Download citation
Download citation
link to html
The title compound, [Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2O, consists of an SrII complex, uncoordinated phenanthroline (phen) mol­ecules and solvent water mol­ecules. The SrII ion is located on a twofold axis and is coordinated by two phen ligands, two dihydroxy­benzoate anions and two water mol­ecules in a distorted tetra­gonal anti­prismatic geometry. Partially overlapped arrangements exist between parallel coordinated and parallel uncoordinated phen rings; the face-to-face separations between the former (coordinated) and the latter (uncoordinated) rings are 3.436 (13) and 3.550 (14) Å, respectively. This difference suggests the effect of metal coordination on π–π stacking between phen rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107043430/bg3052sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107043430/bg3052Isup2.hkl
Contains datablock I

CCDC reference: 669148

Comment top

As ππ stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), the nature of ππ stacking has attracted our attention in past years. In a structure with a typical ππ stacking, the face-to-face separation between parallel aromatic rings is much shorter than the van der Waals thickness of the aromatic ring. In order to understand the nature of ππ stacking we have made efforts to investigate the effective factors which prompt the shorter contact of adjacent aromatic rings. A series of metal complexes incorporating aromatic ligands such as phenanthroline (Nie et al., 2001), benzimidazole (Chen et al., 2003), bipyridine (Xu et al., 1996), diaminobithiazole (Luo et al., 2004) and substituted benzoate (Cheng et al., 2000) has been prepared in our laboratory, and their crystal structures have been determined. As a part of our ongoing investigations on the nature of ππ stacking, the title compound, (I), including both coordinated and uncoordinated phenanthroline (phen), has been prepared. We present here its crystal structure in order to show the effect of metal coordination on ππ stacking between phen rings.

The crystal structure of (I) consists of an SrII complex, an uncoordinated phen molecule and solvent water molecules. The SrII ion is located on a crystallographic twofold axis. Two phen ligands chelate a single SrII ion, while two dihydroxybenzoate (dhba) anions and two water molecules complete the distorted SrN4O4 tetragonal antiprismatic coordination geometry (Fig. 1). The Sr—N and Sr—O bond distances (Table 1) are comparable to those found in related structures (Cambridge Structural Database; updated November 2007; Allen, 2002).

A partially overlapped arrangement of parallel phen rings is observed between coordinated and between uncoordinated phen rings (Fig. 2); this fact allowed us to study the effect of metal coordination on aromatic stacking. The face-to-face separation between parallel, uncoordinated N3-phen and N3ii-phen rings is 3.550 (14) Å [symmetry code: (ii) −x + 3/2, −y + 3/2, −z + 1], which is close to the van der Waals thickness of an aromatic ring and reveals a rather weak ππ stacking, whereas the face-to-face separation between the parallel, coordinated N1-phen and N1iii-phen rings [symmetry code: (iii) −x + 1, −y + 1, −z + 1] is 3.436 (13) Å, suggesting a stronger ππ stacking interaction.

Furthermore, the coordinated N1-phen ring is nearly parallel to the uncoordinated N3-phen ring with a small dihedral angle of 7.03 (7)°. These two phen rings also partially overlap one another (Fig. 3). A PLATON calculation (Spek, 2003) shows the two different perpendicular distances from the centre-of-gravity of one benzene ring to the other benzene ring plane to be 3.519 and 3.489 Å (s.u. values available?). The mean value of 3.504 (15) Å is taken to represent the average face-to-face separation between nearly parallel uncoordinated and coordinated phen rings. It is perceivably shorter than 3.550 (14) Å between uncoordinated phen rings but longer than 3.436 (13) Å between coordinated phen rings.

A similar phenomenon was also observed in the crystal structure of an MnII complex with the benzimidazole (bzim) ligand, which was determined by our group previously (Chen et al., 2003). The face-to-face separation between parallel, uncoordinated bzim rings is 3.60 (6) Å but the separation between parallel, coordinated bzim rings is 3.40 (4) Å.

These findings show the difference in face-to-face separations between coordinated aromatic rings and between uncoordinated aromatic rings, and suggest the effect of metal coordination on ππ stacking between aromatic rings, i.e. coordination to a metal cation may result in a shorter face-to-face separation and a stronger ππ stacking between aromatic rings.

Extensive hydrogen bonding occurs in the crystal structure (Table 2).

Related literature top

For related literature, see: Allen et al. (1987); Chen et al. (2003); Cheng et al. (2000); Deisenhofer & Michel (1989); Luo et al. (2004); Nie et al. (2001); Spek (2003); Xu et al. (1996).

Experimental top

Strontium nitrate (1 mmol), 2,5-dihydroxybenzoic acid (1 mmol), phen (1 mmol) and sodium carbonate (0.5 mmol) were dissolved in a water–ethanol mixture (15 ml, 2:1). The solution was refluxed for 2 h. After cooling to room temperature the solution was filtered. Single crystals of (I) were obtained from the filtrate after 5 d.

Refinement top

H atoms of hydroxy groups and water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions [Uiso(H) = 1.5Ueq(O)]. Other H atoms were placed in calculated positions with C—H distances of 0.93 Å and refined in riding mode with Uiso(H) values of 1.2Ueq(C). The deepest hole is 0.001 Å from the Sr atom.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: (i) −x + 1, y, −z + 1/2.]
[Figure 2] Fig. 2. The packing of (I), showing ππ stacking between the phen rings. H atoms and solvent water molecules have been omitted for clarity. [Symmetry codes: (ii) −x + 3/2, −y + 3/2, −z + 1; (iii) −x + 1, −y = 1, −z + 1.]
[Figure 3] Fig. 3. The partially overlapped arrangement between nearly parallel N1-phen and N3-phen rings.
Diaqua-bis(2,5-dihydroxybenzoato-κO)bis(1,10-phenanthroline-κ2N,N') strontium(II) bis(1,10-phenanthroline) tetrahydrate top
Crystal data top
[Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2OF(000) = 2528
Mr = 1222.75Dx = 1.407 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 18462 reflections
a = 24.7846 (16) Åθ = 3.0–24.0°
b = 13.2694 (8) ŵ = 1.01 mm1
c = 18.9986 (13) ÅT = 294 K
β = 112.526 (12)°Prism, colorless
V = 5771.5 (8) Å30.40 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5189 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 3.0°
ω scanh = 2925
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.645, Tmax = 0.810l = 2222
22817 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0426P)2 + 11.6357P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
5189 reflectionsΔρmax = 0.92 e Å3
385 parametersΔρmin = 1.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00085 (15)
Crystal data top
[Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2OV = 5771.5 (8) Å3
Mr = 1222.75Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.7846 (16) ŵ = 1.01 mm1
b = 13.2694 (8) ÅT = 294 K
c = 18.9986 (13) Å0.40 × 0.24 × 0.20 mm
β = 112.526 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5189 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3468 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.810Rint = 0.055
22817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0426P)2 + 11.6357P]
where P = (Fo2 + 2Fc2)/3
5189 reflectionsΔρmax = 0.92 e Å3
385 parametersΔρmin = 1.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr0.50000.41849 (4)0.25000.0449 (2)
N10.56827 (15)0.3801 (2)0.39893 (17)0.0507 (8)
N20.51319 (14)0.5621 (2)0.35672 (17)0.0500 (8)
N30.63569 (19)0.7480 (3)0.3427 (2)0.0763 (12)
N40.68957 (18)0.5723 (3)0.4104 (2)0.0674 (10)
O10.60384 (12)0.4798 (2)0.27055 (14)0.0550 (7)
H1A0.63230.53070.29320.082*
H1B0.62700.42610.27290.082*
O20.63889 (14)0.2814 (2)0.27761 (19)0.0698 (9)
O30.54417 (13)0.2647 (2)0.21015 (18)0.0646 (8)
O40.50660 (14)0.1190 (2)0.1129 (2)0.0823 (10)
H4A0.50290.16430.14550.123*
O50.73242 (14)0.0264 (2)0.23051 (19)0.0740 (9)
H5A0.73860.08630.22480.111*
O1W0.75535 (13)0.2948 (2)0.31590 (18)0.0690 (9)
H1C0.76210.25480.28120.104*
H1D0.72330.27430.32200.104*
O2W0.69718 (14)0.6591 (2)0.25191 (16)0.0718 (9)
H2C0.67080.68090.27000.108*
H2D0.71460.60950.28360.108*
C10.5962 (2)0.2933 (3)0.4205 (3)0.0623 (12)
H10.59370.24630.38300.075*
C20.6293 (2)0.2683 (4)0.4965 (3)0.0733 (14)
H20.64880.20690.50860.088*
C30.6326 (2)0.3347 (4)0.5520 (3)0.0718 (14)
H30.65380.31870.60280.086*
C40.60408 (18)0.4275 (4)0.5328 (2)0.0581 (11)
C50.6049 (2)0.5005 (5)0.5879 (2)0.0730 (14)
H50.62530.48650.63930.088*
C60.5771 (2)0.5884 (4)0.5679 (2)0.0710 (14)
H60.57810.63390.60560.085*
C70.54596 (18)0.6141 (3)0.4896 (2)0.0558 (11)
C80.5168 (2)0.7050 (4)0.4660 (3)0.0683 (13)
H80.51790.75340.50190.082*
C90.4868 (2)0.7234 (3)0.3913 (3)0.0700 (13)
H90.46730.78420.37540.084*
C100.4856 (2)0.6497 (3)0.3381 (2)0.0602 (11)
H100.46420.66280.28690.072*
C110.54318 (17)0.5439 (3)0.4323 (2)0.0468 (9)
C120.57235 (17)0.4480 (3)0.4542 (2)0.0484 (10)
C130.7189 (2)0.4919 (4)0.4443 (3)0.0805 (15)
H130.72270.44000.41360.097*
C140.7448 (2)0.4790 (5)0.5231 (3)0.0872 (16)
H140.76570.42090.54420.105*
C150.7385 (2)0.5539 (5)0.5678 (3)0.0851 (17)
H150.75480.54690.62050.102*
C160.7077 (2)0.6413 (4)0.5354 (3)0.0688 (13)
C170.6984 (3)0.7226 (5)0.5791 (3)0.0871 (18)
H170.71390.71820.63200.105*
C180.6679 (3)0.8043 (5)0.5459 (3)0.0900 (18)
H180.66170.85480.57590.108*
C190.6446 (2)0.8155 (4)0.4651 (3)0.0728 (14)
C200.6136 (3)0.9011 (4)0.4286 (4)0.0950 (18)
H200.60600.95220.45700.114*
C210.5949 (3)0.9097 (5)0.3528 (5)0.103 (2)
H210.57400.96600.32780.124*
C220.6076 (3)0.8322 (5)0.3124 (4)0.0989 (19)
H220.59550.84000.25990.119*
C230.6537 (2)0.7383 (4)0.4194 (3)0.0634 (12)
C240.68428 (19)0.6482 (4)0.4552 (2)0.0582 (11)
C310.60667 (18)0.1340 (3)0.2024 (2)0.0479 (9)
C320.56224 (19)0.0835 (3)0.1438 (3)0.0577 (11)
C330.5756 (2)0.0048 (3)0.1138 (3)0.0661 (13)
H330.54640.03810.07420.079*
C340.6315 (2)0.0431 (3)0.1423 (2)0.0615 (12)
H340.63980.10230.12210.074*
C350.67565 (19)0.0059 (3)0.2007 (2)0.0542 (11)
C360.66225 (19)0.0927 (3)0.2301 (2)0.0504 (10)
H360.69160.12480.27010.061*
C370.5963 (2)0.2334 (3)0.2326 (3)0.0544 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.0495 (3)0.0436 (3)0.0396 (3)0.0000.0149 (2)0.000
N10.056 (2)0.0519 (19)0.0446 (18)0.0012 (16)0.0199 (16)0.0030 (16)
N20.055 (2)0.053 (2)0.0413 (18)0.0026 (16)0.0179 (15)0.0047 (15)
N30.090 (3)0.076 (3)0.063 (3)0.011 (2)0.028 (2)0.007 (2)
N40.075 (3)0.072 (3)0.058 (2)0.008 (2)0.029 (2)0.015 (2)
O10.0518 (17)0.0541 (16)0.0576 (16)0.0085 (13)0.0194 (13)0.0052 (13)
O20.068 (2)0.0576 (18)0.086 (2)0.0002 (16)0.0316 (18)0.0229 (17)
O30.060 (2)0.0531 (17)0.089 (2)0.0059 (15)0.0372 (17)0.0082 (16)
O40.061 (2)0.064 (2)0.108 (3)0.0052 (16)0.0163 (19)0.0114 (19)
O50.065 (2)0.0510 (17)0.100 (2)0.0147 (15)0.0255 (18)0.0103 (17)
O1W0.068 (2)0.0476 (17)0.092 (2)0.0074 (15)0.0309 (17)0.0046 (16)
O2W0.081 (2)0.078 (2)0.0605 (18)0.0080 (18)0.0326 (16)0.0017 (16)
C10.066 (3)0.063 (3)0.060 (3)0.005 (2)0.028 (2)0.010 (2)
C20.067 (3)0.086 (3)0.063 (3)0.019 (3)0.021 (2)0.034 (3)
C30.060 (3)0.102 (4)0.047 (3)0.004 (3)0.013 (2)0.025 (3)
C40.050 (2)0.088 (3)0.034 (2)0.009 (2)0.0128 (18)0.005 (2)
C50.059 (3)0.122 (5)0.036 (2)0.015 (3)0.016 (2)0.002 (3)
C60.065 (3)0.101 (4)0.047 (3)0.021 (3)0.023 (2)0.021 (3)
C70.051 (2)0.073 (3)0.049 (2)0.014 (2)0.026 (2)0.015 (2)
C80.070 (3)0.075 (3)0.068 (3)0.012 (3)0.036 (3)0.024 (3)
C90.083 (4)0.052 (3)0.082 (3)0.005 (2)0.039 (3)0.015 (2)
C100.067 (3)0.060 (3)0.055 (2)0.007 (2)0.025 (2)0.006 (2)
C110.043 (2)0.059 (2)0.041 (2)0.0093 (19)0.0192 (17)0.0052 (19)
C120.043 (2)0.066 (3)0.040 (2)0.0066 (19)0.0198 (17)0.0043 (19)
C130.078 (4)0.085 (4)0.082 (4)0.004 (3)0.034 (3)0.012 (3)
C140.071 (4)0.097 (4)0.085 (4)0.003 (3)0.021 (3)0.007 (3)
C150.072 (4)0.121 (5)0.055 (3)0.026 (3)0.016 (3)0.001 (3)
C160.063 (3)0.094 (4)0.051 (3)0.029 (3)0.023 (2)0.013 (3)
C170.097 (4)0.121 (5)0.052 (3)0.044 (4)0.039 (3)0.038 (3)
C180.104 (5)0.097 (4)0.087 (4)0.040 (4)0.056 (4)0.043 (4)
C190.077 (3)0.075 (3)0.079 (3)0.030 (3)0.044 (3)0.026 (3)
C200.102 (5)0.071 (4)0.128 (6)0.022 (3)0.062 (4)0.025 (4)
C210.113 (5)0.067 (4)0.129 (6)0.009 (3)0.046 (4)0.001 (4)
C220.111 (5)0.094 (4)0.084 (4)0.016 (4)0.029 (4)0.000 (4)
C230.065 (3)0.073 (3)0.059 (3)0.026 (2)0.031 (2)0.022 (2)
C240.059 (3)0.070 (3)0.050 (2)0.019 (2)0.026 (2)0.013 (2)
C310.053 (2)0.039 (2)0.057 (2)0.0001 (18)0.026 (2)0.0008 (18)
C320.061 (3)0.043 (2)0.070 (3)0.003 (2)0.026 (2)0.008 (2)
C330.077 (3)0.041 (2)0.069 (3)0.003 (2)0.016 (2)0.009 (2)
C340.080 (3)0.036 (2)0.067 (3)0.006 (2)0.026 (2)0.005 (2)
C350.067 (3)0.038 (2)0.061 (3)0.005 (2)0.028 (2)0.000 (2)
C360.062 (3)0.041 (2)0.051 (2)0.0018 (19)0.024 (2)0.0014 (18)
C370.061 (3)0.048 (2)0.064 (3)0.004 (2)0.036 (2)0.003 (2)
Geometric parameters (Å, º) top
Sr—O1i2.582 (3)C6—H60.9300
Sr—O12.582 (3)C7—C81.389 (6)
Sr—O3i2.563 (3)C7—C111.414 (5)
Sr—O32.563 (3)C8—C91.348 (6)
Sr—N1i2.731 (3)C8—H80.9300
Sr—N12.731 (3)C9—C101.397 (6)
Sr—N22.710 (3)C9—H90.9300
Sr—N2i2.710 (3)C10—H100.9300
N1—C11.326 (5)C11—C121.444 (6)
N1—C121.356 (5)C13—C141.395 (7)
N2—C101.326 (5)C13—H130.9300
N2—C111.362 (5)C14—C151.355 (8)
N3—C221.326 (7)C14—H140.9300
N3—C231.358 (6)C15—C161.396 (8)
N4—C131.312 (6)C15—H150.9300
N4—C241.357 (5)C16—C241.409 (6)
O1—H1A0.9525C16—C171.433 (7)
O1—H1B0.9053C17—C181.334 (8)
O2—C371.249 (5)C17—H170.9300
O3—C371.266 (5)C18—C191.425 (7)
O4—C321.359 (5)C18—H180.9300
O4—H4A0.8926C19—C201.398 (8)
O5—C351.369 (5)C19—C231.414 (6)
O5—H5A0.8253C20—C211.338 (8)
O1W—H1C0.9103C20—H200.9300
O1W—H1D0.8881C21—C221.389 (8)
O2W—H2C0.8938C21—H210.9300
O2W—H2D0.8852C22—H220.9300
C1—C21.400 (6)C23—C241.440 (6)
C1—H10.9300C31—C361.386 (5)
C2—C31.352 (7)C31—C321.400 (6)
C2—H20.9300C31—C371.499 (5)
C3—C41.397 (6)C32—C331.398 (6)
C3—H30.9300C33—C341.378 (6)
C4—C51.420 (7)C33—H330.9300
C4—C121.423 (5)C34—C351.386 (6)
C5—C61.333 (7)C34—H340.9300
C5—H50.9300C35—C361.375 (5)
C6—C71.430 (6)C36—H360.9300
O3i—Sr—O374.49 (14)C8—C9—H9120.5
O3i—Sr—O1i77.39 (9)C10—C9—H9120.5
O3—Sr—O1i136.04 (9)N2—C10—C9123.7 (4)
O3i—Sr—O1136.04 (9)N2—C10—H10118.2
O3—Sr—O177.39 (9)C9—C10—H10118.2
O1i—Sr—O1143.27 (12)N2—C11—C7122.7 (4)
O3i—Sr—N2106.36 (10)N2—C11—C12118.1 (3)
O3—Sr—N2146.95 (10)C7—C11—C12119.2 (4)
O1i—Sr—N273.68 (9)N1—C12—C4122.2 (4)
O1—Sr—N280.66 (9)N1—C12—C11118.8 (3)
O3i—Sr—N2i146.95 (10)C4—C12—C11119.0 (4)
O3—Sr—N2i106.36 (10)N4—C13—C14124.5 (5)
O1i—Sr—N2i80.66 (9)N4—C13—H13117.7
O1—Sr—N2i73.68 (9)C14—C13—H13117.7
N2—Sr—N2i90.60 (13)C15—C14—C13117.9 (6)
O3i—Sr—N1i89.57 (10)C15—C14—H14121.1
O3—Sr—N1i73.19 (10)C13—C14—H14121.1
O1i—Sr—N1i73.51 (9)C14—C15—C16120.5 (5)
O1—Sr—N1i113.66 (9)C14—C15—H15119.8
N2—Sr—N1i139.07 (10)C16—C15—H15119.8
N2i—Sr—N1i60.44 (9)C15—C16—C24117.4 (5)
O3i—Sr—N173.19 (10)C15—C16—C17123.5 (5)
O3—Sr—N189.57 (10)C24—C16—C17119.1 (5)
O1i—Sr—N1113.66 (9)C18—C17—C16121.7 (5)
O1—Sr—N173.51 (9)C18—C17—H17119.1
N2—Sr—N160.44 (9)C16—C17—H17119.1
N2i—Sr—N1139.07 (10)C17—C18—C19121.0 (5)
N1i—Sr—N1158.52 (14)C17—C18—H18119.5
C1—N1—C12117.6 (3)C19—C18—H18119.5
C1—N1—Sr121.6 (3)C20—C19—C23118.1 (5)
C12—N1—Sr120.7 (2)C20—C19—C18122.5 (6)
C10—N2—C11117.0 (3)C23—C19—C18119.4 (5)
C10—N2—Sr121.0 (3)C21—C20—C19120.1 (6)
C11—N2—Sr121.6 (2)C21—C20—H20120.0
C22—N3—C23116.6 (5)C19—C20—H20120.0
C13—N4—C24117.6 (4)C20—C21—C22118.3 (6)
Sr—O1—H1A144.6C20—C21—H21120.9
Sr—O1—H1B109.7C22—C21—H21120.9
H1A—O1—H1B100.9N3—C22—C21125.1 (6)
C37—O3—Sr131.2 (3)N3—C22—H22117.4
C32—O4—H4A106.9C21—C22—H22117.4
C35—O5—H5A117.5N3—C23—C19121.7 (5)
H1C—O1W—H1D109.7N3—C23—C24118.9 (4)
H2C—O2W—H2D102.6C19—C23—C24119.4 (4)
N1—C1—C2123.7 (5)N4—C24—C16122.1 (5)
N1—C1—H1118.2N4—C24—C23118.7 (4)
C2—C1—H1118.2C16—C24—C23119.3 (4)
C3—C2—C1119.1 (5)C36—C31—C32118.5 (4)
C3—C2—H2120.4C36—C31—C37119.6 (4)
C1—C2—H2120.4C32—C31—C37121.8 (4)
C2—C3—C4119.9 (4)O4—C32—C33118.2 (4)
C2—C3—H3120.1O4—C32—C31122.4 (4)
C4—C3—H3120.1C33—C32—C31119.3 (4)
C3—C4—C5123.1 (4)C34—C33—C32120.5 (4)
C3—C4—C12117.6 (4)C34—C33—H33119.7
C5—C4—C12119.4 (4)C32—C33—H33119.7
C6—C5—C4121.7 (4)C33—C34—C35120.6 (4)
C6—C5—H5119.1C33—C34—H34119.7
C4—C5—H5119.1C35—C34—H34119.7
C5—C6—C7121.3 (4)O5—C35—C36117.7 (4)
C5—C6—H6119.3O5—C35—C34123.7 (4)
C7—C6—H6119.3C36—C35—C34118.6 (4)
C8—C7—C11117.2 (4)C35—C36—C31122.5 (4)
C8—C7—C6123.3 (4)C35—C36—H36118.8
C11—C7—C6119.4 (4)C31—C36—H36118.8
C9—C8—C7120.3 (4)O2—C37—O3123.3 (4)
C9—C8—H8119.8O2—C37—C31119.2 (4)
C7—C8—H8119.8O3—C37—C31117.5 (4)
C8—C9—C10119.0 (4)
O3i—Sr—N1—C160.6 (3)Sr—N1—C12—C4175.4 (3)
O3—Sr—N1—C113.3 (3)C1—N1—C12—C11179.0 (4)
O1i—Sr—N1—C1128.2 (3)Sr—N1—C12—C114.2 (5)
O1—Sr—N1—C190.2 (3)C3—C4—C12—N11.4 (6)
N2—Sr—N1—C1178.7 (4)C5—C4—C12—N1177.8 (4)
N2i—Sr—N1—C1128.2 (3)C3—C4—C12—C11178.9 (4)
N1i—Sr—N1—C122.7 (3)C5—C4—C12—C111.9 (6)
O3i—Sr—N1—C12116.0 (3)N2—C11—C12—N10.6 (5)
O3—Sr—N1—C12170.1 (3)C7—C11—C12—N1178.4 (4)
O1i—Sr—N1—C1248.4 (3)N2—C11—C12—C4179.8 (3)
O1—Sr—N1—C1293.1 (3)C7—C11—C12—C41.2 (6)
N2—Sr—N1—C124.6 (3)C24—N4—C13—C140.2 (8)
N2i—Sr—N1—C1255.2 (3)N4—C13—C14—C151.1 (9)
N1i—Sr—N1—C12153.9 (3)C13—C14—C15—C160.9 (8)
O3i—Sr—N2—C10118.8 (3)C14—C15—C16—C240.4 (7)
O3—Sr—N2—C10154.7 (3)C14—C15—C16—C17178.7 (5)
O1i—Sr—N2—C1047.6 (3)C15—C16—C17—C18178.9 (5)
O1—Sr—N2—C10105.8 (3)C24—C16—C17—C180.2 (8)
N2i—Sr—N2—C1032.5 (3)C16—C17—C18—C191.8 (9)
N1i—Sr—N2—C109.7 (4)C17—C18—C19—C20178.6 (5)
N1—Sr—N2—C10177.9 (3)C17—C18—C19—C230.5 (8)
O3i—Sr—N2—C1154.2 (3)C23—C19—C20—C212.0 (8)
O3—Sr—N2—C1132.4 (4)C18—C19—C20—C21177.1 (5)
O1i—Sr—N2—C11125.3 (3)C19—C20—C21—C220.5 (9)
O1—Sr—N2—C1181.2 (3)C23—N3—C22—C210.7 (9)
N2i—Sr—N2—C11154.6 (3)C20—C21—C22—N32.0 (10)
N1i—Sr—N2—C11163.2 (3)C22—N3—C23—C192.0 (7)
N1—Sr—N2—C115.0 (3)C22—N3—C23—C24179.9 (5)
O3i—Sr—O3—C37115.4 (4)C20—C19—C23—N33.4 (7)
O1i—Sr—O3—C37167.6 (3)C18—C19—C23—N3175.7 (4)
O1—Sr—O3—C3730.4 (4)C20—C19—C23—C24178.6 (4)
N2—Sr—O3—C3719.2 (5)C18—C19—C23—C242.3 (7)
N2i—Sr—O3—C3799.0 (4)C13—N4—C24—C161.7 (7)
N1i—Sr—O3—C37150.2 (4)C13—N4—C24—C23178.3 (4)
N1—Sr—O3—C3742.8 (4)C15—C16—C24—N41.8 (7)
C12—N1—C1—C20.0 (6)C17—C16—C24—N4177.3 (4)
Sr—N1—C1—C2176.7 (3)C15—C16—C24—C23178.2 (4)
N1—C1—C2—C31.3 (7)C17—C16—C24—C232.6 (6)
C1—C2—C3—C41.2 (7)N3—C23—C24—N45.8 (6)
C2—C3—C4—C5179.1 (5)C19—C23—C24—N4176.1 (4)
C2—C3—C4—C120.1 (7)N3—C23—C24—C16174.3 (4)
C3—C4—C5—C6179.9 (5)C19—C23—C24—C163.8 (6)
C12—C4—C5—C60.8 (7)C36—C31—C32—O4179.6 (4)
C4—C5—C6—C71.0 (7)C37—C31—C32—O42.8 (6)
C5—C6—C7—C8179.6 (5)C36—C31—C32—C331.9 (6)
C5—C6—C7—C111.7 (7)C37—C31—C32—C33174.9 (4)
C11—C7—C8—C90.6 (7)O4—C32—C33—C34179.0 (4)
C6—C7—C8—C9178.2 (4)C31—C32—C33—C341.2 (7)
C7—C8—C9—C100.1 (7)C32—C33—C34—C350.6 (7)
C11—N2—C10—C91.4 (6)C33—C34—C35—O5178.4 (4)
Sr—N2—C10—C9174.6 (4)C33—C34—C35—C360.7 (7)
C8—C9—C10—N21.2 (7)O5—C35—C36—C31177.7 (4)
C10—N2—C11—C70.6 (6)C34—C35—C36—C311.5 (6)
Sr—N2—C11—C7173.8 (3)C32—C31—C36—C352.1 (6)
C10—N2—C11—C12178.4 (4)C37—C31—C36—C35174.8 (4)
Sr—N2—C11—C125.2 (5)Sr—O3—C37—O26.3 (6)
C8—C7—C11—N20.4 (6)Sr—O3—C37—C31174.3 (2)
C6—C7—C11—N2178.4 (4)C36—C31—C37—O26.0 (6)
C8—C7—C11—C12179.3 (4)C32—C31—C37—O2170.8 (4)
C6—C7—C11—C120.5 (6)C36—C31—C37—O3174.6 (4)
C1—N1—C12—C41.4 (6)C32—C31—C37—O38.6 (6)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N40.952.202.959 (5)136
O1—H1B···O20.911.942.759 (4)150
O4—H4A···O30.891.832.589 (4)141
O5—H5A···O1Wii0.821.792.589 (4)163
O1W—H1C···O2Wii0.911.872.729 (4)155
O1W—H1D···O20.891.942.699 (5)143
O2W—H2C···N30.902.092.950 (6)160
O2W—H2D···O5iii0.882.312.961 (4)131
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2O
Mr1222.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)24.7846 (16), 13.2694 (8), 18.9986 (13)
β (°) 112.526 (12)
V3)5771.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.40 × 0.24 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.645, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
22817, 5189, 3468
Rint0.055
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.17
No. of reflections5189
No. of parameters385
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0426P)2 + 11.6357P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 1.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Sr—O12.582 (3)Sr—N12.731 (3)
Sr—O32.563 (3)Sr—N22.710 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N40.952.202.959 (5)136
O1—H1B···O20.911.942.759 (4)150
O4—H4A···O30.891.832.589 (4)141
O5—H5A···O1Wi0.821.792.589 (4)163
O1W—H1C···O2Wi0.911.872.729 (4)155
O1W—H1D···O20.891.942.699 (5)143
O2W—H2C···N30.902.092.950 (6)160
O2W—H2D···O5ii0.882.312.961 (4)131
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds