Download citation
Download citation
link to html
The title compound, [Cd(NCS)2(C13H10N4OS)2]n, contains SCN anions acting as end-to-end bridging ligands which utilize both S and N atoms to link cadmium(II) centers into one-dimensional double chains. The multidentate 5-(4-pyrid­yl)-2-(2-pyridylmethyl­sulfan­yl)-1,3,4-oxadiazole ligands behave as monodentate terminal ligands, binding metal centers only through the N atoms of the 4-pyridyl groups. Two types of eight-membered rings are formed by two SCN anions bridging CdII centers, viz. planar and chair conformation, which are alternately disposed along the same chain. Finally, chains define a two-dimensional array through two different inter­chain π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107046288/bg3050sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107046288/bg3050Isup2.hkl
Contains datablock I

CCDC reference: 631934

Comment top

The formation of coordination polymers has attracted great attention in recent years for their potential applications in separation and selective inclusion, and their ion exchange, catalysis, magnetism and nonlinear optical properties (Moulton & Zaworotko, 2001). 1,3,4-Oxadiazole exhibits the corresponding biological properties, such as antiphlogosis and antisepsis, which has given rise to an extensive variety of applications in both medicine and agriculture. Although many compounds containing symmetrical organic ligands bearing oxadiazole rings have been prepared (Du et al., 2006), as far as is known coordination compounds relative to asymmetrical ligands with oxadiazole groups are uncommon. We purposely synthesized the pyridyl-containing asymmetrical oxadiazole ligand 5-(4-pyridyl-κN)-2-(2-pyridylmethylsulfanyl)-1,3,4-oxadiazole (pmpo). The asymmetrical configuration, coordination variety and flexibility of pmpo are expected to meet metal coordination requirements (Du & Zhao, 2004). The heterocyclic groups in the ligand usually favor packing arrangements via ππ stacking interactions in the solid state (Atoub et al., 2007). Furthermore, thiocyanate, well known for its versatile coordination modes such as monodentate, end bridge and end-to-end bridge, was used in this research. We present here a new CdII thiocyanate complex of the asymmetrical pmpo ligand, [Cd(pmpo)2(SCN)2]n, (I).

The main structural feature of (I) is that the SCN anions act as end-to-end bridging spacers, linking CdII centers into a double chain structure, with the pmpo ligands bound edgeways; this structure is very similar to those of several reported cadmium(II) thiocyanate complexes with pyridyl-containing oxadiazole ligands (Marsh et al., 2002). The CdII atom in (I) adopts an octahedral coordination geometry, with two S-bonded and two N-bonded thiocyanate ligands in the equatorial plane and two N-bonded 4-pyridyl rings of different pmpo ligands at the axial sites (Fig. 1).

The average Cd—N and Cd—S bond lengths in the equatorial plane are 2.323 (11) and 2.77 (5) Å, respectively, and the average Cd—Npyridyl distance at the axial sites is 2.359 (4) Å, slightly longer than that of Cd—NNCS in the equatorial plane. The average Cd—Npyridyl length is almost the same as that of {is there a value missing here?} {[Cd(bpo)(SCN)2]·(CH3CN)}n [bpo is 2,5-bis(4-pyridyl)-1,3,4-oxodiazole; Du et al. 2002] and slightly shorter than that of 2.463 (2) Å in [Cd(bpo)2(SCN)2] (Du et al., 2006). Furthermore, it is longer than that of 2.2749 (16) Å in [Cd(imH)2(NCS)(SCN)]n (imH is imidazole; Bose et al. 2004). The N—Cd—N bond angles around each CdII center are very close to 90° [mean 90.3 (15)°]; the N—Cd—S angles range from 82.45 (5) to 97.05 (5)°. The multidentate pmpo ligand behaves as a terminal ligand, with the 4-pyridyl group binding the metal center, and its two pyridyl rings subtending to each other a dihedral angle of 20.7°, deviating from the central oxadiazole plane by 14.3 and 6.7°.

Neighboring Cd···Cd distances in a chain are 5.863 (1)–6.019 (1) Å, slightly shorter than previously reported values [e.g. 6.067 (1) Å; Second et al., 2000]. There are two types of eight-membered rings formed by the SCN anions bridging CdII centers in the same chain. As clearly portrayed in Fig. 1, the ring formed by the two SCN anions bridging atoms Cd1 and Cd1i is nearly planar, with a mean deviation from the least-square plane of 0.045 Å, while the other ring, constructed by the SCN anions binding atoms Cd1 and Cd1ii, displays a chair conformation with the corresponding value of 0.222 Å.

Adjacent one-dimensional polymeric chains are linked via two types of interchain ππ stacking interactions (Fig. 2). Type 1 takes place between the oxadiazole and 2-pyridyl rings, with homologous centroid-to-centroid separations of 3.603 (2) and 3.616 (2) Å, while type 2 occurs between two contiguous 4-pyridyl and 2-pyridyl rings, with a similar separation of 3.834 (2) Å. Through these interchain interactions, the one-dimensional polymeric chains stack to form a two-dimensional array.

Related literature top

For related literature, see: Atoub et al. (2007); Bose et al. (2004); Dodd & Nishi (1997); Du & Zhao (2004); Du et al. (2002, 2006); Marsh et al. (2002); Moulton & Zaworotko (2001).

Experimental top

The pmpo ligand was synthesized following a procedure reported previously (Dodd & Nishi, 1997). At room temperature, to a solution of Cd(NO3)·4H2O (0.0308 g, 0.1 mmol) in CH3OH (5 ml) was added a solution of pmpo (0.0540 g, 0.2 mmol) in CH3CN (5 ml) with vigorous stirring for 10 min, and then potassium thiocyanate (0.0194 g, 0.2 mmol) in aqueous solution (5 ml) was added slowly to the above mixed solution under reflux condition. The reaction mixture was filtered and left to stand at room temperature. Well shaped prismatic colourless single crystals suitable for X-ray analysis were obtained after several days by slow evaporation of the solvent (yield 34%).

Refinement top

All H atoms were positioned geometrically, with C—H distances of 0.93 (CH) and 0.97 Å (CH2), and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme, showing two types of eight-membered rings (30% probability displacement ellipsoids for all non-H atoms). Symmetry codes as in Table 1.
[Figure 2] Fig. 2. View of interchain array showing the two-types of ππ stacking interactions in (I).
catena-Poly[[bis[5-(4-pyridyl-κN)-2-(2-pyridylmethylsulfanyl)-1,3,4-oxadiazole]cadmium(II)]-diµ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd(NCS)2(C13H10N4OS)2]Z = 2
Mr = 769.18F(000) = 772
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8868 (13) ÅCell parameters from 1434 reflections
b = 11.1060 (18) Åθ = 2.5–28.3°
c = 19.050 (4) ŵ = 1.03 mm1
α = 104.686 (4)°T = 291 K
β = 93.920 (5)°Prism, colourless
γ = 105.202 (3)°0.50 × 0.21 × 0.12 mm
V = 1541.2 (5) Å3
Data collection top
Siemens SMART CCD
diffractometer
5756 independent reflections
Radiation source: fine-focus sealed tube4955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.628, Tmax = 0.887k = 1313
11469 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.5618P]
where P = (Fo2 + 2Fc2)/3
5695 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd(NCS)2(C13H10N4OS)2]γ = 105.202 (3)°
Mr = 769.18V = 1541.2 (5) Å3
Triclinic, P1Z = 2
a = 7.8868 (13) ÅMo Kα radiation
b = 11.1060 (18) ŵ = 1.03 mm1
c = 19.050 (4) ÅT = 291 K
α = 104.686 (4)°0.50 × 0.21 × 0.12 mm
β = 93.920 (5)°
Data collection top
Siemens SMART CCD
diffractometer
5756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4955 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.887Rint = 0.015
11469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
5695 reflectionsΔρmin = 0.30 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.28131 (2)0.238922 (14)0.494519 (8)0.03671 (6)
S10.63962 (8)0.16775 (6)0.02115 (3)0.04457 (14)
S20.14998 (8)0.69266 (6)1.00176 (3)0.04411 (14)
S30.05369 (8)0.16342 (6)0.57902 (3)0.04660 (15)
S40.36063 (8)0.66414 (6)0.43973 (4)0.04900 (15)
O10.5671 (2)0.07891 (14)0.15504 (8)0.0401 (4)
O20.1917 (2)0.60210 (14)0.86397 (8)0.0396 (3)
N10.3880 (2)0.10997 (17)0.39976 (9)0.0385 (4)
N20.5591 (3)0.23645 (18)0.20743 (10)0.0457 (5)
N30.6006 (3)0.27639 (18)0.13600 (10)0.0460 (5)
N40.6614 (3)0.2659 (2)0.12716 (11)0.0547 (5)
N50.2303 (2)0.37982 (17)0.60142 (9)0.0391 (4)
N60.1883 (3)0.75943 (18)0.81254 (10)0.0467 (5)
N70.1723 (3)0.80373 (18)0.88757 (10)0.0476 (5)
N80.1027 (3)0.77607 (19)1.14823 (11)0.0482 (5)
N90.2141 (3)0.07060 (18)0.54816 (10)0.0463 (5)
N100.3172 (3)0.40427 (18)0.43687 (10)0.0473 (5)
C10.4569 (3)0.1603 (2)0.34775 (13)0.0496 (6)
H10.46870.24760.35240.059*
C20.5112 (3)0.0899 (2)0.28772 (13)0.0479 (6)
H20.55840.12920.25280.057*
C30.4947 (3)0.0399 (2)0.28003 (11)0.0357 (5)
C40.4280 (3)0.0923 (2)0.33454 (12)0.0427 (5)
H40.41780.17880.33180.051*
C50.3770 (3)0.0150 (2)0.39294 (12)0.0424 (5)
H50.33280.05120.42930.051*
C60.5414 (3)0.1218 (2)0.21601 (11)0.0368 (5)
C70.6034 (3)0.1814 (2)0.10807 (12)0.0384 (5)
C80.6399 (3)0.3348 (2)0.01680 (13)0.0493 (6)
H8A0.72980.35380.01240.059*
H8B0.52540.39320.01550.059*
C90.6775 (3)0.3560 (2)0.09465 (12)0.0414 (5)
C100.7233 (3)0.4657 (2)0.12957 (14)0.0536 (6)
H100.73640.52560.10480.064*
C110.7489 (4)0.4846 (3)0.20202 (15)0.0667 (8)
H110.77690.55870.22720.080*
C120.7329 (4)0.3936 (3)0.23641 (15)0.0669 (8)
H120.75010.40410.28520.080*
C130.6909 (4)0.2863 (3)0.19721 (14)0.0662 (8)
H130.68230.22360.22060.079*
C140.1740 (3)0.4841 (2)0.60249 (12)0.0463 (6)
H140.14130.49780.55800.056*
C150.1623 (3)0.5719 (2)0.66606 (12)0.0459 (6)
H150.12330.64340.66440.055*
C160.2097 (3)0.5517 (2)0.73299 (11)0.0357 (5)
C170.2673 (3)0.4439 (2)0.73271 (12)0.0399 (5)
H170.29960.42750.77650.048*
C180.2756 (3)0.3614 (2)0.66618 (12)0.0418 (5)
H180.31460.28940.66630.050*
C190.1975 (3)0.6422 (2)0.80140 (11)0.0372 (5)
C200.1738 (3)0.7084 (2)0.91447 (11)0.0389 (5)
C210.1475 (4)0.8584 (2)1.04240 (12)0.0491 (6)
H21A0.26440.91781.04570.059*
H21B0.06380.88071.01190.059*
C220.0945 (3)0.8708 (2)1.11793 (12)0.0412 (5)
C230.0405 (3)0.9770 (2)1.15250 (13)0.0498 (6)
H230.03381.04001.12910.060*
C240.0031 (3)0.9878 (3)1.22224 (13)0.0546 (7)
H240.03721.05921.24710.066*
C250.0047 (3)0.8915 (3)1.25428 (13)0.0542 (7)
H250.02450.89611.30120.065*
C260.0566 (3)0.7878 (3)1.21532 (14)0.0552 (7)
H260.05970.72211.23700.066*
C270.1457 (3)0.0266 (2)0.55996 (11)0.0337 (5)
C280.3365 (3)0.5119 (2)0.43828 (11)0.0359 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04687 (10)0.02825 (9)0.03274 (9)0.00628 (7)0.00983 (7)0.00831 (6)
S10.0550 (4)0.0423 (3)0.0390 (3)0.0150 (3)0.0140 (3)0.0130 (3)
S20.0556 (4)0.0455 (3)0.0360 (3)0.0197 (3)0.0120 (3)0.0132 (3)
S30.0468 (3)0.0389 (3)0.0555 (4)0.0063 (3)0.0001 (3)0.0238 (3)
S40.0499 (4)0.0337 (3)0.0625 (4)0.0110 (3)0.0040 (3)0.0143 (3)
O10.0466 (9)0.0400 (8)0.0388 (8)0.0171 (7)0.0130 (7)0.0135 (7)
O20.0500 (9)0.0383 (8)0.0346 (8)0.0180 (7)0.0119 (7)0.0107 (7)
N10.0411 (11)0.0363 (10)0.0363 (10)0.0092 (8)0.0075 (8)0.0086 (8)
N20.0592 (13)0.0458 (11)0.0394 (11)0.0232 (10)0.0135 (9)0.0148 (9)
N30.0586 (13)0.0443 (11)0.0410 (11)0.0227 (10)0.0148 (9)0.0123 (9)
N40.0714 (15)0.0547 (13)0.0437 (12)0.0235 (11)0.0118 (10)0.0174 (10)
N50.0452 (11)0.0391 (10)0.0350 (10)0.0131 (9)0.0092 (8)0.0120 (8)
N60.0681 (14)0.0397 (11)0.0382 (11)0.0214 (10)0.0161 (10)0.0132 (9)
N70.0688 (14)0.0428 (11)0.0371 (10)0.0245 (10)0.0157 (10)0.0111 (9)
N80.0525 (12)0.0531 (12)0.0460 (12)0.0224 (10)0.0147 (10)0.0169 (10)
N90.0463 (12)0.0417 (11)0.0474 (11)0.0025 (9)0.0008 (9)0.0186 (9)
N100.0596 (13)0.0342 (11)0.0425 (11)0.0013 (9)0.0056 (9)0.0138 (9)
C10.0627 (16)0.0336 (12)0.0535 (15)0.0112 (11)0.0234 (12)0.0132 (11)
C20.0576 (15)0.0408 (13)0.0498 (14)0.0123 (11)0.0248 (12)0.0182 (11)
C30.0311 (11)0.0398 (12)0.0368 (11)0.0116 (9)0.0056 (9)0.0105 (10)
C40.0558 (15)0.0383 (12)0.0404 (13)0.0193 (11)0.0093 (11)0.0156 (10)
C50.0550 (15)0.0405 (13)0.0358 (12)0.0161 (11)0.0097 (11)0.0146 (10)
C60.0353 (12)0.0407 (12)0.0369 (12)0.0123 (10)0.0055 (9)0.0140 (10)
C70.0369 (12)0.0391 (12)0.0381 (12)0.0120 (10)0.0081 (10)0.0072 (10)
C80.0620 (16)0.0429 (13)0.0476 (14)0.0180 (12)0.0159 (12)0.0158 (11)
C90.0381 (13)0.0395 (12)0.0420 (13)0.0081 (10)0.0063 (10)0.0068 (10)
C100.0562 (16)0.0428 (14)0.0556 (16)0.0130 (12)0.0062 (12)0.0052 (12)
C110.0673 (19)0.0601 (18)0.0564 (17)0.0156 (15)0.0129 (14)0.0100 (14)
C120.0611 (18)0.080 (2)0.0378 (14)0.0021 (15)0.0067 (13)0.0032 (14)
C130.080 (2)0.074 (2)0.0424 (15)0.0130 (16)0.0065 (14)0.0222 (14)
C140.0586 (16)0.0521 (14)0.0367 (12)0.0241 (12)0.0099 (11)0.0180 (11)
C150.0602 (16)0.0480 (14)0.0404 (13)0.0284 (12)0.0124 (11)0.0168 (11)
C160.0365 (12)0.0356 (11)0.0379 (12)0.0122 (9)0.0124 (9)0.0117 (9)
C170.0490 (14)0.0425 (13)0.0333 (11)0.0177 (11)0.0074 (10)0.0146 (10)
C180.0536 (14)0.0387 (12)0.0398 (13)0.0197 (11)0.0123 (11)0.0147 (10)
C190.0403 (12)0.0394 (12)0.0357 (12)0.0132 (10)0.0105 (9)0.0142 (10)
C200.0433 (13)0.0389 (12)0.0360 (12)0.0159 (10)0.0096 (10)0.0082 (10)
C210.0648 (17)0.0458 (14)0.0427 (13)0.0234 (12)0.0146 (12)0.0136 (11)
C220.0393 (13)0.0456 (13)0.0368 (12)0.0120 (10)0.0052 (10)0.0088 (10)
C230.0575 (16)0.0459 (14)0.0443 (14)0.0185 (12)0.0040 (12)0.0068 (11)
C240.0533 (16)0.0557 (16)0.0459 (14)0.0174 (13)0.0078 (12)0.0032 (12)
C250.0468 (15)0.0722 (18)0.0390 (13)0.0136 (13)0.0107 (11)0.0100 (13)
C260.0578 (16)0.0673 (17)0.0498 (15)0.0212 (14)0.0150 (13)0.0278 (13)
C270.0329 (11)0.0389 (12)0.0289 (11)0.0115 (10)0.0031 (9)0.0079 (9)
C280.0364 (12)0.0399 (13)0.0279 (11)0.0038 (10)0.0063 (9)0.0106 (9)
Geometric parameters (Å, º) top
Cd1—N92.3115 (19)C2—H20.9300
Cd1—N102.3348 (19)C3—C41.383 (3)
Cd1—N12.3550 (17)C3—C61.458 (3)
Cd1—N52.3630 (18)C4—C51.377 (3)
Cd1—S3i2.7172 (7)C4—H40.9300
Cd1—S4ii2.8180 (8)C5—H50.9300
S1—C71.736 (2)C8—C91.504 (3)
S1—C81.813 (2)C8—H8A0.9700
S2—C201.733 (2)C8—H8B0.9700
S2—C211.813 (2)C9—C101.382 (3)
S3—C271.644 (2)C10—C111.380 (4)
S3—Cd1i2.7172 (7)C10—H100.9300
S4—C281.644 (2)C11—C121.363 (4)
S4—Cd1ii2.8180 (8)C11—H110.9300
O1—C71.366 (2)C12—C131.370 (4)
O1—C61.371 (2)C12—H120.9300
O2—C201.367 (2)C13—H130.9300
O2—C191.373 (2)C14—C151.375 (3)
N1—C11.336 (3)C14—H140.9300
N1—C51.340 (3)C15—C161.393 (3)
N2—C61.287 (3)C15—H150.9300
N2—N31.409 (2)C16—C171.386 (3)
N3—C71.293 (3)C16—C191.457 (3)
N4—C91.330 (3)C17—C181.380 (3)
N4—C131.343 (3)C17—H170.9300
N5—C181.341 (3)C18—H180.9300
N5—C141.341 (3)C21—C221.509 (3)
N6—C191.287 (3)C21—H21A0.9700
N6—N71.415 (2)C21—H21B0.9700
N7—C201.290 (3)C22—C231.383 (3)
N8—C221.335 (3)C23—C241.379 (3)
N8—C261.337 (3)C23—H230.9300
N9—C271.158 (3)C24—C251.371 (4)
N10—C281.158 (3)C24—H240.9300
C1—C21.375 (3)C25—C261.379 (3)
C1—H10.9300C25—H250.9300
C2—C31.382 (3)C26—H260.9300
N9—Cd1—N10173.99 (7)H8A—C8—H8B108.2
N9—Cd1—N190.09 (7)N4—C9—C10123.0 (2)
N10—Cd1—N191.76 (7)N4—C9—C8116.7 (2)
N9—Cd1—N589.47 (7)C10—C9—C8120.3 (2)
N10—Cd1—N589.80 (7)C11—C10—C9118.5 (3)
N1—Cd1—N5169.02 (6)C11—C10—H10120.7
N9—Cd1—S3i91.71 (5)C9—C10—H10120.7
N10—Cd1—S3i82.45 (5)C12—C11—C10119.4 (3)
N1—Cd1—S3i93.93 (5)C12—C11—H11120.3
N5—Cd1—S3i97.05 (5)C10—C11—H11120.3
N9—Cd1—S4ii94.70 (5)C11—C12—C13118.2 (3)
N10—Cd1—S4ii91.17 (5)C11—C12—H12120.9
N1—Cd1—S4ii84.64 (5)C13—C12—H12120.9
N5—Cd1—S4ii84.46 (5)N4—C13—C12124.1 (3)
S3i—Cd1—S4ii173.430 (18)N4—C13—H13118.0
C7—S1—C895.82 (10)C12—C13—H13118.0
C20—S2—C2196.03 (10)N5—C14—C15123.3 (2)
C27—S3—Cd1i102.98 (8)N5—C14—H14118.3
C28—S4—Cd1ii96.46 (8)C15—C14—H14118.3
C7—O1—C6101.94 (16)C14—C15—C16118.7 (2)
C20—O2—C19102.03 (16)C14—C15—H15120.6
C1—N1—C5117.10 (19)C16—C15—H15120.6
C1—N1—Cd1119.43 (15)C17—C16—C15118.56 (19)
C5—N1—Cd1123.41 (14)C17—C16—C19121.25 (19)
C6—N2—N3106.57 (17)C15—C16—C19120.19 (19)
C7—N3—N2105.71 (17)C18—C17—C16118.6 (2)
C9—N4—C13116.8 (2)C18—C17—H17120.7
C18—N5—C14117.37 (19)C16—C17—H17120.7
C18—N5—Cd1117.87 (14)N5—C18—C17123.4 (2)
C14—N5—Cd1124.47 (14)N5—C18—H18118.3
C19—N6—N7106.45 (17)C17—C18—H18118.3
C20—N7—N6105.78 (17)N6—C19—O2112.60 (18)
C22—N8—C26116.8 (2)N6—C19—C16128.50 (19)
C27—N9—Cd1162.39 (17)O2—C19—C16118.88 (18)
C28—N10—Cd1151.60 (17)N7—C20—O2113.12 (18)
N1—C1—C2123.5 (2)N7—C20—S2130.68 (17)
N1—C1—H1118.2O2—C20—S2116.17 (15)
C2—C1—H1118.2C22—C21—S2109.31 (16)
C1—C2—C3119.0 (2)C22—C21—H21A109.8
C1—C2—H2120.5S2—C21—H21A109.8
C3—C2—H2120.5C22—C21—H21B109.8
C2—C3—C4118.0 (2)S2—C21—H21B109.8
C2—C3—C6121.88 (19)H21A—C21—H21B108.3
C4—C3—C6120.07 (19)N8—C22—C23123.1 (2)
C5—C4—C3119.3 (2)N8—C22—C21117.0 (2)
C5—C4—H4120.4C23—C22—C21119.9 (2)
C3—C4—H4120.4C24—C23—C22118.8 (2)
N1—C5—C4123.0 (2)C24—C23—H23120.6
N1—C5—H5118.5C22—C23—H23120.6
C4—C5—H5118.5C25—C24—C23118.9 (2)
N2—C6—O1112.66 (18)C25—C24—H24120.5
N2—C6—C3127.78 (19)C23—C24—H24120.5
O1—C6—C3119.53 (18)C24—C25—C26118.4 (2)
N3—C7—O1113.12 (19)C24—C25—H25120.8
N3—C7—S1130.00 (17)C26—C25—H25120.8
O1—C7—S1116.85 (16)N8—C26—C25123.9 (2)
C9—C8—S1109.86 (16)N8—C26—H26118.1
C9—C8—H8A109.7C25—C26—H26118.1
S1—C8—H8A109.7N9—C27—S3178.1 (2)
C9—C8—H8B109.7N10—C28—S4179.1 (2)
S1—C8—H8B109.7
N9—Cd1—N1—C1177.81 (18)C6—O1—C7—N30.1 (2)
N10—Cd1—N1—C17.92 (18)C6—O1—C7—S1178.42 (15)
N5—Cd1—N1—C190.1 (4)C8—S1—C7—N37.3 (2)
S3i—Cd1—N1—C190.47 (17)C8—S1—C7—O1170.74 (17)
S4ii—Cd1—N1—C183.10 (17)C7—S1—C8—C9177.55 (18)
N9—Cd1—N1—C55.12 (18)C13—N4—C9—C100.4 (4)
N10—Cd1—N1—C5169.16 (18)C13—N4—C9—C8178.5 (2)
N5—Cd1—N1—C592.8 (3)S1—C8—C9—N415.5 (3)
S3i—Cd1—N1—C586.60 (17)S1—C8—C9—C10165.63 (19)
S4ii—Cd1—N1—C599.83 (17)N4—C9—C10—C111.7 (4)
C6—N2—N3—C70.2 (2)C8—C9—C10—C11177.1 (2)
N9—Cd1—N5—C1834.99 (17)C9—C10—C11—C121.6 (4)
N10—Cd1—N5—C18150.97 (17)C10—C11—C12—C130.2 (4)
N1—Cd1—N5—C1852.8 (4)C9—N4—C13—C121.1 (4)
S3i—Cd1—N5—C18126.66 (16)C11—C12—C13—N41.2 (5)
S4ii—Cd1—N5—C1859.77 (16)C18—N5—C14—C150.5 (3)
N9—Cd1—N5—C14151.28 (19)Cd1—N5—C14—C15173.29 (18)
N10—Cd1—N5—C1422.75 (19)N5—C14—C15—C160.5 (4)
N1—Cd1—N5—C14121.0 (3)C14—C15—C16—C170.1 (3)
S3i—Cd1—N5—C1459.62 (18)C14—C15—C16—C19179.5 (2)
S4ii—Cd1—N5—C14113.95 (18)C15—C16—C17—C180.2 (3)
C19—N6—N7—C200.1 (3)C19—C16—C17—C18179.8 (2)
N1—Cd1—N9—C2773.5 (6)C14—N5—C18—C170.1 (3)
N5—Cd1—N9—C27117.5 (6)Cd1—N5—C18—C17174.04 (18)
S3i—Cd1—N9—C2720.4 (6)C16—C17—C18—N50.2 (4)
S4ii—Cd1—N9—C27158.1 (6)N7—N6—C19—O21.0 (3)
N1—Cd1—N10—C28156.8 (4)N7—N6—C19—C16178.0 (2)
N5—Cd1—N10—C2812.3 (4)C20—O2—C19—N61.3 (2)
S3i—Cd1—N10—C28109.4 (4)C20—O2—C19—C16177.73 (19)
S4ii—Cd1—N10—C2872.2 (4)C17—C16—C19—N6161.9 (2)
C5—N1—C1—C21.8 (4)C15—C16—C19—N618.5 (4)
Cd1—N1—C1—C2175.4 (2)C17—C16—C19—O219.2 (3)
N1—C1—C2—C30.0 (4)C15—C16—C19—O2160.4 (2)
C1—C2—C3—C41.7 (4)N6—N7—C20—O20.8 (3)
C1—C2—C3—C6176.9 (2)N6—N7—C20—S2176.95 (18)
C2—C3—C4—C51.6 (3)C19—O2—C20—N71.3 (2)
C6—C3—C4—C5177.0 (2)C19—O2—C20—S2176.79 (15)
C1—N1—C5—C41.9 (3)C21—S2—C20—N75.8 (3)
Cd1—N1—C5—C4175.20 (17)C21—S2—C20—O2176.55 (17)
C3—C4—C5—N10.3 (4)C20—S2—C21—C22169.84 (17)
N3—N2—C6—O10.2 (3)C26—N8—C22—C230.3 (4)
N3—N2—C6—C3178.5 (2)C26—N8—C22—C21179.6 (2)
C7—O1—C6—N20.2 (2)S2—C21—C22—N816.0 (3)
C7—O1—C6—C3178.63 (19)S2—C21—C22—C23163.99 (19)
C2—C3—C6—N2168.0 (2)N8—C22—C23—C241.5 (4)
C4—C3—C6—N213.4 (4)C21—C22—C23—C24178.4 (2)
C2—C3—C6—O113.8 (3)C22—C23—C24—C251.4 (4)
C4—C3—C6—O1164.8 (2)C23—C24—C25—C260.2 (4)
N2—N3—C7—O10.1 (3)C22—N8—C26—C251.0 (4)
N2—N3—C7—S1178.03 (17)C24—C25—C26—N81.0 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C13H10N4OS)2]
Mr769.18
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.8868 (13), 11.1060 (18), 19.050 (4)
α, β, γ (°)104.686 (4), 93.920 (5), 105.202 (3)
V3)1541.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.50 × 0.21 × 0.12
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
11469, 5756, 4955
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.02
No. of reflections5695
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994).

Selected bond lengths (Å) top
Cd1—N92.3115 (19)Cd1—N52.3630 (18)
Cd1—N102.3348 (19)Cd1—S3i2.7172 (7)
Cd1—N12.3550 (17)Cd1—S4ii2.8180 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds