two compounds - please clarify which applies to which] Due to the larger phenyl propylimine ligand, the distance between adjacent sheets is larger in (I) than in (II); in either case, no ππ interactions are observed.

Related literature top

For related literature, see: Allen (2002); Bouziotis et al. (1999); Chelminiak et al. (2005); Femia et al. (2000); Flack (1983); Friebe et al. (2000); Heimbold et al. (2002); Jung et al. (2002); Maresca et al. (2002); Marsh (2005); Nock, Maina, Tisato, Papadopoulos, Raptopoulou, Terzis & Chiotellis (1999); Nock, Maina, Tisato, Raptopoulou, Terzis, Papadopoulos, Refosco & Chiotellis (1999); Noll et al. (2002); Papadopoulos et al. (1999); Tsoukalas et al. (1999).

Experimental top

The synthesis starts with the preparation of the tridentate ligand containing both the sulfur protecting groups and tosyl as leaving group. In the next step, the fluorine is introduced by nucleophilic substitution in acetonitrile with Kryptofix 2.2.2 at 413 K. Subsequently, both sulfur benzyl protecting groups were split off by reductive cleavage in liquid ammonia and metallic sodium. This reaction is accompanied by rearrangement of the ligand molecule, and besides the favoured fluorinated species two by-products are formed (see reaction scheme). Without further purification, the fluorinated tridentate ligand is combined with the monodentate p-methoxybenzenethiol ligand as model compound and Re or Tc in the oxidation state +5 to give a `3 + 1' complex (see reaction scheme). The Re [Tc here?] complexes were separated out by column chromatography on silica gel with dichloromethane as eluent. The fractions were collected and evaporated to dryness. Crystals of the metal complexes were grown from ethanol. Here we describe only the metal complexes of the by-products.

Refinement top

Compound (I) crystallizes in the non-centrosymetric spacegroup P21 and was refined as an inversion twin with a Flack parameter (Flack, 1983) of 0.48 (3). Restraints were used for the thermal vibration parameters of four C atoms (C13–C16).

For compound (II), the low N(obs)/N(tot) ratio is the inescapable result of the poor quality of the crystals available; in various trials no better crystals nor resulting data sets could be obtained. This result was unexpected, since comparable Tc compounds investigated by our group tend to build good quality crystals.

All H atoms in both structures were included using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the `3 + 1' Tc complex (I), showing the atomic labelling of the asymmetric unit and the coordination environment. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of the `3 + 1' Tc complex (II), showing the atomic labelling of the asymmetric unit and the coordination environment. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The two-dimensional supramolecular structure of complex (I), formed via C—H···O hydrogen bonds (dashed lines) between the molecules.
[Figure 4] Fig. 4. The two-dimensional supramolecular structure of complex (II), formed via C—H···O and C—H···S hydrogen bonds (dashed lines) between the molecules.
(I) (4-methoxybenzenethiolato-κS)oxido[2,2'-(3- phenylpropylimino)bis(ethanethiolato)-κ3S,N,S']technetium(V) top
Crystal data top
[Tc(C14H21NS2)(C7H7OS)O]F(000) = 536
Mr = 520.62Dx = 1.500 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 775 reflections
a = 10.885 (7) Åθ = 3.1–29.6°
b = 7.247 (4) ŵ = 0.91 mm1
c = 14.885 (7) ÅT = 273 K
β = 100.913 (8)°Plate, brown
V = 1152.9 (11) Å30.45 × 0.39 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4523 independent reflections
Radiation source: fine-focus sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.656, Tmax = 0.872k = 99
6818 measured reflectionsl = 1419
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0606P)2 + 3.45P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4523 reflectionsΔρmax = 1.57 e Å3
236 parametersΔρmin = 0.81 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.49 (3)
Crystal data top
[Tc(C14H21NS2)(C7H7OS)O]V = 1152.9 (11) Å3
Mr = 520.62Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.885 (7) ŵ = 0.91 mm1
b = 7.247 (4) ÅT = 273 K
c = 14.885 (7) Å0.45 × 0.39 × 0.15 mm
β = 100.913 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4523 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3581 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.872Rint = 0.045
6818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.144Δρmax = 1.57 e Å3
S = 1.02Δρmin = 0.81 e Å3
4523 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
236 parametersAbsolute structure parameter: 0.49 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.27773 (5)0.00001 (10)0.07540 (4)0.03687 (17)
S10.0771 (2)0.1056 (4)0.04157 (16)0.0558 (6)
S20.3154 (3)0.3036 (4)0.07132 (16)0.0578 (6)
S30.2418 (2)0.0742 (4)0.21897 (16)0.0542 (6)
O10.3972 (6)0.1457 (9)0.0925 (4)0.0532 (16)
O20.0126 (7)0.5290 (13)0.3822 (5)0.077 (2)
N10.2584 (5)0.0152 (14)0.0751 (4)0.0382 (14)
C10.0427 (8)0.1003 (15)0.0836 (6)0.053 (2)
H1B0.04510.07270.10510.064*
H1C0.06010.22000.10750.064*
C20.1233 (7)0.0470 (13)0.1178 (6)0.049 (3)
H2A0.09750.16860.10150.059*
H2B0.11280.04060.18390.059*
C30.3137 (10)0.3489 (12)0.0494 (7)0.056 (3)
H3A0.37770.43900.05520.067*
H3B0.23320.39990.07760.067*
C40.3377 (10)0.1700 (16)0.0992 (7)0.048 (3)
H4A0.42530.13650.08220.057*
H4B0.31900.19030.16480.057*
C50.1585 (9)0.1125 (14)0.2619 (6)0.051 (2)
C60.0598 (9)0.0655 (14)0.3056 (6)0.057 (3)
H6A0.03440.05690.30670.069*
C70.0010 (10)0.2015 (17)0.3478 (6)0.062 (3)
H7A0.06660.17110.37710.075*
C80.0393 (9)0.3838 (14)0.3449 (6)0.054 (3)
C90.1339 (8)0.4258 (14)0.2979 (6)0.053 (2)
H9A0.15770.54820.29360.063*
C100.1920 (9)0.2946 (14)0.2585 (6)0.052 (2)
H10A0.25620.32730.22840.063*
C110.1076 (10)0.478 (3)0.4361 (7)0.090 (4)
H11A0.13920.58760.46010.135*
H11B0.07060.39930.48580.135*
H11C0.17510.41410.39770.135*
C120.3049 (10)0.1596 (13)0.1091 (7)0.042 (2)
H12A0.39000.17980.07680.050*
H12B0.25430.26050.09340.050*
C130.3038 (11)0.1675 (13)0.2140 (6)0.0618 (14)
H13A0.36320.07860.22940.074*
H13B0.22130.13450.24720.074*
C140.3382 (11)0.3619 (14)0.2432 (6)0.0618 (14)
H14A0.27200.44740.23630.074*
H14B0.41440.40240.20330.074*
C150.3572 (12)0.3658 (14)0.3430 (6)0.0618 (14)
H15A0.43100.29330.34650.074*
H15B0.28640.30400.38030.074*
C160.3715 (11)0.5485 (12)0.3850 (6)0.0618 (14)
C170.4528 (11)0.6806 (15)0.3383 (7)0.065 (3)
H17A0.49350.65840.27850.078*
C180.4728 (10)0.8443 (16)0.3809 (8)0.067 (3)
H18A0.52700.93150.34930.081*
C190.4142 (12)0.8802 (16)0.4688 (8)0.074 (3)
H19A0.42900.99070.49670.088*
C200.3337 (13)0.753 (2)0.5152 (8)0.086 (4)
H20A0.29320.77690.57480.103*
C210.3121 (11)0.5863 (18)0.4737 (7)0.075 (3)
H21A0.25740.50020.50580.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.0352 (3)0.0389 (3)0.0380 (3)0.0005 (4)0.0106 (2)0.0010 (4)
S10.0489 (13)0.0742 (16)0.0469 (13)0.0193 (13)0.0157 (10)0.0044 (12)
S20.0740 (16)0.0541 (14)0.0492 (14)0.0093 (13)0.0218 (12)0.0071 (11)
S30.0599 (14)0.0586 (14)0.0472 (13)0.0035 (12)0.0182 (11)0.0076 (10)
O10.056 (4)0.055 (4)0.051 (4)0.028 (3)0.014 (3)0.010 (3)
O20.070 (4)0.081 (7)0.079 (5)0.020 (5)0.011 (4)0.032 (5)
N10.033 (3)0.035 (4)0.048 (3)0.001 (4)0.012 (3)0.002 (4)
C10.043 (5)0.077 (6)0.038 (5)0.007 (5)0.004 (4)0.001 (5)
C20.039 (4)0.066 (8)0.044 (4)0.006 (4)0.011 (4)0.007 (4)
C30.069 (6)0.038 (5)0.069 (7)0.004 (5)0.035 (5)0.005 (4)
C40.048 (6)0.054 (7)0.048 (5)0.014 (5)0.025 (4)0.003 (5)
C50.059 (6)0.058 (6)0.038 (5)0.002 (5)0.015 (4)0.005 (4)
C60.069 (6)0.058 (7)0.052 (5)0.005 (5)0.029 (5)0.006 (4)
C70.062 (6)0.082 (8)0.047 (6)0.001 (6)0.021 (5)0.010 (5)
C80.051 (6)0.060 (7)0.047 (5)0.014 (5)0.001 (4)0.004 (4)
C90.046 (5)0.061 (6)0.047 (5)0.001 (4)0.002 (4)0.006 (4)
C100.045 (5)0.060 (6)0.051 (5)0.015 (5)0.005 (4)0.002 (4)
C110.085 (7)0.126 (12)0.064 (6)0.033 (10)0.028 (5)0.008 (9)
C120.042 (5)0.034 (6)0.051 (6)0.004 (4)0.015 (4)0.001 (4)
C130.097 (4)0.048 (3)0.045 (3)0.015 (3)0.026 (3)0.001 (2)
C140.097 (4)0.048 (3)0.045 (3)0.015 (3)0.026 (3)0.001 (2)
C150.097 (4)0.048 (3)0.045 (3)0.015 (3)0.026 (3)0.001 (2)
C160.097 (4)0.048 (3)0.045 (3)0.015 (3)0.026 (3)0.001 (2)
C170.084 (8)0.058 (6)0.051 (6)0.012 (6)0.009 (5)0.002 (5)
C180.055 (6)0.058 (6)0.092 (8)0.002 (5)0.020 (6)0.016 (6)
C190.085 (8)0.064 (8)0.080 (8)0.004 (7)0.039 (7)0.017 (6)
C200.105 (10)0.096 (10)0.057 (7)0.020 (9)0.017 (7)0.033 (7)
C210.086 (8)0.091 (8)0.050 (6)0.009 (7)0.015 (6)0.002 (6)
Geometric parameters (Å, º) top
Tc1—O11.657 (6)C9—C101.337 (13)
Tc1—N12.213 (6)C9—H9A0.9300
Tc1—S22.241 (3)C10—H10A0.9300
Tc1—S12.279 (3)C11—H11A0.9600
Tc1—S32.308 (3)C11—H11B0.9600
S1—C11.830 (9)C11—H11C0.9600
S2—C31.824 (10)C12—C131.561 (13)
S3—C51.812 (10)C12—H12A0.9700
O2—C81.361 (12)C12—H12B0.9700
O2—C111.471 (13)C13—C141.541 (13)
N1—C121.488 (13)C13—H13A0.9700
N1—C41.500 (13)C13—H13B0.9700
N1—C21.505 (10)C14—C151.539 (12)
C1—C21.529 (12)C14—H14A0.9700
C1—H1B0.9700C14—H14B0.9700
C1—H1C0.9700C15—C161.484 (13)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.540 (14)C16—C211.383 (14)
C3—H3A0.9700C16—C171.396 (14)
C3—H3B0.9700C17—C181.381 (14)
C4—H4A0.9700C17—H17A0.9300
C4—H4B0.9700C18—C191.367 (15)
C5—C101.373 (13)C18—H18A0.9300
C5—C61.400 (12)C19—C201.368 (16)
C6—C71.400 (14)C19—H19A0.9300
C6—H6A0.9300C20—C211.395 (17)
C7—C81.395 (15)C20—H20A0.9300
C7—H7A0.9300C21—H21A0.9300
C8—C91.385 (13)
O1—Tc1—N196.3 (3)C9—C8—C7119.5 (9)
O1—Tc1—S2119.2 (3)C10—C9—C8121.6 (10)
N1—Tc1—S284.6 (3)C10—C9—H9A119.2
O1—Tc1—S1120.8 (3)C8—C9—H9A119.2
N1—Tc1—S183.65 (16)C9—C10—C5121.1 (9)
S2—Tc1—S1119.76 (10)C9—C10—H10A119.4
O1—Tc1—S3105.8 (2)C5—C10—H10A119.4
N1—Tc1—S3157.8 (2)O2—C11—H11A109.5
S2—Tc1—S381.96 (9)O2—C11—H11B109.5
S1—Tc1—S387.69 (9)H11A—C11—H11B109.5
C1—S1—Tc1102.7 (3)O2—C11—H11C109.5
C3—S2—Tc1103.6 (3)H11A—C11—H11C109.5
C5—S3—Tc1109.6 (3)H11B—C11—H11C109.5
C8—O2—C11114.7 (10)N1—C12—C13115.6 (8)
C12—N1—C4107.9 (6)N1—C12—H12A108.4
C12—N1—C2110.8 (7)C13—C12—H12A108.4
C4—N1—C2110.2 (8)N1—C12—H12B108.4
C12—N1—Tc1109.2 (6)C13—C12—H12B108.4
C4—N1—Tc1109.3 (5)H12A—C12—H12B107.4
C2—N1—Tc1109.5 (4)C14—C13—C12111.1 (7)
C2—C1—S1109.5 (6)C14—C13—H13A109.4
C2—C1—H1B109.8C12—C13—H13A109.4
S1—C1—H1B109.8C14—C13—H13B109.4
C2—C1—H1C109.8C12—C13—H13B109.4
S1—C1—H1C109.8H13A—C13—H13B108.0
H1B—C1—H1C108.2C15—C14—C13111.9 (8)
N1—C2—C1109.2 (7)C15—C14—H14A109.2
N1—C2—H2A109.8C13—C14—H14A109.2
C1—C2—H2A109.8C15—C14—H14B109.2
N1—C2—H2B109.8C13—C14—H14B109.2
C1—C2—H2B109.8H14A—C14—H14B107.9
H2A—C2—H2B108.3C16—C15—C14117.8 (8)
C4—C3—S2110.6 (7)C16—C15—H15A107.9
C4—C3—H3A109.5C14—C15—H15A107.9
S2—C3—H3A109.5C16—C15—H15B107.9
C4—C3—H3B109.5C14—C15—H15B107.9
S2—C3—H3B109.5H15A—C15—H15B107.2
H3A—C3—H3B108.1C21—C16—C17118.5 (9)
N1—C4—C3110.9 (7)C21—C16—C15120.7 (9)
N1—C4—H4A109.5C17—C16—C15120.6 (9)
C3—C4—H4A109.5C18—C17—C16120.0 (10)
N1—C4—H4B109.5C18—C17—H17A120.0
C3—C4—H4B109.5C16—C17—H17A120.0
H4A—C4—H4B108.0C19—C18—C17121.2 (12)
C10—C5—C6118.9 (9)C19—C18—H18A119.4
C10—C5—S3123.4 (8)C17—C18—H18A119.4
C6—C5—S3117.5 (8)C18—C19—C20119.5 (11)
C5—C6—C7120.5 (10)C18—C19—H19A120.2
C5—C6—H6A119.8C20—C19—H19A120.2
C7—C6—H6A119.8C19—C20—C21120.4 (11)
C8—C7—C6118.3 (9)C19—C20—H20A119.8
C8—C7—H7A120.8C21—C20—H20A119.8
C6—C7—H7A120.8C16—C21—C20120.4 (12)
O2—C8—C9116.3 (10)C16—C21—H21A119.8
O2—C8—C7124.2 (9)C20—C21—H21A119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1i0.972.783.650 (9)150
C4—H4A···O1ii0.972.523.164 (13)124
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z.
(II) (4-methoxybenzenethiolato-κS)oxido[2,2'-(propylimino)bis(ethanethiolato)- κ3S,N,S']technetium(V) top
Crystal data top
[Tc(C7H15NS2)(C7H7OS)O]F(000) = 880
Mr = 430.51Dx = 1.597 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 907 reflections
a = 10.610 (7) Åθ = 3.0–24.4°
b = 10.356 (7) ŵ = 1.16 mm1
c = 16.296 (11) ÅT = 273 K
β = 90.574 (15)°Plate, brown
V = 1790 (2) Å30.15 × 0.09 × 0.02 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4031 independent reflections
Radiation source: fine-focus sealed tube1809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.879, Tmax = 0.978k = 1313
10232 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.92 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Tc(C7H15NS2)(C7H7OS)O]V = 1790 (2) Å3
Mr = 430.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.610 (7) ŵ = 1.16 mm1
b = 10.356 (7) ÅT = 273 K
c = 16.296 (11) Å0.15 × 0.09 × 0.02 mm
β = 90.574 (15)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4031 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1809 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.978Rint = 0.092
10232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.86Δρmax = 0.92 e Å3
4031 reflectionsΔρmin = 0.60 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.76655 (4)0.24888 (5)0.15162 (3)0.05211 (17)
S10.89303 (16)0.08218 (15)0.11159 (12)0.0775 (5)
S20.60719 (13)0.21855 (13)0.24244 (10)0.0629 (4)
S30.63174 (15)0.16995 (16)0.05143 (10)0.0729 (5)
O10.8032 (3)0.3985 (3)0.1219 (2)0.0648 (10)
O20.1240 (4)0.4098 (5)0.0654 (3)0.0811 (13)
N10.8856 (4)0.2457 (4)0.2630 (3)0.0565 (11)
C10.9964 (5)0.0625 (6)0.2008 (5)0.083 (2)
H1B1.01660.02820.20820.099*
H1C1.07440.10910.19220.099*
C20.9322 (5)0.1132 (6)0.2764 (4)0.0718 (18)
H2A0.86220.05730.29010.086*
H2B0.99130.11270.32220.086*
C30.6871 (5)0.2281 (6)0.3424 (3)0.0665 (17)
H3A0.63450.27530.38040.080*
H3B0.69930.14170.36400.080*
C40.8121 (5)0.2941 (6)0.3358 (4)0.0701 (17)
H4A0.86070.27900.38570.084*
H4B0.79910.38640.33050.084*
C50.4808 (5)0.2437 (6)0.0622 (3)0.0604 (14)
C60.4681 (5)0.3750 (6)0.0706 (4)0.0656 (17)
H6A0.54020.42570.07510.079*
C70.3506 (6)0.4341 (6)0.0726 (4)0.0668 (17)
H7A0.34450.52300.07940.080*
C80.2429 (5)0.3597 (7)0.0644 (3)0.0586 (15)
C90.2546 (6)0.2278 (6)0.0560 (4)0.0670 (17)
H9A0.18240.17740.05080.080*
C100.3700 (7)0.1698 (6)0.0552 (3)0.0673 (17)
H10A0.37550.08060.05000.081*
C110.1083 (5)0.5442 (7)0.0804 (4)0.088 (2)
H11A0.02010.56520.07900.132*
H11B0.15110.59270.03900.132*
H11C0.14290.56530.13340.132*
C120.9946 (5)0.3386 (5)0.2497 (3)0.0617 (16)
H12A1.03770.31490.19970.074*
H12B0.96120.42510.24230.074*
C131.0879 (6)0.3397 (6)0.3194 (4)0.096 (2)
H13A1.06990.41430.35340.115*
H13B1.07300.26360.35260.115*
C141.2210 (6)0.3429 (12)0.2996 (5)0.181 (5)
H14A1.27010.34130.34940.271*
H14B1.23920.42040.26970.271*
H14C1.24160.26910.26670.271*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.0671 (3)0.0422 (3)0.0469 (3)0.0030 (3)0.0028 (2)0.0003 (3)
S10.0841 (11)0.0586 (10)0.0901 (14)0.0114 (9)0.0079 (10)0.0129 (9)
S20.0671 (9)0.0645 (11)0.0569 (10)0.0041 (7)0.0024 (8)0.0008 (8)
S30.0894 (11)0.0705 (11)0.0586 (11)0.0107 (9)0.0136 (9)0.0207 (9)
O10.092 (3)0.046 (2)0.056 (3)0.005 (2)0.005 (2)0.008 (2)
O20.063 (3)0.102 (4)0.078 (3)0.002 (3)0.003 (2)0.006 (3)
N10.066 (3)0.050 (3)0.053 (3)0.004 (3)0.003 (2)0.008 (3)
C10.068 (4)0.057 (4)0.123 (7)0.011 (3)0.001 (4)0.009 (4)
C20.072 (4)0.061 (4)0.082 (5)0.005 (3)0.003 (4)0.024 (4)
C30.074 (4)0.077 (5)0.049 (4)0.005 (3)0.002 (3)0.011 (3)
C40.078 (4)0.080 (4)0.052 (4)0.003 (3)0.006 (3)0.003 (3)
C50.073 (4)0.060 (4)0.047 (3)0.008 (4)0.012 (3)0.007 (3)
C60.062 (4)0.063 (4)0.071 (5)0.007 (3)0.017 (3)0.005 (3)
C70.074 (4)0.063 (4)0.063 (5)0.002 (3)0.016 (3)0.009 (3)
C80.062 (4)0.080 (5)0.033 (4)0.001 (3)0.005 (3)0.002 (3)
C90.073 (4)0.070 (5)0.057 (4)0.022 (4)0.005 (3)0.005 (3)
C100.102 (5)0.057 (4)0.042 (4)0.013 (4)0.003 (4)0.005 (3)
C110.071 (4)0.109 (6)0.084 (5)0.020 (4)0.000 (4)0.002 (5)
C120.073 (4)0.058 (4)0.054 (4)0.010 (3)0.008 (3)0.007 (3)
C130.122 (6)0.076 (5)0.090 (6)0.036 (4)0.028 (5)0.012 (4)
C140.100 (6)0.323 (15)0.120 (8)0.076 (8)0.026 (6)0.035 (9)
Geometric parameters (Å, º) top
Tc1—O11.671 (3)C5—C61.373 (7)
Tc1—N12.201 (4)C5—C101.406 (7)
Tc1—S22.2801 (19)C6—C71.389 (7)
Tc1—S12.2856 (19)C6—H6A0.9300
Tc1—S32.3093 (19)C7—C81.383 (7)
S1—C11.824 (7)C7—H7A0.9300
S2—C31.831 (6)C8—C91.379 (8)
S3—C51.785 (6)C9—C101.364 (7)
O2—C81.364 (6)C9—H9A0.9300
O2—C111.424 (7)C10—H10A0.9300
N1—C21.474 (6)C11—H11A0.9600
N1—C41.512 (7)C11—H11B0.9600
N1—C121.521 (6)C11—H11C0.9600
C1—C21.508 (8)C12—C131.499 (6)
C1—H1B0.9700C12—H12A0.9700
C1—H1C0.9700C12—H12B0.9700
C2—H2A0.9700C13—C141.452 (5)
C2—H2B0.9700C13—H13A0.9700
C3—C41.497 (7)C13—H13B0.9700
C3—H3A0.9700C14—H14A0.9600
C3—H3B0.9700C14—H14B0.9600
C4—H4A0.9700C14—H14C0.9600
C4—H4B0.9700
O1—Tc1—N196.88 (17)H4A—C4—H4B107.9
O1—Tc1—S2119.49 (14)C6—C5—C10117.6 (5)
N1—Tc1—S283.45 (13)C6—C5—S3121.5 (4)
O1—Tc1—S1118.61 (15)C10—C5—S3120.6 (5)
N1—Tc1—S183.70 (13)C5—C6—C7121.8 (5)
S2—Tc1—S1121.50 (7)C5—C6—H6A119.1
O1—Tc1—S3105.52 (14)C7—C6—H6A119.1
N1—Tc1—S3157.51 (13)C8—C7—C6119.6 (6)
S2—Tc1—S387.25 (8)C8—C7—H7A120.2
S1—Tc1—S383.81 (7)C6—C7—H7A120.2
C1—S1—Tc1102.0 (2)O2—C8—C9117.5 (6)
C3—S2—Tc1103.31 (19)O2—C8—C7123.4 (6)
C5—S3—Tc1109.2 (2)C9—C8—C7119.1 (6)
C8—O2—C11118.9 (5)C10—C9—C8121.2 (5)
C2—N1—C4111.5 (5)C10—C9—H9A119.4
C2—N1—C12110.8 (4)C8—C9—H9A119.4
C4—N1—C12107.5 (4)C9—C10—C5120.7 (5)
C2—N1—Tc1109.0 (3)C9—C10—H10A119.7
C4—N1—Tc1110.3 (3)C5—C10—H10A119.7
C12—N1—Tc1107.7 (3)O2—C11—H11A109.5
C2—C1—S1109.8 (4)O2—C11—H11B109.5
C2—C1—H1B109.7H11A—C11—H11B109.5
S1—C1—H1B109.7O2—C11—H11C109.5
C2—C1—H1C109.7H11A—C11—H11C109.5
S1—C1—H1C109.7H11B—C11—H11C109.5
H1B—C1—H1C108.2C13—C12—N1113.2 (5)
N1—C2—C1110.9 (5)C13—C12—H12A108.9
N1—C2—H2A109.5N1—C12—H12A108.9
C1—C2—H2A109.5C13—C12—H12B108.9
N1—C2—H2B109.5N1—C12—H12B108.9
C1—C2—H2B109.5H12A—C12—H12B107.7
H2A—C2—H2B108.1C14—C13—C12117.9 (6)
C4—C3—S2111.3 (4)C14—C13—H13A107.8
C4—C3—H3A109.4C12—C13—H13A107.8
S2—C3—H3A109.4C14—C13—H13B107.8
C4—C3—H3B109.4C12—C13—H13B107.8
S2—C3—H3B109.4H13A—C13—H13B107.2
H3A—C3—H3B108.0C13—C14—H14A109.5
C3—C4—N1111.7 (4)C13—C14—H14B109.5
C3—C4—H4A109.3H14A—C14—H14B109.5
N1—C4—H4A109.3C13—C14—H14C109.5
C3—C4—H4B109.3H14A—C14—H14C109.5
N1—C4—H4B109.3H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.533.464 (7)162
C12—H12A···O2ii0.972.583.396 (7)142
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Tc(C14H21NS2)(C7H7OS)O][Tc(C7H15NS2)(C7H7OS)O]
Mr520.62430.51
Crystal system, space groupMonoclinic, P21Monoclinic, P21/n
Temperature (K)273273
a, b, c (Å)10.885 (7), 7.247 (4), 14.885 (7)10.610 (7), 10.356 (7), 16.296 (11)
β (°) 100.913 (8) 90.574 (15)
V3)1152.9 (11)1790 (2)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.911.16
Crystal size (mm)0.45 × 0.39 × 0.150.15 × 0.09 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.8720.879, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6818, 4523, 3581 10232, 4031, 1809
Rint0.0450.092
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.144, 1.02 0.062, 0.095, 0.86
No. of reflections45234031
No. of parameters236190
No. of restraints12
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.57, 0.810.92, 0.60
Absolute structureFlack (1983), with how many Friedel pairs??
Absolute structure parameter0.49 (3)?

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected bond lengths (Å) for (I) top
Tc1—O11.657 (6)Tc1—S12.279 (3)
Tc1—N12.213 (6)Tc1—S32.308 (3)
Tc1—S22.241 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1i0.972.783.650 (9)150
C4—H4A···O1ii0.972.523.164 (13)124
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z.
Selected bond lengths (Å) for (II) top
Tc1—O11.671 (3)Tc1—S12.2856 (19)
Tc1—N12.201 (4)Tc1—S32.3093 (19)
Tc1—S22.2801 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.533.464 (7)162
C12—H12A···O2ii0.972.583.396 (7)142
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds