Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight-coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3-OH groups and carboxyl­ate groups of isonicotinate and benzene-1,2-dicarboxyl­ate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–­π inter­actions into a three-dimensional supra­molecular framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107047403/bg3054sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107047403/bg3054Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107047403/bg3054IIsup3.hkl
Contains datablock II

CCDC references: 669167; 669168

Comment top

In recent years, the rational design and construction of metal coordination polymers has aroused great interest owing to their intriguing topological architectures and the potential application as functional materials (Meares & Wensel, 1984; Scott & Horrocks, 1992; Reineke et al., 1999; Eddaoudi et al., 2001). In constructing coordination polymers, multifunctional connectors such as a variety of carboxylate ligands are usually utilized as bridging groups, forming one-, two- and three-dimensional networks (Choi & Suh, 1998; MacGillivray et al., 1998; Evans et al., 1999; Chen et al., 2001; Suresh et al., 2001; Kumagai et al., 2002; Lu & Babb, 2003; Song et al., 2003; Zhang et al., 2004). So far, numerous architectures have been assembled from the particular combination of appropriate metal centers and versatile ligands. Our interest in the area is to explore the possible construction of coordination polymers involving two types of different ligands simultaneously in a system, and to understand the cooperativity of both ligands. To the best of our knowledge, this area still remains underdeveloped (Cheng et al., 2006). Selecting the acids HIN and H2BDC as mixed ligands [where IN is the isonicotinate anion (C6H4NO2) and BDC is the benzene-1,2-dicarboxylate anion (C8H4O4)] and adopting the hydrothermal technique, we obtained the title compounds, (I) and (II), which display novel one-dimensional chain-like coordination features.

As shown in Fig. 1, the asymmetric unit contains two unique erbium(III) [or thulium(III)] atoms, two –OH ions, one BDC and two IN ligands, and one aqua ligand, as well as one uncoordinated water molecule. All the LnIII ions are eight-coordinate, but with markedly different coordination enviroments. Atom Er1 (or Tm1) is surrounded by three –OH groups, two carboxylate O atoms from two IN ligands, two carboxylate O atoms from a BDC ligand and an aqua ligand. Atom Er2 (or Tm2), on the other hand, is coordinated by three –OH groups, two carboxylate O atoms from two IN ligands and three carboxylate O atoms from two BDC ligands. The Er—O and Tm—O distances span the ranges 2.278 (4)–2.499 (4) Å and 2.266 (3)–2.482 (3) Å, respectively.

The LnIII centers are bridged by hydroxido and oxo groups to form an infinite wave-like chain with Er···Er distances in the range 3.622 (3)–3.894 (4) Å [Tm···Tm = 3.599 (7)–3.873 (1) Å]. The BDC and IN ligands, coordinating the metal centers through the carboxylate O atoms, protrude outside of the above chain (Fig. 2). Despite the abundant and versatile coordination modes often found in IN and BDC ligands, only a single bidentate (for IN) and a unique pentadentate bridging (for BDC) modes are adopted in the crystal structures of the title compounds (Fig. 3). This suggests a high cooperativity between the IN and BDC ligands in the formation of (I) and (II). Adjacent chains are further connected into a three-dimensional supramolecular framework through hydrogen bonds and ππ stacking interactions. The former, described in Tables 2 and 4, exhibit O/N···O distances in the ranges 2.716 (5)–3.170 (6) Å for (I) and 2.702 (4)–3.1723 (5) Å for (II); the latter, in turn, lead to interplanar distances between neighbouring IN ligands of 3.546 (1) Å for (I) and 3.540 (2) Å for (II) (Fig. 4).

Related literature top

For related literature, see: Chen et al. (2001); Cheng et al. (2006); Choi & Suh (1998); Eddaoudi et al. (2001); Evans et al. (1999); Kumagai et al. (2002); Lu & Babb (2003); MacGillivray et al. (1998); Meares & Wensel (1984); Reineke et al. (1999); Scott & Horrocks (1992); Song et al. (2003); Suresh et al. (2001); Zhang et al. (2004).

Experimental top

The title compounds were synthesized under hydrothermal conditions. Typically, a mixture of Ln2O3 (0.5 mmol; Er 0.192 g, Tm 0.193 g), HIN (2.00 mmol, 0.247 g), H2BDC (1.00 mmol, 0.167 g) and water (10 ml), in the ratio of 1:4:2:1112, was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 6 d. The prism-like crystals obtained were recovered by filtration, washed with distilled water and dried in air.

Refinement top

H atoms bound to C atoms were positioned geometrically, with C—H distances of 0.93 Å, and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)]. H atoms bound to O atoms were located in a difference Fourier map and refined as riding in the as-found positions [Uiso(H) = 1.2Ueq(O)].

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (as representative of both compounds), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z, (ii) 2 − x, 1 − y, 1 − z
[Figure 2] Fig. 2. Different views of the one-dimensional infinite chains in (I) and (II), (a) along b (aromatic rings have been omitted for clarity) and (b) along c.
[Figure 3] Fig. 3. Coordination modes of the IN and BDC ligands in (I) and (II).
[Figure 4] Fig. 4. The packing of (I) and (II), projected down the chain direction. Note the interdigitation of Ithe N groups.
(I) Poly[aqua(µ3-benzene-1,2-dicarboxylato-κ4O,O':O':O'')bis(µ3– hydroxido)bis(µ2-isonicotinato-κ2O:O')dierbium(III) monohydrate top
Crystal data top
[Er2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2OF(000) = 1536
Mr = 812.88Dx = 2.329 Mg m3
Monoclinic, p21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18413 reflections
a = 7.2706 (5) Åθ = 1.8–26.5°
b = 24.2780 (4) ŵ = 7.26 mm1
c = 13.3668 (2) ÅT = 295 K
β = 100.708 (4)°Prism, red
V = 2318.36 (17) Å30.45 × 0.10 × 0.09 mm
Z = 4
Data collection top
Siemems SMART CCD
diffractometer
4769 independent reflections
Radiation source: fine-focus sealed tube4563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.399, Tmax = 0.511k = 3029
18413 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0263P)2 + 4.9192P]
where P = (Fo2 + 2Fc2)/3
4769 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
[Er2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2OV = 2318.36 (17) Å3
Mr = 812.88Z = 4
Monoclinic, p21/cMo Kα radiation
a = 7.2706 (5) ŵ = 7.26 mm1
b = 24.2780 (4) ÅT = 295 K
c = 13.3668 (2) Å0.45 × 0.10 × 0.09 mm
β = 100.708 (4)°
Data collection top
Siemems SMART CCD
diffractometer
4769 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4563 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.511Rint = 0.036
18413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.19Δρmax = 1.76 e Å3
4769 reflectionsΔρmin = 1.41 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.58951 (3)0.454643 (8)0.398835 (15)0.01102 (7)
Er20.91911 (3)0.492512 (8)0.626252 (15)0.01118 (7)
O10.1068 (5)0.52598 (16)0.1930 (3)0.0240 (8)
O1W0.9014 (7)0.8486 (2)1.0199 (4)0.0569 (14)
H1W0.94390.81670.99360.068*
H2W0.77880.84811.00530.068*
O20.3687 (5)0.51179 (15)0.3019 (3)0.0182 (7)
O30.6819 (6)0.60570 (17)0.3285 (4)0.0423 (11)
O40.7641 (5)0.51853 (14)0.3102 (3)0.0187 (7)
O50.6621 (4)0.52711 (13)0.5156 (2)0.0120 (6)
H50.67960.55750.48660.014*
O60.9148 (4)0.45157 (13)0.4673 (2)0.0128 (7)
H60.95090.41760.46510.015*
O70.7093 (5)0.39610 (15)0.2890 (3)0.0236 (8)
H7W0.66230.36520.26460.028*
H8W0.82410.40020.28090.028*
O80.6144 (5)0.38738 (16)0.5195 (3)0.0280 (9)
O90.8535 (6)0.39941 (15)0.6491 (3)0.0289 (9)
O100.9275 (5)0.57681 (14)0.7090 (3)0.0195 (7)
O110.6344 (5)0.60890 (16)0.6763 (3)0.0288 (9)
C10.4039 (9)0.5679 (3)0.0365 (4)0.0430 (17)
H1A0.34660.56860.10480.052*
C20.5869 (10)0.5846 (3)0.0078 (5)0.0460 (19)
H2A0.65210.59740.05680.055*
C30.6754 (8)0.5825 (3)0.0935 (5)0.0375 (15)
H3A0.80000.59310.11170.045*
C40.5786 (7)0.5645 (2)0.1678 (4)0.0197 (11)
C50.3910 (7)0.5478 (2)0.1389 (4)0.0218 (11)
C60.3056 (9)0.5502 (3)0.0364 (4)0.0327 (14)
H6A0.18100.53980.01710.039*
C70.6792 (7)0.5645 (2)0.2771 (4)0.0217 (11)
C80.2808 (7)0.5273 (2)0.2121 (4)0.0192 (10)
C91.0018 (11)0.6974 (4)0.9441 (6)0.056 (2)
H9A1.07220.69171.00880.067*
C100.8399 (11)0.7548 (3)0.8268 (7)0.055 (2)
H10A0.79880.79020.80750.066*
C110.7928 (9)0.7123 (3)0.7569 (6)0.0406 (16)
H11A0.71910.71880.69340.049*
C120.9677 (9)0.6535 (3)0.8794 (5)0.0414 (16)
H12A1.01780.61910.89930.050*
C130.8585 (7)0.6607 (2)0.7846 (4)0.0247 (12)
C140.8022 (7)0.6119 (2)0.7169 (4)0.0185 (10)
C150.7356 (10)0.2478 (3)0.7691 (6)0.0495 (19)
H15A0.78440.23850.83630.059*
C160.5696 (10)0.2249 (3)0.6147 (6)0.0439 (17)
H16A0.50300.19870.57190.053*
C170.7622 (10)0.3012 (3)0.7372 (5)0.0412 (16)
H17A0.82990.32650.78160.049*
C180.5846 (9)0.2772 (2)0.5766 (5)0.0362 (15)
H18A0.52720.28610.51040.043*
C190.6869 (7)0.3159 (2)0.6391 (4)0.0228 (11)
C200.7213 (8)0.3727 (2)0.6000 (4)0.0229 (11)
N10.9394 (9)0.7477 (3)0.9189 (5)0.0581 (19)
N20.6447 (8)0.2097 (2)0.7091 (5)0.0459 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01092 (12)0.00925 (12)0.01294 (11)0.00006 (7)0.00237 (8)0.00124 (7)
Er20.01085 (12)0.01073 (12)0.01217 (11)0.00049 (7)0.00269 (8)0.00025 (7)
O10.0152 (19)0.035 (2)0.0209 (18)0.0006 (16)0.0021 (14)0.0040 (16)
O1W0.060 (3)0.037 (3)0.075 (4)0.011 (2)0.015 (3)0.028 (3)
O20.0149 (18)0.025 (2)0.0147 (17)0.0036 (14)0.0030 (13)0.0065 (14)
O30.045 (3)0.020 (2)0.058 (3)0.0010 (19)0.001 (2)0.011 (2)
O40.0152 (18)0.0196 (19)0.0219 (18)0.0026 (14)0.0054 (14)0.0051 (14)
O50.0137 (16)0.0081 (16)0.0144 (16)0.0006 (12)0.0028 (12)0.0015 (13)
O60.0161 (17)0.0069 (16)0.0158 (16)0.0015 (12)0.0044 (13)0.0004 (12)
O70.0198 (19)0.020 (2)0.034 (2)0.0063 (15)0.0114 (15)0.0151 (16)
O80.025 (2)0.022 (2)0.037 (2)0.0040 (16)0.0066 (17)0.0152 (17)
O90.044 (2)0.017 (2)0.027 (2)0.0068 (17)0.0099 (18)0.0035 (16)
O100.0165 (18)0.0178 (19)0.0257 (19)0.0010 (14)0.0077 (14)0.0047 (15)
O110.0165 (19)0.023 (2)0.046 (2)0.0027 (15)0.0025 (17)0.0163 (18)
C10.046 (4)0.068 (5)0.017 (3)0.014 (3)0.012 (3)0.017 (3)
C20.047 (4)0.059 (5)0.038 (4)0.019 (3)0.026 (3)0.033 (3)
C30.025 (3)0.046 (4)0.045 (4)0.005 (3)0.015 (3)0.021 (3)
C40.020 (3)0.019 (3)0.022 (3)0.007 (2)0.009 (2)0.008 (2)
C50.019 (3)0.028 (3)0.018 (3)0.005 (2)0.003 (2)0.007 (2)
C60.029 (3)0.049 (4)0.019 (3)0.010 (3)0.002 (2)0.008 (3)
C70.017 (3)0.017 (3)0.032 (3)0.003 (2)0.007 (2)0.006 (2)
C80.023 (3)0.016 (3)0.019 (3)0.000 (2)0.005 (2)0.003 (2)
C90.056 (5)0.062 (6)0.049 (5)0.009 (4)0.006 (4)0.034 (4)
C100.056 (5)0.022 (4)0.092 (6)0.009 (3)0.023 (4)0.024 (4)
C110.035 (4)0.029 (4)0.058 (4)0.001 (3)0.007 (3)0.014 (3)
C120.033 (4)0.048 (4)0.041 (4)0.006 (3)0.002 (3)0.019 (3)
C130.014 (3)0.026 (3)0.037 (3)0.007 (2)0.011 (2)0.016 (2)
C140.014 (2)0.018 (3)0.024 (3)0.0064 (19)0.0079 (19)0.006 (2)
C150.057 (5)0.036 (4)0.056 (5)0.009 (3)0.012 (4)0.030 (3)
C160.042 (4)0.023 (3)0.066 (5)0.007 (3)0.008 (3)0.005 (3)
C170.054 (4)0.028 (4)0.040 (4)0.008 (3)0.004 (3)0.012 (3)
C180.034 (3)0.022 (3)0.050 (4)0.001 (3)0.000 (3)0.009 (3)
C190.024 (3)0.013 (3)0.032 (3)0.003 (2)0.007 (2)0.009 (2)
C200.033 (3)0.012 (3)0.027 (3)0.003 (2)0.014 (2)0.004 (2)
N10.047 (4)0.060 (5)0.069 (5)0.018 (3)0.014 (3)0.044 (4)
N20.041 (3)0.022 (3)0.079 (4)0.006 (2)0.023 (3)0.025 (3)
Geometric parameters (Å, º) top
Er1—O82.278 (4)C1—C21.376 (10)
Er1—O22.325 (3)C1—C61.380 (8)
Er1—O72.326 (3)C1—H1A0.9300
Er1—O11i2.331 (4)C2—C31.388 (9)
Er1—O52.346 (3)C2—H2A0.9300
Er1—O5i2.372 (3)C3—C41.390 (7)
Er1—O62.373 (3)C3—H3A0.9300
Er1—O42.445 (3)C4—C51.406 (7)
Er1—Er23.6224 (3)C4—C71.507 (7)
Er1—Er2ii3.8688 (4)C5—C61.396 (7)
Er1—Er2i3.8694 (4)C5—C81.463 (7)
Er1—Er1i3.8944 (4)C6—H6A0.9300
Er2—O52.315 (3)C9—N11.325 (11)
Er2—O4ii2.318 (3)C9—C121.365 (9)
Er2—O102.322 (3)C9—H9A0.9300
Er2—O6ii2.329 (3)C10—N11.318 (11)
Er2—O62.341 (3)C10—C111.391 (9)
Er2—O92.342 (4)C10—H10A0.9300
Er2—O2i2.461 (3)C11—C131.367 (9)
Er2—O1i2.499 (4)C11—H11A0.9300
Er2—Er2ii3.7924 (4)C12—C131.376 (8)
O1—C81.244 (6)C12—H12A0.9300
O1W—H1W0.9268C13—C141.501 (7)
O1W—H2W0.8767C15—N21.318 (10)
O2—C81.306 (6)C15—C171.389 (9)
O3—C71.211 (7)C15—H15A0.9300
O4—C71.312 (6)C16—N21.330 (9)
O5—H50.8539C16—C181.380 (8)
O6—H60.8675C16—H16A0.9300
O7—H7W0.8627C17—C191.371 (8)
O7—H8W0.8669C17—H17A0.9300
O8—C201.256 (6)C18—C191.380 (8)
O9—C201.241 (7)C18—H18A0.9300
O10—C141.267 (6)C19—C201.513 (7)
O11—C141.241 (6)
O8—Er1—O2141.05 (12)C2—C1—H1A120.1
O8—Er1—O791.10 (14)C6—C1—H1A120.1
O2—Er1—O7108.27 (13)C1—C2—C3120.7 (5)
O8—Er1—O11i77.76 (15)C1—C2—H2A119.7
O2—Er1—O11i78.47 (13)C3—C2—H2A119.7
O7—Er1—O11i68.72 (12)C2—C3—C4120.3 (6)
O8—Er1—O595.05 (13)C2—C3—H3A119.9
O2—Er1—O588.28 (11)C4—C3—H3A119.9
O7—Er1—O5144.47 (11)C3—C4—C5119.2 (5)
O11i—Er1—O5146.72 (12)C3—C4—C7118.3 (5)
O8—Er1—O5i76.09 (12)C5—C4—C7122.5 (4)
O2—Er1—O5i69.07 (11)C6—C5—C4119.3 (5)
O7—Er1—O5i146.22 (12)C6—C5—C8118.1 (5)
O11i—Er1—O5i77.99 (12)C4—C5—C8122.6 (5)
O5—Er1—O5i68.76 (12)C1—C6—C5120.8 (6)
O8—Er1—O676.26 (12)C1—C6—H6A119.6
O2—Er1—O6140.25 (11)C5—C6—H6A119.6
O7—Er1—O676.16 (12)O3—C7—O4123.6 (5)
O11i—Er1—O6135.37 (12)O3—C7—C4120.2 (5)
O5—Er1—O671.47 (11)O4—C7—C4116.1 (5)
O5i—Er1—O6128.51 (11)O1—C8—O2119.1 (4)
O8—Er1—O4144.83 (12)O1—C8—C5122.3 (4)
O2—Er1—O473.65 (11)O2—C8—C5118.5 (4)
O7—Er1—O478.03 (12)O1—C8—Er2i60.7 (3)
O11i—Er1—O4126.51 (13)O2—C8—Er2i59.2 (2)
O5—Er1—O476.93 (11)C5—C8—Er2i168.9 (4)
O5i—Er1—O4129.15 (11)N1—C9—C12123.1 (8)
O6—Er1—O468.70 (11)N1—C9—H9A118.5
O5—Er2—O4ii154.89 (12)C12—C9—H9A118.5
O5—Er2—O1086.05 (12)N1—C10—C11123.6 (7)
O4ii—Er2—O1089.48 (12)N1—C10—H10A118.2
O5—Er2—O6ii83.29 (11)C11—C10—H10A118.2
O4ii—Er2—O6ii71.64 (12)C13—C11—C10117.9 (7)
O10—Er2—O6ii76.79 (11)C13—C11—H11A121.0
O5—Er2—O672.60 (11)C10—C11—H11A121.0
O4ii—Er2—O697.38 (12)C9—C12—C13119.3 (7)
O10—Er2—O6143.26 (12)C9—C12—H12A120.3
O6ii—Er2—O671.40 (12)C13—C12—H12A120.3
O5—Er2—O9105.88 (13)C11—C13—C12118.6 (6)
O4ii—Er2—O993.06 (13)C11—C13—C14121.2 (5)
O10—Er2—O9140.96 (13)C12—C13—C14120.1 (5)
O6ii—Er2—O9140.45 (12)O11—C14—O10126.0 (5)
O6—Er2—O974.92 (12)O11—C14—C13116.5 (4)
O5—Er2—O2i67.71 (11)O10—C14—C13117.5 (4)
O4ii—Er2—O2i135.33 (11)N2—C15—C17123.4 (7)
O10—Er2—O2i78.50 (12)N2—C15—H15A118.3
O6ii—Er2—O2i142.87 (11)C17—C15—H15A118.3
O6—Er2—O2i117.85 (11)N2—C16—C18124.0 (7)
O9—Er2—O2i72.52 (13)N2—C16—H16A118.0
O5—Er2—O1i119.08 (11)C18—C16—H16A118.0
O4ii—Er2—O1i82.71 (11)C19—C17—C15118.9 (7)
O10—Er2—O1i72.41 (13)C19—C17—H17A120.6
O6ii—Er2—O1i139.76 (12)C15—C17—H17A120.6
O6—Er2—O1i144.17 (12)C19—C18—C16118.2 (6)
O9—Er2—O1i69.32 (13)C19—C18—H18A120.9
O2i—Er2—O1i52.62 (11)C16—C18—H18A120.9
O1W—O1W—H2W107.5C17—C19—C18118.5 (5)
Er2ii—O6—H6110.2C17—C19—C20120.3 (5)
Er2—O6—H6118.7C18—C19—C20121.1 (5)
Er1—O6—H6107.7O9—C20—O8126.9 (5)
Er1—O7—H7W126.9O9—C20—C19117.1 (5)
Er1—O7—H8W119.4O8—C20—C19116.0 (5)
H7W—O7—H8W112.1C10—N1—C9117.4 (6)
C2—C1—C6119.7 (6)C15—N2—C16117.0 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.931.952.834 (8)160
O5—H5···O30.852.423.170 (6)147
O6—H6···O1Wiii0.871.982.826 (6)164
O7—H7W···N2iv0.861.962.788 (6)161
O7—H8W···O10ii0.871.872.716 (5)165
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
(II) Poly[aqua(µ3-benzene-1,2-dicarboxylato-κ4O,O':O':O'')bis(µ3-hydroxido)bis(µ2-isonicotinato-κ2O:O')thulium(III) monohydrate top
Crystal data top
[Tm2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2OF(000) = 1544
Mr = 816.22Dx = 2.354 Mg m3
Monoclinic, p21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18502 reflections
a = 7.2434 (2) Åθ = 1.7–26.5°
b = 24.2180 (6) ŵ = 7.72 mm1
c = 13.3606 (4) ÅT = 295 K
β = 100.700 (3)°Prism, brown
V = 2302.97 (11) Å30.35 × 0.09 × 0.07 mm
Z = 4
Data collection top
Siemems SMART CCD
diffractometer
4754 independent reflections
Radiation source: fine-focus sealed tube4602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.373, Tmax = 0.577k = 2930
18502 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0276P)2 + 4.1831P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Tm2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2OV = 2302.97 (11) Å3
Mr = 816.22Z = 4
Monoclinic, p21/cMo Kα radiation
a = 7.2434 (2) ŵ = 7.72 mm1
b = 24.2180 (6) ÅT = 295 K
c = 13.3606 (4) Å0.35 × 0.09 × 0.07 mm
β = 100.700 (3)°
Data collection top
Siemems SMART CCD
diffractometer
4754 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4602 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.577Rint = 0.026
18502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.17Δρmax = 1.11 e Å3
4754 reflectionsΔρmin = 1.31 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm10.59003 (2)0.454897 (7)0.399404 (13)0.01278 (6)
Tm20.91843 (2)0.492537 (7)0.625664 (13)0.01309 (6)
O10.1057 (4)0.52578 (15)0.1945 (2)0.0257 (7)
O1W0.9011 (7)0.84841 (18)1.0193 (4)0.0605 (13)
H1W0.94350.81650.99300.073*
H2W0.77840.84791.00470.073*
O20.3689 (4)0.51172 (13)0.3029 (2)0.0212 (7)
O30.6818 (5)0.60627 (16)0.3283 (3)0.0442 (10)
O40.7650 (4)0.51876 (13)0.3111 (2)0.0193 (6)
O50.6622 (4)0.52721 (12)0.5154 (2)0.0138 (6)
H50.67980.55760.48630.017*
O60.9153 (4)0.45201 (11)0.4675 (2)0.0145 (6)
H60.95140.41810.46530.017*
O70.7094 (4)0.39701 (14)0.2895 (2)0.0258 (7)
H7W0.66240.36610.26510.031*
H8W0.82420.40110.28140.031*
O80.6154 (5)0.38747 (14)0.5187 (3)0.0315 (8)
O90.8544 (5)0.39973 (14)0.6484 (3)0.0309 (8)
O100.9274 (4)0.57651 (13)0.7080 (2)0.0222 (7)
O110.6328 (4)0.60859 (14)0.6750 (3)0.0309 (8)
C10.4036 (9)0.5674 (3)0.0361 (4)0.0476 (16)
H1A0.34650.56770.10450.057*
C20.5870 (9)0.5844 (3)0.0072 (5)0.0515 (18)
H2A0.65250.59700.05640.062*
C30.6752 (8)0.5829 (2)0.0935 (4)0.0410 (14)
H3A0.79960.59420.11170.049*
C40.5787 (6)0.5645 (2)0.1685 (4)0.0256 (10)
C50.3912 (6)0.5475 (2)0.1394 (4)0.0247 (10)
C60.3051 (8)0.5500 (2)0.0368 (4)0.0364 (13)
H6A0.17980.53980.01760.044*
C70.6795 (6)0.5645 (2)0.2774 (4)0.0245 (10)
C80.2815 (6)0.52723 (19)0.2139 (3)0.0223 (9)
C91.0001 (10)0.6968 (3)0.9434 (6)0.061 (2)
H9A1.07060.69081.00810.073*
C100.8386 (10)0.7551 (3)0.8267 (7)0.060 (2)
H10A0.79820.79060.80750.072*
C110.7917 (8)0.7124 (2)0.7563 (5)0.0439 (14)
H11A0.71830.71890.69260.053*
C120.9665 (8)0.6529 (3)0.8785 (5)0.0438 (14)
H12A1.01720.61840.89800.053*
C130.8573 (6)0.6603 (2)0.7844 (4)0.0287 (11)
C140.8011 (6)0.61155 (19)0.7157 (3)0.0226 (10)
C150.7365 (9)0.2477 (3)0.7692 (5)0.0526 (17)
H15A0.78580.23830.83640.063*
C160.5699 (9)0.2247 (2)0.6158 (5)0.0482 (16)
H16A0.50150.19850.57340.058*
C170.7636 (9)0.3011 (2)0.7375 (5)0.0441 (14)
H17A0.83140.32650.78210.053*
C180.5864 (8)0.2770 (2)0.5766 (5)0.0381 (13)
H18A0.53040.28570.51010.046*
C190.6887 (6)0.31574 (19)0.6394 (4)0.0252 (10)
C200.7218 (7)0.37263 (19)0.5994 (4)0.0248 (10)
N10.9381 (8)0.7474 (3)0.9196 (5)0.0615 (17)
N20.6451 (7)0.2096 (2)0.7099 (5)0.0486 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.01099 (10)0.01237 (10)0.01469 (10)0.00007 (6)0.00161 (7)0.00139 (6)
Tm20.01116 (10)0.01405 (10)0.01391 (10)0.00044 (6)0.00196 (7)0.00029 (6)
O10.0159 (16)0.038 (2)0.0219 (16)0.0004 (14)0.0010 (13)0.0046 (15)
O1W0.068 (3)0.042 (3)0.075 (3)0.013 (2)0.020 (3)0.030 (2)
O20.0161 (15)0.0304 (18)0.0172 (15)0.0029 (12)0.0032 (12)0.0065 (13)
O30.042 (2)0.027 (2)0.059 (3)0.0000 (17)0.0015 (19)0.0091 (19)
O40.0138 (14)0.0223 (17)0.0215 (16)0.0019 (12)0.0029 (12)0.0066 (13)
O50.0146 (14)0.0115 (14)0.0145 (14)0.0000 (11)0.0011 (11)0.0006 (11)
O60.0170 (14)0.0094 (14)0.0171 (15)0.0014 (10)0.0032 (12)0.0000 (11)
O70.0171 (16)0.0253 (18)0.0371 (19)0.0067 (13)0.0101 (14)0.0159 (15)
O80.0260 (18)0.029 (2)0.040 (2)0.0027 (14)0.0076 (15)0.0163 (16)
O90.044 (2)0.0177 (17)0.0327 (19)0.0050 (15)0.0101 (16)0.0017 (14)
O100.0177 (15)0.0207 (17)0.0295 (17)0.0028 (12)0.0077 (13)0.0065 (13)
O110.0167 (16)0.0253 (18)0.050 (2)0.0033 (13)0.0043 (15)0.0151 (16)
C10.049 (4)0.071 (4)0.024 (3)0.016 (3)0.011 (3)0.019 (3)
C20.054 (4)0.071 (5)0.038 (3)0.018 (3)0.028 (3)0.033 (3)
C30.028 (3)0.050 (4)0.048 (3)0.005 (2)0.014 (2)0.024 (3)
C40.023 (2)0.026 (3)0.028 (2)0.0057 (19)0.0071 (19)0.011 (2)
C50.022 (2)0.031 (3)0.022 (2)0.0074 (18)0.0055 (19)0.0078 (19)
C60.034 (3)0.052 (4)0.021 (3)0.011 (2)0.002 (2)0.007 (2)
C70.016 (2)0.023 (3)0.034 (3)0.0018 (17)0.0048 (19)0.008 (2)
C80.021 (2)0.021 (2)0.025 (2)0.0023 (18)0.0050 (18)0.0020 (19)
C90.051 (4)0.070 (5)0.057 (4)0.010 (4)0.000 (3)0.035 (4)
C100.056 (4)0.028 (3)0.100 (6)0.006 (3)0.025 (4)0.025 (4)
C110.039 (3)0.035 (3)0.058 (4)0.004 (2)0.009 (3)0.014 (3)
C120.036 (3)0.049 (4)0.044 (3)0.003 (3)0.003 (3)0.018 (3)
C130.018 (2)0.031 (3)0.040 (3)0.0063 (19)0.011 (2)0.018 (2)
C140.019 (2)0.023 (2)0.028 (2)0.0069 (18)0.0089 (18)0.0061 (19)
C150.058 (4)0.045 (4)0.055 (4)0.001 (3)0.011 (3)0.032 (3)
C160.043 (3)0.029 (3)0.071 (5)0.006 (2)0.007 (3)0.004 (3)
C170.058 (4)0.030 (3)0.041 (3)0.007 (3)0.001 (3)0.012 (3)
C180.034 (3)0.026 (3)0.052 (3)0.001 (2)0.001 (3)0.009 (2)
C190.023 (2)0.016 (2)0.037 (3)0.0021 (18)0.009 (2)0.008 (2)
C200.032 (3)0.019 (2)0.028 (2)0.0080 (19)0.016 (2)0.0050 (19)
N10.051 (3)0.062 (4)0.074 (4)0.017 (3)0.018 (3)0.043 (3)
N20.039 (3)0.028 (3)0.082 (4)0.004 (2)0.019 (3)0.023 (3)
Geometric parameters (Å, º) top
Tm1—O82.266 (3)C1—C21.376 (9)
Tm1—O72.311 (3)C1—C61.376 (8)
Tm1—O22.314 (3)C1—H1A0.9300
Tm1—O11i2.315 (3)C2—C31.379 (8)
Tm1—O52.332 (3)C2—H2A0.9300
Tm1—O62.364 (3)C3—C41.396 (7)
Tm1—O5i2.366 (3)C3—H3A0.9300
Tm1—O42.439 (3)C4—C51.404 (7)
Tm1—Tm23.5997 (3)C4—C71.503 (7)
Tm1—Tm2i3.8521 (2)C5—C61.398 (7)
Tm1—Tm2ii3.8539 (3)C5—C81.469 (6)
Tm1—Tm1i3.8731 (4)C6—H6A0.9300
Tm2—O52.303 (3)C9—N11.324 (10)
Tm2—O102.308 (3)C9—C121.366 (8)
Tm2—O4ii2.308 (3)C9—H9A0.9300
Tm2—O6ii2.315 (3)C10—N11.327 (10)
Tm2—O92.326 (3)C10—C111.397 (9)
Tm2—O62.327 (3)C10—H10A0.9300
Tm2—O2i2.447 (3)C11—C131.376 (8)
Tm2—O1i2.482 (3)C11—H11A0.9300
Tm2—Tm2ii3.7783 (4)C12—C131.367 (8)
O1—C81.252 (5)C12—H12A0.9300
O1W—H1W0.9247C13—C141.503 (6)
O1W—H2W0.8735C15—N21.313 (9)
O2—C81.295 (5)C15—C171.387 (8)
O3—C71.217 (6)C15—H15A0.9300
O4—C71.307 (5)C16—N21.326 (8)
O5—H50.8521C16—C181.384 (8)
O6—H60.8652C16—H16A0.9300
O7—H7W0.8606C17—C191.370 (7)
O7—H8W0.8638C17—H17A0.9300
O8—C201.255 (6)C18—C191.379 (7)
O9—C201.245 (6)C18—H18A0.9300
O10—C141.266 (5)C19—C201.513 (6)
O11—C141.241 (5)
O8—Tm1—O791.08 (13)Tm1—O7—H8W119.5
O8—Tm1—O2141.07 (11)H7W—O7—H8W112.0
O7—Tm1—O2107.98 (11)C2—C1—C6119.5 (5)
O8—Tm1—O11i77.43 (13)C2—C1—H1A120.2
O7—Tm1—O11i68.76 (11)C6—C1—H1A120.2
O2—Tm1—O11i78.50 (12)C1—C2—C3120.9 (5)
O8—Tm1—O595.45 (12)C1—C2—H2A119.5
O7—Tm1—O5144.43 (10)C3—C2—H2A119.5
O2—Tm1—O588.29 (10)C2—C3—C4120.4 (5)
O11i—Tm1—O5146.74 (11)C2—C3—H3A119.8
O8—Tm1—O676.29 (11)C4—C3—H3A119.8
O7—Tm1—O676.28 (10)C3—C4—C5118.9 (5)
O2—Tm1—O6140.30 (10)C3—C4—C7118.5 (5)
O11i—Tm1—O6135.33 (10)C5—C4—C7122.6 (4)
O5—Tm1—O671.46 (9)C6—C5—C4119.4 (5)
O8—Tm1—O5i76.26 (11)C6—C5—C8118.7 (4)
O7—Tm1—O5i146.15 (10)C4—C5—C8121.9 (4)
O2—Tm1—O5i69.05 (10)C1—C6—C5120.8 (5)
O11i—Tm1—O5i77.82 (11)C1—C6—H6A119.6
O5—Tm1—O5i68.94 (11)C5—C6—H6A119.6
O6—Tm1—O5i128.61 (9)O3—C7—O4123.8 (5)
O8—Tm1—O4144.69 (11)O3—C7—C4119.7 (4)
O7—Tm1—O477.75 (11)O4—C7—C4116.6 (4)
O2—Tm1—O473.84 (10)O1—C8—O2119.2 (4)
O11i—Tm1—O4126.66 (12)O1—C8—C5121.7 (4)
O5—Tm1—O476.86 (10)O2—C8—C5119.0 (4)
O6—Tm1—O468.55 (10)N1—C9—C12123.7 (7)
O5i—Tm1—O4129.35 (10)N1—C9—H9A118.1
O5—Tm2—O1086.09 (10)C12—C9—H9A118.1
O5—Tm2—O4ii154.84 (10)N1—C10—C11123.2 (7)
O10—Tm2—O4ii89.53 (11)N1—C10—H10A118.4
O5—Tm2—O6ii83.25 (10)C11—C10—H10A118.4
O10—Tm2—O6ii76.93 (10)C13—C11—C10117.9 (6)
O4ii—Tm2—O6ii71.64 (10)C13—C11—H11A121.1
O5—Tm2—O9106.22 (11)C10—C11—H11A121.1
O10—Tm2—O9141.05 (12)C9—C12—C13119.1 (6)
O4ii—Tm2—O992.65 (12)C9—C12—H12A120.4
O6ii—Tm2—O9140.08 (11)C13—C12—H12A120.4
O5—Tm2—O672.64 (10)C12—C13—C11118.8 (5)
O10—Tm2—O6143.11 (11)C12—C13—C14120.2 (5)
O4ii—Tm2—O697.13 (10)C11—C13—C14120.8 (5)
O6ii—Tm2—O671.02 (11)O11—C14—O10126.3 (4)
O9—Tm2—O675.09 (11)O11—C14—C13116.5 (4)
O5—Tm2—O2i67.81 (10)O10—C14—C13117.2 (4)
O10—Tm2—O2i78.57 (11)N2—C15—C17123.8 (6)
O4ii—Tm2—O2i135.33 (10)N2—C15—H15A118.1
O6ii—Tm2—O2i143.03 (10)C17—C15—H15A118.1
O9—Tm2—O2i72.77 (12)N2—C16—C18124.3 (6)
O6—Tm2—O2i118.08 (10)N2—C16—H16A117.9
O5—Tm2—O1i119.44 (10)C18—C16—H16A117.9
O10—Tm2—O1i72.33 (11)C19—C17—C15118.7 (6)
O4ii—Tm2—O1i82.42 (10)C19—C17—H17A120.6
O6ii—Tm2—O1i139.60 (10)C15—C17—H17A120.6
O9—Tm2—O1i69.45 (12)C19—C18—C16117.8 (5)
O6—Tm2—O1i144.46 (11)C19—C18—H18A121.1
O2i—Tm2—O1i52.92 (10)C16—C18—H18A121.1
H1W—O1W—H2W107.5C17—C19—C18118.6 (5)
Tm2—O5—H5115.8C17—C19—C20120.9 (5)
Tm1—O5—H5112.3C18—C19—C20120.5 (5)
Tm1i—O5—H5104.7O9—C20—O8126.3 (4)
Tm2ii—O6—H6110.0O9—C20—C19116.8 (4)
Tm2—O6—H6118.6O8—C20—C19116.9 (4)
Tm1—O6—H6107.5C9—N1—C10117.1 (6)
Tm1—O7—H7W126.8C15—N2—C16116.8 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.921.942.822 (7)160
O5—H5···O30.852.423.172 (5)148
O6—H6···O1Wiii0.871.992.830 (5)165
O7—H7W···N2iv0.861.972.798 (6)161
O7—H8W···O10ii0.861.862.702 (4)165
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Er2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O[Tm2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O
Mr812.88816.22
Crystal system, space groupMonoclinic, p21/cMonoclinic, p21/c
Temperature (K)295295
a, b, c (Å)7.2706 (5), 24.2780 (4), 13.3668 (2)7.2434 (2), 24.2180 (6), 13.3606 (4)
β (°) 100.708 (4) 100.700 (3)
V3)2318.36 (17)2302.97 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)7.267.72
Crystal size (mm)0.45 × 0.10 × 0.090.35 × 0.09 × 0.07
Data collection
DiffractometerSiemems SMART CCD
diffractometer
Siemems SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.399, 0.5110.373, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
18413, 4769, 4563 18502, 4754, 4602
Rint0.0360.026
(sin θ/λ)max1)0.6280.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.19 0.025, 0.060, 1.17
No. of reflections47694754
No. of parameters325325
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 1.411.11, 1.31

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Selected bond lengths (Å) for (I) top
Er1—O82.278 (4)Er2—O52.315 (3)
Er1—O22.325 (3)Er2—O4ii2.318 (3)
Er1—O72.326 (3)Er2—O102.322 (3)
Er1—O11i2.331 (4)Er2—O6ii2.329 (3)
Er1—O52.346 (3)Er2—O62.341 (3)
Er1—O5i2.372 (3)Er2—O92.342 (4)
Er1—O62.373 (3)Er2—O2i2.461 (3)
Er1—O42.445 (3)Er2—O1i2.499 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.931.952.834 (8)159.8
O5—H5···O30.852.423.170 (6)147.2
O6—H6···O1Wiii0.871.982.826 (6)164.4
O7—H7W···N2iv0.861.962.788 (6)160.7
O7—H8W···O10ii0.871.872.716 (5)164.6
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
Selected bond lengths (Å) for (II) top
Tm1—O82.266 (3)Tm2—O52.303 (3)
Tm1—O72.311 (3)Tm2—O102.308 (3)
Tm1—O22.314 (3)Tm2—O4ii2.308 (3)
Tm1—O11i2.315 (3)Tm2—O6ii2.315 (3)
Tm1—O52.332 (3)Tm2—O92.326 (3)
Tm1—O62.364 (3)Tm2—O62.327 (3)
Tm1—O5i2.366 (3)Tm2—O2i2.447 (3)
Tm1—O42.439 (3)Tm2—O1i2.482 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.921.942.822 (7)159.7
O5—H5···O30.852.423.172 (5)147.5
O6—H6···O1Wiii0.871.992.830 (5)164.5
O7—H7W···N2iv0.861.972.798 (6)160.6
O7—H8W···O10ii0.861.862.702 (4)164.7
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds