Download citation
Download citation
link to html
The crystal structure of the title compound, [Cr(C5H7O2)3], has been determined at 290 and 110 K to provide information on thermal vibrations and disorder. The α polymorph at room temperature has been reported [Morosin (1965). Acta Cryst. 19, 131–137]. The reinvestigation of this structure, presented here, indicates the presence of weak uninterpretable supercell reflections together with disorder streaks. The discussed structure can thus be considered as an average structure. After cooling to 110 K, a new δ polymorph was found, which is a superstructure of the α polymorph. The space group remains P21/c and the phase transition can therefore be considered as klassengleich. The unit-cell volume increases by a factor of six, resulting in six independent mol­ecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107033823/bg3044sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107033823/bg3044Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107033823/bg3044Ibsup3.hkl
Contains datablock Ib

CCDC references: 659118; 659119

Comment top

Metal atoms, especially transition metals, are present in the active centers of almost one-third of all known enzymes and play an important role in catalytic processes. CrIII is an essential trace element (Goldhaber, 2003) with the important function of maintaining the normal glucose metabolism in the human body, in particular at advanced age or in the case of diabetes. Trivalent metal acetylacetonate complexes [MIII(acac)3; acac is acetylacetonate or 2,4-pentanedionate] belong to the β-diketonates and are a particularly accessible species for studying structure, bonding and ligand coordination in organometallic systems. Owing to their high volatility, β-diketonates of metals are used as precursors in the process of chemical deposition of coatings from the vaporous phase, which is known as a promising technique for the production of, for example, superconducting materials and nano-sized coatings (Naumov et al., 2006).

It is well known that these complexes show polymorphism; an overview is given by Sabolović et al. (2004). Phase transitions of these compounds are observed at low temperatures; for Mn(acac)3 see Geremia & Demitri (2005) and for Al(acac)3 von Chrzanowski et al. (2007a). MIII(acac)3 can be grouped into a polymorphous series of three. By an old nomenclature of Astbury & Morgan (1926), the α polymorph crystallizes in the monoclinic crystal system with space group P21/c. To our knowledge, all previous studies of Cr(acac)3 have been carried out at room temperature, with the compound crystallizing as its α polymorph (Im) (see e.g. Morosin, 1965). In the known studies of the α polymorphs, the C atoms show anomalous displacement parameters and disorder, especially in one of the three ligands (e.g. Hon & Pfluger, 1973). In the course of our ongoing studies on trivalent metal acetylacetonates and in order to investigate this behavior, we report here the redetermination of α-Cr(acac)3 at 290 K, (Ia), and a new determination at 110 K, (Ib). At 110 K, we observed a new δ phase.

As mentioned previously, MIII(acac)3 complexes show anomalous displacement parameters and disorder, especially in one of the three acac ligands, labeled C11–C15. We reported this observation in our previous temperature-dependent studies of α-Al(acac)3 (von Chrzanowski et al., 2007a) and α-Co(acac)3 (von Chrzanowski et al., 2007b). This can also be seen in the room-temperature structure of (I) reported by Morosin (1965) (Im), as well as in the present study of (Ia) at 290 K (Figs. 1a and 1b). Rigid-body analyses for both structures (Schomaker & Trueblood, 1998) result in relatively high agreement factors of R = 0.204 for (Im) and R = 0.131 for (Ia) [R = {Σ[w(Uobs - Ucalc)]2/Σ[w Uobs]2}1/2]. As a result of different weighting, the agreement factor for (Im) is significantly higher; for (Ia) the weights were derived from the standard uncertainties of the anisotropic displacement parameters, while for (Im) unit weights were used, because no standard uncertainties are given in the paper. Difference plots (Hummel et al., 1990) between the observed displacement parameters and the rigid-body models indicate large internal motions (Fig. 1c and 1d).

This anomalous behavior is also manifested in the CCD detector images of (Ia) by the presence of diffuse disorder streaks between the reflections (Fig. 2), on which some intensity maxima are present. These maxima were not interpreted because of their weakness. The presence of large isolated diffuse spots/areas was also reported in (Im) and there explained by thermal motion. On the basis of our data we assume that (Ia) actually has a larger unit cell, which corresponds to the low-temperature δ polymorph (see below), and by ignoring the weak supercell reflections an average structure was obtained.

At 110 K, the diffraction pattern shows supercell reflections which are now interpretable and the structure of a new δ polymorph (Ib) could be determined. Because this supercell is probably already present in (Ia) an exact temperature range for the phase transition cannot be determined. The transformation matrix from the high-temperature α-polymorph to the new low-temperature δ polymorph is (200/010/003). The determinant of this matrix is six and therefore the cell volume increases by a factor of six. Interestingly, the application of this transformation matrix to the coordinates of (Ia) at the chosen origin to generate the coordinates of (Ib) leads to a false minimum. Solution attempts of (Ib) from scratch with the programs SIR97 (Altomare et al., 1999), SIR2000 (Burla et al., 2000) or DIRDIF99 (Beurskens et al., 1999) using standard parameters led to the same false minimum. In the false minimum, the structure can be refined to acceptable agreement factors, but the displacement parameters are unexpectedly large. The correct minimum was found by structure solution with the program SHELXS97 (Sheldrick, 1997) using direct methods and corresponds to an origin shift of 1/4 in the direction of the crystallographic a axis (Fig. 3). Refinement with the correct origin results in significantly improved agreement factors and, more importantly, completely normal displacement parameters. With respect to the symmetry elements, the origin shift of 1/4 means that exact inversion centers and 21 screw axes in (Ia) become pseudo-symmetry elements in (Ib). In (Ib), the space group remains P21/c, and the phase transition can thus be classified as klassengleich. A similar phase transition was observed in α-Al(acac)3 (von Chrzanowski et al., 2007a). There, the phase transition occurs between 150 and 110 K, and the transformation matrix from the high-temperature α polymorph to the low-temperature δ polymorph is (101/010/201); the determinant of the matrix is three and the volume consequently increases by a factor of three.

The asymmetric unit of (Ib) at 110 K consists of six independent molecules (Fig. 4). All molecules have approximately noncrystallographic D3 symmetry, with r.m.s. deviations from ideal symmetry of between 0.128 Å for molecule 4 and 0.199 Å for molecule 5 (Pilati & Forni, 1998). All six molecules have essentially the same geometry, as can be seen in a quaternion fit (Fig. 5a). This quaternion fit (Mackay, 1984) considers only the molecular structures, but does not take the crystal packing into account. The packing effects can be seen by the application of the transformation matrix to the α polymorph on the atomic coordinates of the δ polymorph. The result of this operation can be seen in Fig. 5(b). Two of the acac ligands have only small deviations after this averaging, while the third ligand (C11X–C15X) is severely affected by the packing. The latter ligand corresponds to the ligand with large displacement parameters (C11–C15) in the α polymorph, and therefore the phase transition can be considered as a disorder–order phase transition.

A possible explanation for this behavior is the presence of different C—H···O interactions (Table 1). Every ligand is donor of one intermolecular C—H···O interaction with a variation of C—H···O angles between 163 and 179°. The average C···O distance for the C11X–C15X ligand (X = 1–6 for molecules 1–6) is 3.57 (2) Å (for C15X—H5X···O4X [H15Y?]); this is the longest contact and therefore the weakest C—H···O interaction, resulting in the largest deviation for C11X–C15X (Table 2). The ligands appear to be split into two different groups; molecules 1, 2 and 4 define group 1, and molecules 3, 5 and 6 group 2 (Table 3).

The ADDSYM routine of the program PLATON (Spek, 2003) indicates pseudo-translational symmetry for (Ib) at 110 K. Such a situation has also been observed in the δ-phase of Al(acac)3 (von Chrzanowski et al., 2007a), where two groups of reflections were present, viz. strong subcell reflections and weak supercell reflections. In (Ib), three groups of reflections are present, viz. strong subcell reflections, weak and very weak supercell reflections (Table 4). Nevertheless the weak supercell reflections are clearly present and prevent a transformation to the subcell.

A pseudo-translational symmetry test (SIR97; Altomare et al., 1999) results in a value of 74% for the mean fractional scattering power of the electron density for reflections with h = 2n and l = 3n (E**2 = 4.734), which is based on normalized structure factors from measured data (Cascarano et al., 1985). The three highest vectors of nonzero length in the Patterson map, as calculated with SHELXS97 (Sheldrick, 1997), end at (0.4994, 0.0000, 0.3332), (0.9996, 0.0000, 0.3332) and (1/2, 0.0000, 0.0000), again confirming the pseudo-translational symmetry of 1/2 in the a and 1/3 in the c direction.

Despite the pseudo-translational symmetry, a full matrix least-squares refinement with SHELXL97 (Sheldrick, 1997) can be performed with default refinement parameters and without restraints or constraints. No correlation matrix elements were larger than 0.5. The weighting scheme for the refinement was optimized by SHELXL97 based on all 18651 unique reflections and results in a goodness-of-fit of 1.064. The corresponding goodness-of-fit for the 3155 strong subcell reflections without re-refinement and with the same weighting scheme is 1.748, and that for the 6296 weak and 9320 very weak supercell reflections is 1.038 and 1.029, respectively. Obviously the weighted sigmas of the subcell reflections are underestimated.

A distribution diagram of all Cr—O bond distances shows a single maximum, and therefore the averaging of these distances is valid. A normal probability plot (Abrahams & Keve, 1971) of the low-temperature δ polymorph, in which all bond distances of each molecule are treated independently, results in a slope of 1.965. The observed outliers belong to the Cr—O distances. The range of Cr—O distances is wide, they vary from 1.9460 (16) to 1.9750 (17) Å (Table 5). There is no chemical evidence for this large variance. This effect can be attributed to the internal motion of the molecules and the high standard uncertainties of the Cr—O bond distances. γ-Al(acac)3 (von Chrzanowski et al., 2006) and δ-Al(acac)3 (von Chrzanowski et al., 2007a) show similar variations of the corresponding Al—O bond distances, which range for γ-Al(acac)3 from 1.8790 (12) to 1.8909 (13) Å and for δ-Al(acac)3 from 1.8704 (9) to 1.8910 (10) Å. The average values of Cr—O distances of the six independent molecules can be grouped into long Cr—O distances for molecules 2, 3 and 4 [1.9683 (CrX—O4X) -1.9673 Å (CrX—O2X)] and short distances for molecules 1, 5 and 6 [1.9536 (CrX—O6X)–1.9589 Å (CrX—O1X)]. Each long averaged Cr—O distance corresponds to a short distance on the opposite side.

This variation is also present in the high-temperature α polymorph (Ia), with a Cr—O bond distance range between 1.9413 (18) and 1.9645 (17) Å (Table 6). The corresponding M—O distances in α-Al(acac)3 and α-Co(acac)3 show a similar variation (von Chrzanowski et al., 2007a,b). Because octahedral CrIII with electron configuration d3 does not exhibit Jahn–Teller distortions (Wiberg, 1985), this variation can again only be explained by internal thermal motion. The thermal motion also contributes to a shortening of the Cr—O distances of the crystal structure determinations compared with 1.9773 Å obtained for Cr(acac)3 from high-level DFT (B3LYP/6–31 G* for C, H O and triple-ζ for Cr) calculations (Diaz-Acosta et al., 2001).

Related literature top

For related literature, see: Abrahams & Keve (1971); Altomare et al. (1999); Astbury & Morgan (1926); Beurskens et al. (1999); Blessing (1987); Burla et al. (2000); Cascarano et al. (1985); Chrzanowski et al. (2006, 2007a, 2007b); Diaz-Acosta, Baker, Cordes & Pulay (2001); Duisenberg et al. (2003); Geremia & Demitri (2005); Goldhaber (2003); Hon & Pfluger (1973); Hummel et al. (1990); Mackay (1984); Morosin (1965); Naumov et al. (2006); Otwinowski & Minor (1997); Pilati & Forni (1998); Sabolović et al. (2004); Schomaker & Trueblood (1998); Sheldrick (1997); Spek (2003); Wiberg (1985).

Experimental top

Violet crystals were obtained by slow evaporation of a solution of the commercially available material (Aldrich) in ethyl acetate at room temperature.

Refinement top

The X-ray intensities of (Ia) were obtained with two different exposure times and rotation angles of 1° at 290 K. 364 ϕ and 455 ω scans were measured with an exposure time of 60 s per frame, and 364 ϕ scans with an exposure time of 12 s per frame.

The X-ray intensities of (Ib) were measured with a different crystal at 110 K and were obtained with two different data sets. For data set 1, 1383 ϕ scans and 1114 ω scans were measured with an exposure time of 10 s per frame and a rotation angle of 0.5° (overflow scans). The data were integrated with EVAL14 (Duisenberg et al., 2003). Only reflections with I > 10σ(I) were used. For data set 2, the same experiment was repeated with an exposure time of 50 s per frame. DENZO and SCALEPACK (Otwinowski & Minor, 1997) were used for the integration of the intensities of all data. The two data sets were scaled and corrected for absorption with SORTAV (Blessing, 1987).

All H atoms were introduced in geometrically idealized positions (C—H = 0.93–0.98 Å), refined with a riding model and subsequently confirmed in contoured difference Fourier maps. Their isotropic displacement parameters were constrained [Uiso(H) = 1.2Ueq(C) for H atoms of the central C—H groups and Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999). Cell refinement: PEAKREF (Schreurs, 2005) for (Ia); HKL-2000 (Otwinowski & Minor, (1997) for (Ib). Data reduction: EVAL14 (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002) for (Ia); EVAL14 (set 1) (Duisenberg et al., 2003), HKL-2000 (set 2) (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1987) for (Ib). Program(s) used to solve structure: coordinates where taken from the isostructural α-Co(acac)3 compound (von Chrzanowski et al., 2007b) for (Ia); SHELXS97 (Sheldrick, 1997) for (Ib). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: manual editing of SHELXL97 output.

Figures top
[Figure 1] Fig. 1. Left: Displacement ellipsoid plots and atomic numbering schemes of (I). (a) The literature structure of (Im) (Morosin, 1965) at room temperature with the original atomic numbering scheme, and (b) (Ia) at 290 K. Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Right: Peanut plots (Hummel et al., 1990) showing the difference between the measured displacement parameters and the parameters obtained by rigid-body analyses using the program THMA11 (Schomaker & Trueblood, 1998). A scale factor of 3.08 was used for the r.m.s. surfaces. [In the online version of the jouranl, blue spheres indicate positive differences and purple spheres negative differences.] (c) The literature structure of Morosin (1965) at room temperature, and (d) (Ia) at 290 K. The plots are drawn in the same orientation as the displacement ellipsoid plots and have the same atomic numbering schemes.
[Figure 2] Fig. 2. A CCD detector image of (Ia) at 290 K, showing diffuse disorder streaks between reflections. Predicted reflections of the 1706.01 (18) Å3 unit cell are marked in yellow.
[Figure 3] Fig. 3. The crystal packing of (Ib) at 110 K, viewed along the crystallographic b axis. The twofold screw axes are shown with black symbols and inversion centers are shown with unshaded circles. The unit cell of the high-temperature α phase is drawn with dashed lines, symbols for the screw axes and the inversion centers are shown shaded. Molecules of (Ia) are not displayed. [Online color scheme of the molecules of (Ib): orange represents molecule 1 (X = 1), yellow molecule 2 (X = 2), blue molecule 3 (X = 3), green molecule 4 (X = 4), red molecule 5 (X = 5) and black molecule 6 (X = 6).]
[Figure 4] Fig. 4. Displacement ellipsoid plot and atomic numbering scheme of the six independent molecules of (Ib) at 110 K. All molecules are shown independently using the same orientation with the same atomic numbering scheme and do not represent the crystal packing. Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. (a) Molecule 1 (X = 1), (b) molecule 2 (X = 2), (c) molecule 3 (X = 3), (d) molecule 4 (X = 4), (e) molecule 5 (X = 5) and (f) molecule 6 (X = 6).
[Figure 5] Fig. 5. (a) Quaternion fit (Mackay, 1984) of the six independent molecules of (Ib) at 110 K. (b) Transformation of the six independent molecules of (Ib) at 110 K into an average structure using the transformation matrix between the α and the δ polymorph. [The online color scheme is the same as in Fig. 3.]
(Ia) α-Tris(2,4-pentanedionato-κ2O,O')chromium(III) top
Crystal data top
[Cr(C5H7O2)3]F(000) = 732
Mr = 349.32Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19406 reflections
a = 13.9970 (8) Åθ = 2.5–27.4°
b = 7.5441 (4) ŵ = 0.69 mm1
c = 16.3590 (12) ÅT = 290 K
β = 99.031 (2)°Hexagonal plate, violet
V = 1706.01 (18) Å30.30 × 0.27 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3924 independent reflections
Radiation source: rotating anode3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.68, Tmax = 0.92k = 99
45735 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.826P]
where P = (Fo2 + 2Fc2)/3
3924 reflections(Δ/σ)max = 0.004
205 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cr(C5H7O2)3]V = 1706.01 (18) Å3
Mr = 349.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9970 (8) ŵ = 0.69 mm1
b = 7.5441 (4) ÅT = 290 K
c = 16.3590 (12) Å0.30 × 0.27 × 0.12 mm
β = 99.031 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3135 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.92Rint = 0.030
45735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
3924 reflectionsΔρmin = 0.39 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.23779 (3)0.26565 (5)0.47060 (2)0.04665 (14)
O10.25698 (13)0.5031 (2)0.51979 (10)0.0582 (4)
O20.36645 (12)0.1927 (2)0.52563 (10)0.0540 (4)
O30.29663 (14)0.3440 (2)0.37560 (10)0.0588 (4)
O40.21657 (12)0.0276 (2)0.42369 (10)0.0569 (4)
O50.11259 (15)0.3374 (3)0.41141 (11)0.0714 (5)
O60.17995 (13)0.1887 (3)0.56593 (10)0.0607 (4)
C10.3269 (3)0.7534 (4)0.5899 (2)0.0846 (10)
H1A0.30420.82820.54340.127*
H1B0.38960.79280.61580.127*
H1C0.28260.75920.62910.127*
C20.3337 (2)0.5643 (3)0.56066 (14)0.0567 (6)
C30.4197 (2)0.4701 (4)0.57992 (18)0.0669 (7)
H30.47350.53130.60640.080*
C40.43149 (17)0.2924 (4)0.56272 (15)0.0542 (6)
C50.5277 (2)0.2042 (5)0.5915 (2)0.0833 (9)
H5A0.52230.12740.63740.125*
H5B0.57580.29300.60850.125*
H5C0.54620.13600.54700.125*
C60.3490 (2)0.3494 (4)0.24664 (16)0.0773 (8)
H6A0.35350.47360.25940.116*
H6B0.31010.33280.19340.116*
H6C0.41260.30250.24570.116*
C70.30323 (17)0.2542 (3)0.31143 (13)0.0504 (5)
C80.27330 (19)0.0796 (4)0.29833 (15)0.0595 (6)
H80.28010.02890.24770.071*
C90.23427 (16)0.0255 (3)0.35398 (13)0.0500 (5)
C100.2092 (2)0.2157 (3)0.33418 (18)0.0671 (7)
H10A0.23910.28980.37870.101*
H10B0.23220.24860.28400.101*
H10C0.14030.23050.32720.101*
C110.0541 (3)0.3751 (9)0.3717 (3)0.166 (3)
H11A0.03480.47020.33890.250*
H11B0.10480.41510.40050.250*
H11C0.07710.27750.33630.250*
C120.0323 (3)0.3151 (7)0.4342 (2)0.1031 (14)
C130.0176 (3)0.2405 (8)0.5085 (3)0.143 (2)
H130.04590.22570.51740.172*
C140.0911 (2)0.1861 (6)0.57081 (19)0.0957 (12)
C150.0688 (3)0.1165 (9)0.6526 (2)0.158 (3)
H15A0.12030.04020.67720.237*
H15B0.00930.05100.64340.237*
H15C0.06270.21410.68910.237*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0521 (2)0.0510 (2)0.0371 (2)0.00854 (15)0.00771 (14)0.00224 (14)
O10.0733 (11)0.0530 (9)0.0479 (9)0.0140 (8)0.0086 (8)0.0063 (7)
O20.0506 (9)0.0554 (9)0.0562 (9)0.0099 (7)0.0095 (7)0.0014 (7)
O30.0822 (12)0.0539 (9)0.0430 (8)0.0006 (8)0.0183 (8)0.0028 (7)
O40.0692 (11)0.0523 (9)0.0491 (9)0.0002 (8)0.0086 (8)0.0021 (7)
O50.0689 (12)0.0889 (14)0.0507 (10)0.0263 (10)0.0085 (9)0.0083 (9)
O60.0580 (10)0.0814 (11)0.0439 (8)0.0009 (9)0.0117 (7)0.0006 (8)
C10.133 (3)0.0548 (16)0.0663 (18)0.0036 (16)0.0170 (19)0.0091 (13)
C20.0817 (17)0.0516 (13)0.0383 (11)0.0054 (12)0.0139 (11)0.0027 (9)
C30.0661 (16)0.0660 (16)0.0675 (16)0.0135 (13)0.0067 (13)0.0019 (13)
C40.0457 (12)0.0709 (15)0.0481 (12)0.0010 (11)0.0142 (10)0.0066 (11)
C50.0498 (15)0.111 (2)0.088 (2)0.0127 (16)0.0057 (14)0.0030 (19)
C60.095 (2)0.092 (2)0.0486 (14)0.0114 (18)0.0225 (14)0.0012 (14)
C70.0512 (12)0.0625 (14)0.0369 (11)0.0087 (10)0.0050 (9)0.0007 (9)
C80.0726 (16)0.0647 (15)0.0410 (11)0.0056 (12)0.0081 (11)0.0110 (10)
C90.0455 (11)0.0540 (12)0.0455 (12)0.0107 (9)0.0083 (9)0.0067 (9)
C100.0703 (17)0.0576 (14)0.0671 (17)0.0000 (12)0.0091 (13)0.0113 (12)
C110.090 (3)0.297 (8)0.095 (3)0.088 (4)0.040 (2)0.052 (4)
C120.065 (2)0.174 (4)0.0621 (19)0.037 (2)0.0153 (16)0.037 (2)
C130.0479 (18)0.306 (8)0.076 (2)0.005 (3)0.0090 (17)0.026 (3)
C140.0603 (18)0.172 (4)0.0578 (17)0.023 (2)0.0193 (14)0.017 (2)
C150.100 (3)0.305 (8)0.076 (2)0.074 (4)0.033 (2)0.006 (4)
Geometric parameters (Å, º) top
Cr1—O51.9413 (18)C6—C71.504 (4)
Cr1—O61.9548 (17)C6—H6A0.9600
Cr1—O41.9572 (16)C6—H6B0.9600
Cr1—O31.9609 (16)C6—H6C0.9600
Cr1—O21.9616 (16)C7—C81.389 (3)
Cr1—O11.9645 (17)C8—C91.383 (3)
O1—C21.260 (3)C8—H80.9300
O2—C41.261 (3)C9—C101.501 (3)
O3—C71.265 (3)C10—H10A0.9600
O4—C91.269 (3)C10—H10B0.9600
O5—C121.250 (4)C10—H10C0.9600
O6—C141.259 (3)C11—C121.525 (5)
C1—C21.513 (3)C11—H11A0.9600
C1—H1A0.9600C11—H11B0.9600
C1—H1B0.9600C11—H11C0.9600
C1—H1C0.9600C12—C131.384 (6)
C2—C31.391 (4)C13—C141.391 (5)
C3—C41.385 (4)C13—H130.9300
C3—H30.9300C14—C151.515 (5)
C4—C51.510 (4)C15—H15A0.9600
C5—H5A0.9600C15—H15B0.9600
C5—H5B0.9600C15—H15C0.9600
C5—H5C0.9600
O5—Cr1—O691.50 (9)C7—C6—H6A109.5
O5—Cr1—O489.46 (8)C7—C6—H6B109.5
O6—Cr1—O489.08 (8)H6A—C6—H6B109.5
O5—Cr1—O388.81 (8)C7—C6—H6C109.5
O6—Cr1—O3179.51 (8)H6A—C6—H6C109.5
O4—Cr1—O391.30 (7)H6B—C6—H6C109.5
O5—Cr1—O2177.42 (8)O3—C7—C8125.2 (2)
O6—Cr1—O290.91 (8)O3—C7—C6115.1 (2)
O4—Cr1—O289.67 (7)C8—C7—C6119.7 (2)
O3—Cr1—O288.79 (8)C9—C8—C7125.7 (2)
O5—Cr1—O190.28 (8)C9—C8—H8117.2
O6—Cr1—O189.50 (8)C7—C8—H8117.2
O4—Cr1—O1178.54 (7)O4—C9—C8124.3 (2)
O3—Cr1—O190.13 (7)O4—C9—C10115.1 (2)
O2—Cr1—O190.65 (7)C8—C9—C10120.6 (2)
C2—O1—Cr1127.01 (16)C9—C10—H10A109.5
C4—O2—Cr1126.49 (16)C9—C10—H10B109.5
C7—O3—Cr1126.21 (16)H10A—C10—H10B109.5
C9—O4—Cr1127.07 (16)C9—C10—H10C109.5
C12—O5—Cr1126.7 (2)H10A—C10—H10C109.5
C14—O6—Cr1126.3 (2)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3124.6 (2)O5—C12—C13125.6 (3)
O1—C2—C1115.0 (3)O5—C12—C11114.5 (4)
C3—C2—C1120.3 (3)C13—C12—C11119.9 (4)
C4—C3—C2125.1 (3)C12—C13—C14124.7 (3)
C4—C3—H3117.5C12—C13—H13117.7
C2—C3—H3117.5C14—C13—H13117.7
O2—C4—C3125.1 (2)O6—C14—C13125.0 (3)
O2—C4—C5115.4 (2)O6—C14—C15113.8 (3)
C3—C4—C5119.5 (3)C13—C14—C15121.2 (3)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Cr1—O1—C2170.15 (19)Cr1—O1—C2—C31.5 (3)
O6—Cr1—O1—C298.35 (19)Cr1—O1—C2—C1179.24 (18)
O3—Cr1—O1—C281.34 (19)O1—C2—C3—C45.3 (4)
O2—Cr1—O1—C27.45 (19)C1—C2—C3—C4174.0 (3)
O6—Cr1—O2—C4100.19 (19)Cr1—O2—C4—C38.2 (4)
O4—Cr1—O2—C4170.73 (19)Cr1—O2—C4—C5173.61 (18)
O3—Cr1—O2—C479.43 (19)C2—C3—C4—O21.6 (4)
O1—Cr1—O2—C410.69 (19)C2—C3—C4—C5176.5 (3)
O5—Cr1—O3—C784.7 (2)Cr1—O3—C7—C82.9 (3)
O4—Cr1—O3—C74.7 (2)Cr1—O3—C7—C6178.02 (19)
O2—Cr1—O3—C794.4 (2)O3—C7—C8—C92.0 (4)
O1—Cr1—O3—C7174.97 (19)C6—C7—C8—C9177.0 (2)
O5—Cr1—O4—C985.23 (19)Cr1—O4—C9—C80.5 (3)
O6—Cr1—O4—C9176.75 (18)Cr1—O4—C9—C10179.29 (16)
O3—Cr1—O4—C93.56 (18)C7—C8—C9—O43.3 (4)
O2—Cr1—O4—C992.34 (18)C7—C8—C9—C10176.9 (2)
O6—Cr1—O5—C125.4 (3)Cr1—O5—C12—C132.8 (6)
O4—Cr1—O5—C1283.7 (3)Cr1—O5—C12—C11176.1 (3)
O3—Cr1—O5—C12175.0 (3)O5—C12—C13—C143.1 (9)
O1—Cr1—O5—C1294.9 (3)C11—C12—C13—C14178.1 (5)
O5—Cr1—O6—C144.4 (3)Cr1—O6—C14—C130.8 (6)
O4—Cr1—O6—C1485.0 (3)Cr1—O6—C14—C15179.1 (3)
O2—Cr1—O6—C14174.7 (3)C12—C13—C14—O64.1 (9)
O1—Cr1—O6—C1494.7 (3)C12—C13—C14—C15176.0 (5)
(Ib) α-Tris(2,4-pentanedionato-κ2O,O')chromium(III) top
Crystal data top
[Cr(C5H7O2)3]F(000) = 4392
Mr = 349.32Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 117343 reflections
a = 27.5823 (2) Åθ = 1.0–27.5°
b = 7.4656 (1) ŵ = 0.72 mm1
c = 48.6012 (4) ÅT = 110 K
β = 99.2731 (3)°Hexagonal plate, violet
V = 9877.09 (17) Å30.39 × 0.29 × 0.09 mm
Z = 24
Data collection top
Nonius KappaCCD
diffractometer
18651 independent reflections
Radiation source: rotating anode9662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.7°, θmin = 1.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1987)
h = 3331
Tmin = 0.82, Tmax = 0.94k = 89
101596 measured reflectionsl = 5858
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0665P)2]
where P = (Fo2 + 2Fc2)/3
18651 reflections(Δ/σ)max = 0.016
1225 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cr(C5H7O2)3]V = 9877.09 (17) Å3
Mr = 349.32Z = 24
Monoclinic, P21/cMo Kα radiation
a = 27.5823 (2) ŵ = 0.72 mm1
b = 7.4656 (1) ÅT = 110 K
c = 48.6012 (4) Å0.39 × 0.29 × 0.09 mm
β = 99.2731 (3)°
Data collection top
Nonius KappaCCD
diffractometer
18651 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1987)
9662 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.94Rint = 0.052
101596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
18651 reflectionsΔρmin = 0.60 e Å3
1225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.130059 (14)0.23565 (5)0.176136 (9)0.01607 (11)
O110.14299 (6)0.4772 (2)0.19121 (4)0.0227 (4)
O210.09817 (6)0.1669 (2)0.20775 (4)0.0201 (4)
O310.06569 (6)0.3187 (2)0.15687 (4)0.0206 (4)
O410.11781 (6)0.0047 (2)0.15973 (4)0.0207 (4)
O510.16297 (6)0.3006 (2)0.14457 (4)0.0231 (4)
O610.19143 (6)0.1502 (2)0.19742 (4)0.0242 (4)
C110.15035 (9)0.7268 (3)0.22122 (6)0.0242 (6)
H11A0.18620.73480.22580.036*
H11B0.13560.76950.23710.036*
H11C0.13880.80090.20480.036*
C210.13559 (8)0.5346 (3)0.21504 (6)0.0180 (6)
C310.11589 (8)0.4327 (3)0.23449 (6)0.0225 (6)
H310.11470.48520.25220.027*
C410.09766 (8)0.2579 (3)0.22990 (5)0.0172 (5)
C510.07417 (9)0.1697 (3)0.25224 (5)0.0255 (6)
H51A0.06800.04320.24750.038*
H51B0.04300.22960.25360.038*
H51C0.09620.17880.27010.038*
C610.01736 (8)0.3141 (3)0.13548 (6)0.0274 (6)
H61A0.02430.39510.15020.041*
H61B0.04380.22550.13150.041*
H61C0.01530.38330.11860.041*
C710.03070 (8)0.2196 (3)0.14488 (6)0.0214 (6)
C810.03444 (9)0.0369 (3)0.13943 (6)0.0236 (6)
H810.00570.02330.13070.028*
C910.07754 (9)0.0637 (3)0.14596 (5)0.0222 (6)
C1010.07847 (9)0.2542 (3)0.13602 (6)0.0276 (6)
H10A0.09490.25940.11960.041*
H10B0.04480.29860.13110.041*
H10C0.09640.32880.15090.041*
C1110.22324 (9)0.3195 (4)0.11532 (6)0.0369 (7)
H11D0.23230.21090.10600.055*
H11E0.25150.40080.11870.055*
H11F0.19590.37900.10340.055*
C1210.20796 (9)0.2702 (3)0.14257 (6)0.0267 (6)
C1310.24254 (8)0.1923 (3)0.16354 (6)0.0298 (6)
H1310.27490.17540.15960.036*
C1410.23340 (8)0.1384 (3)0.18930 (6)0.0253 (6)
C1510.27347 (8)0.0602 (3)0.21053 (6)0.0346 (7)
H15A0.28090.14230.22640.052*
H15B0.30300.04240.20200.052*
H15C0.26260.05520.21700.052*
Cr20.129053 (14)0.28514 (5)0.343099 (9)0.01721 (11)
O120.14150 (6)0.0441 (2)0.35827 (4)0.0206 (4)
O220.09722 (6)0.3564 (2)0.37492 (4)0.0206 (4)
O320.06456 (6)0.2045 (2)0.32385 (4)0.0204 (4)
O420.11760 (6)0.5257 (2)0.32671 (4)0.0223 (4)
O520.16134 (6)0.2163 (2)0.31167 (4)0.0216 (4)
O620.19091 (5)0.3684 (2)0.36433 (4)0.0229 (4)
C120.14958 (9)0.2035 (3)0.38874 (6)0.0242 (6)
H12A0.13500.27960.37320.036*
H12B0.13790.24200.40580.036*
H12C0.18540.21360.39130.036*
C220.13481 (8)0.0111 (3)0.38254 (5)0.0176 (6)
C320.11502 (9)0.0913 (3)0.40173 (6)0.0245 (6)
H320.11370.03940.41940.029*
C420.09675 (8)0.2665 (3)0.39697 (6)0.0212 (6)
C520.07314 (9)0.3559 (3)0.41946 (6)0.0303 (7)
H52A0.06470.47990.41400.046*
H52B0.09620.35500.43710.046*
H52C0.04320.29070.42180.046*
C620.01803 (9)0.2119 (3)0.30198 (6)0.0290 (7)
H62A0.01540.13850.28560.043*
H62B0.04390.30160.29710.043*
H62C0.02610.13520.31700.043*
C720.02998 (8)0.3044 (3)0.31160 (6)0.0209 (6)
C820.03429 (9)0.4860 (3)0.30588 (6)0.0239 (6)
H820.00580.54660.29690.029*
C920.07732 (9)0.5847 (3)0.31246 (5)0.0211 (6)
C1020.07975 (9)0.7753 (3)0.30232 (6)0.0308 (7)
H10D0.09550.85110.31770.046*
H10E0.04640.81930.29570.046*
H10F0.09890.77920.28700.046*
C1120.22219 (9)0.1732 (4)0.28322 (6)0.0376 (7)
H11G0.19510.10770.27210.056*
H11H0.25100.09510.28720.056*
H11I0.23030.27860.27280.056*
C1220.20706 (9)0.2321 (3)0.31017 (5)0.0244 (6)
C1320.24277 (8)0.3012 (3)0.33140 (6)0.0294 (6)
H1320.27580.30410.32820.035*
C1420.23318 (8)0.3653 (3)0.35670 (5)0.0239 (6)
C1520.27427 (8)0.4370 (3)0.37798 (5)0.0334 (7)
H15D0.26440.55190.38510.050*
H15E0.30360.45430.36930.050*
H15F0.28160.35160.39340.050*
Cr30.135853 (14)0.24830 (5)0.510759 (9)0.01795 (11)
O130.14491 (6)0.4882 (2)0.52724 (4)0.0219 (4)
O230.10876 (6)0.1589 (2)0.54314 (4)0.0242 (4)
O330.06859 (6)0.3135 (2)0.49368 (4)0.0219 (4)
O430.12794 (6)0.0083 (2)0.49377 (4)0.0218 (4)
O530.16081 (6)0.3379 (2)0.47789 (4)0.0203 (4)
O630.20258 (6)0.1871 (2)0.52890 (4)0.0244 (4)
C130.14197 (9)0.7362 (3)0.55673 (6)0.0242 (6)
H13A0.17750.75720.56020.036*
H13B0.12800.76840.57340.036*
H13C0.12690.80970.54090.036*
C230.13208 (8)0.5407 (3)0.55005 (6)0.0198 (6)
C330.11091 (9)0.4325 (3)0.56805 (6)0.0234 (6)
H330.10320.48590.58450.028*
C430.10004 (9)0.2505 (3)0.56375 (6)0.0216 (6)
C530.07572 (10)0.1516 (3)0.58505 (6)0.0308 (7)
H53A0.06490.03340.57770.046*
H53B0.04730.22010.58890.046*
H53C0.09920.13730.60230.046*
C630.01426 (9)0.2912 (4)0.47215 (7)0.0351 (8)
H63A0.02530.34870.48820.053*
H63B0.03770.19760.46470.053*
H63C0.01230.38080.45760.053*
C730.03587 (9)0.2084 (3)0.48121 (6)0.0215 (6)
C830.04351 (9)0.0294 (3)0.47471 (6)0.0262 (6)
H830.01600.03680.46580.031*
C930.08872 (9)0.0595 (3)0.48042 (5)0.0203 (6)
C1030.09353 (9)0.2480 (3)0.47018 (6)0.0281 (6)
H10G0.11380.24790.45530.042*
H10H0.06090.29560.46290.042*
H10I0.10910.32320.48560.042*
C1130.21328 (8)0.4570 (3)0.44903 (5)0.0270 (6)
H11J0.20680.36840.43400.041*
H11K0.24720.49940.45060.041*
H11L0.19070.55850.44480.041*
C1230.20571 (8)0.3725 (3)0.47603 (5)0.0221 (6)
C1330.24597 (8)0.3306 (3)0.49625 (5)0.0251 (6)
H1330.27760.36600.49300.030*
C1430.24267 (8)0.2394 (3)0.52112 (5)0.0237 (6)
C1530.28932 (8)0.1944 (3)0.54064 (5)0.0331 (7)
H15G0.28140.12320.55630.050*
H15H0.30580.30530.54780.050*
H15I0.31110.12550.53060.050*
Cr40.370910 (13)0.77617 (5)0.490022 (8)0.01580 (11)
O140.35781 (6)0.5341 (2)0.47481 (4)0.0207 (4)
O240.40326 (6)0.8453 (2)0.45835 (4)0.0206 (4)
O340.43511 (6)0.6936 (2)0.50963 (4)0.0199 (4)
O440.38308 (6)1.0165 (2)0.50644 (4)0.0210 (4)
O540.33777 (6)0.7103 (2)0.52149 (4)0.0211 (4)
O640.30953 (5)0.8607 (2)0.46852 (4)0.0226 (4)
C140.34969 (9)0.2861 (3)0.44479 (6)0.0236 (6)
H14A0.36520.20940.46010.035*
H14B0.36020.24830.42740.035*
H14C0.31390.27600.44300.035*
C240.36480 (8)0.4780 (3)0.45091 (6)0.0184 (6)
C340.38476 (8)0.5799 (3)0.43158 (5)0.0205 (6)
H340.38590.52760.41390.025*
C440.40339 (8)0.7544 (3)0.43622 (6)0.0195 (6)
C540.42721 (9)0.8432 (3)0.41406 (6)0.0292 (7)
H54A0.43520.96760.41940.044*
H54B0.40460.84110.39630.044*
H54C0.45740.77880.41200.044*
C640.51783 (9)0.6966 (3)0.53191 (6)0.0297 (7)
H64A0.51400.61830.54760.045*
H64B0.54350.78540.53790.045*
H64C0.52710.62460.51670.045*
C740.46971 (8)0.7916 (3)0.52180 (5)0.0191 (6)
C840.46590 (9)0.9742 (3)0.52724 (6)0.0234 (6)
H840.49451.03420.53620.028*
C940.42305 (9)1.0747 (3)0.52043 (5)0.0199 (6)
C1040.42202 (9)1.2659 (3)0.53038 (6)0.0284 (6)
H10J0.40501.34110.51530.043*
H10K0.45571.30920.53590.043*
H10L0.40461.27170.54640.043*
C1140.27701 (9)0.6853 (3)0.55046 (5)0.0323 (6)
H11M0.30390.62050.56190.048*
H11N0.24790.60810.54690.048*
H11O0.26920.79340.56030.048*
C1240.29238 (8)0.7371 (3)0.52330 (5)0.0239 (6)
C1340.25778 (8)0.8120 (3)0.50247 (5)0.0265 (6)
H1340.22520.82520.50620.032*
C1440.26727 (8)0.8689 (3)0.47665 (5)0.0227 (6)
C1540.22722 (8)0.9451 (3)0.45519 (5)0.0286 (6)
H15J0.23821.05880.44820.043*
H15K0.19780.96560.46370.043*
H15L0.21950.86040.43970.043*
Cr50.365644 (14)0.73353 (5)0.322249 (9)0.01844 (12)
O150.35664 (6)0.9728 (2)0.30562 (4)0.0252 (4)
O250.39339 (6)0.6439 (2)0.29004 (4)0.0231 (4)
O350.43277 (6)0.7994 (2)0.33945 (4)0.0225 (4)
O450.37337 (6)0.4938 (2)0.33918 (4)0.0218 (4)
O550.34020 (6)0.8239 (2)0.35491 (4)0.0219 (4)
O650.29924 (6)0.6719 (2)0.30403 (4)0.0264 (4)
C150.35825 (9)1.2189 (3)0.27550 (6)0.0237 (6)
H15M0.32271.23720.27080.036*
H15N0.37401.25200.25950.036*
H15O0.37131.29380.29150.036*
C250.36861 (8)1.0246 (3)0.28265 (6)0.0193 (6)
C350.38947 (9)0.9154 (3)0.26436 (6)0.0233 (6)
H350.39600.96760.24750.028*
C450.40147 (8)0.7341 (3)0.26909 (5)0.0172 (5)
C550.42647 (9)0.6368 (3)0.24816 (5)0.0237 (6)
H55A0.43540.51590.25500.036*
H55B0.45620.70220.24550.036*
H55C0.40410.62910.23040.036*
C650.51514 (9)0.7783 (4)0.36148 (6)0.0310 (7)
H65A0.52490.84760.34610.047*
H65B0.53940.68370.36710.047*
H65C0.51350.85770.37740.047*
C750.46531 (9)0.6950 (3)0.35206 (6)0.0235 (6)
C850.45765 (9)0.5157 (3)0.35879 (6)0.0255 (6)
H850.48500.45020.36810.031*
C950.41247 (9)0.4264 (3)0.35278 (6)0.0225 (6)
C1050.40798 (9)0.2381 (3)0.36320 (6)0.0283 (6)
H10M0.38890.23890.37850.042*
H10N0.44080.18970.36980.042*
H10O0.39130.16310.34800.042*
C1150.28743 (9)0.9463 (3)0.38335 (5)0.0312 (6)
H11P0.29510.86090.39880.047*
H11Q0.25310.98470.38190.047*
H11R0.30911.05070.38690.047*
C1250.29501 (8)0.8583 (3)0.35662 (5)0.0226 (6)
C1350.25540 (8)0.8169 (3)0.33609 (6)0.0294 (6)
H1350.22370.85470.33900.035*
C1450.25884 (9)0.7240 (3)0.31164 (6)0.0269 (6)
C1550.21234 (9)0.6805 (4)0.29182 (6)0.0402 (7)
H15P0.22000.59920.27730.060*
H15Q0.19800.79110.28320.060*
H15R0.18880.62280.30210.060*
Cr60.364423 (14)0.74521 (5)0.155932 (9)0.01805 (11)
O160.35545 (6)0.5052 (2)0.13973 (4)0.0222 (4)
O260.39208 (6)0.8328 (2)0.12338 (4)0.0233 (4)
O360.43145 (6)0.6779 (2)0.17319 (4)0.0210 (4)
O460.37257 (6)0.9851 (2)0.17257 (4)0.0221 (4)
O560.33905 (5)0.6579 (2)0.18865 (4)0.0212 (4)
O660.29788 (6)0.8082 (2)0.13755 (4)0.0249 (4)
C160.35738 (9)0.2568 (3)0.11000 (6)0.0246 (6)
H16A0.37040.18390.12630.037*
H16B0.37330.22180.09420.037*
H16C0.32190.23780.10520.037*
C260.36751 (8)0.4524 (3)0.11662 (6)0.0207 (6)
C360.38861 (9)0.5589 (3)0.09840 (6)0.0238 (6)
H360.39580.50490.08180.029*
C460.40008 (8)0.7412 (3)0.10277 (6)0.0215 (6)
C560.42425 (10)0.8385 (3)0.08126 (6)0.0301 (7)
H56A0.43520.95700.08840.045*
H56B0.40060.85230.06400.045*
H56C0.45260.76940.07740.045*
C660.51356 (9)0.6987 (3)0.19459 (6)0.0303 (7)
H66A0.51170.61430.20980.045*
H66B0.53770.79210.20100.045*
H66C0.52350.63460.17880.045*
C760.46433 (9)0.7827 (3)0.18565 (6)0.0212 (6)
C860.45704 (9)0.9620 (3)0.19227 (6)0.0254 (6)
H860.48451.02700.20150.030*
C960.41234 (9)1.0517 (3)0.18626 (5)0.0222 (6)
C1060.40743 (9)1.2416 (3)0.19622 (6)0.0285 (6)
H10P0.39511.31840.18030.043*
H10Q0.43961.28510.20530.043*
H10R0.38441.24440.20960.043*
C1160.28597 (9)0.5466 (3)0.21805 (5)0.0321 (6)
H11S0.30820.44450.22240.048*
H11T0.25190.50570.21650.048*
H11U0.29270.63610.23290.048*
C1260.29381 (8)0.6289 (3)0.19083 (5)0.0235 (6)
C1360.25406 (8)0.6713 (3)0.17037 (6)0.0293 (6)
H1360.22230.63680.17350.035*
C1460.25759 (9)0.7608 (3)0.14562 (6)0.0268 (6)
C1560.21109 (9)0.8048 (4)0.12602 (6)0.0381 (7)
H15S0.21920.87360.11020.057*
H15T0.18940.87600.13590.057*
H15U0.19440.69360.11920.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0163 (2)0.0165 (2)0.0155 (3)0.00027 (15)0.00266 (18)0.00130 (17)
O110.0260 (10)0.0199 (9)0.0222 (11)0.0021 (7)0.0037 (8)0.0009 (8)
O210.0224 (9)0.0212 (9)0.0173 (10)0.0018 (7)0.0049 (7)0.0008 (8)
O310.0205 (9)0.0172 (9)0.0235 (11)0.0017 (7)0.0017 (8)0.0020 (8)
O410.0230 (9)0.0179 (9)0.0206 (11)0.0018 (7)0.0016 (8)0.0032 (8)
O510.0198 (9)0.0287 (10)0.0223 (11)0.0017 (7)0.0079 (8)0.0030 (8)
O610.0213 (9)0.0275 (10)0.0230 (11)0.0028 (7)0.0008 (8)0.0041 (8)
C110.0266 (13)0.0187 (13)0.0251 (16)0.0007 (10)0.0028 (12)0.0009 (11)
C210.0139 (12)0.0180 (13)0.0189 (16)0.0036 (9)0.0074 (11)0.0025 (11)
C310.0259 (14)0.0245 (14)0.0157 (15)0.0005 (10)0.0004 (11)0.0007 (11)
C410.0167 (13)0.0255 (13)0.0091 (14)0.0027 (10)0.0016 (11)0.0016 (11)
C510.0356 (15)0.0338 (15)0.0076 (14)0.0063 (12)0.0051 (12)0.0003 (11)
C610.0185 (13)0.0345 (16)0.0288 (17)0.0050 (11)0.0028 (12)0.0002 (13)
C710.0150 (12)0.0264 (14)0.0239 (16)0.0001 (10)0.0061 (11)0.0025 (12)
C810.0219 (13)0.0212 (13)0.0270 (17)0.0061 (10)0.0015 (11)0.0004 (11)
C910.0296 (14)0.0202 (13)0.0177 (15)0.0025 (10)0.0071 (11)0.0032 (11)
C1010.0344 (15)0.0183 (13)0.0278 (17)0.0032 (10)0.0018 (12)0.0052 (12)
C1110.0358 (15)0.0408 (17)0.0380 (18)0.0103 (12)0.0182 (13)0.0067 (14)
C1210.0269 (14)0.0244 (14)0.0302 (16)0.0087 (11)0.0088 (12)0.0080 (12)
C1310.0182 (12)0.0346 (16)0.0375 (18)0.0010 (11)0.0076 (12)0.0094 (13)
C1410.0183 (12)0.0254 (14)0.0316 (17)0.0013 (10)0.0017 (11)0.0108 (12)
C1510.0267 (13)0.0324 (16)0.0405 (19)0.0069 (11)0.0070 (12)0.0095 (13)
Cr20.0175 (2)0.0177 (2)0.0162 (2)0.00125 (15)0.00198 (17)0.00105 (17)
O120.0216 (9)0.0208 (9)0.0193 (11)0.0030 (7)0.0029 (8)0.0018 (8)
O220.0238 (9)0.0199 (9)0.0188 (11)0.0042 (7)0.0054 (7)0.0018 (8)
O320.0195 (9)0.0203 (9)0.0210 (11)0.0008 (7)0.0016 (8)0.0035 (8)
O420.0247 (9)0.0181 (9)0.0229 (11)0.0024 (7)0.0007 (8)0.0026 (8)
O520.0204 (9)0.0260 (10)0.0184 (10)0.0001 (7)0.0030 (7)0.0004 (8)
O620.0216 (9)0.0266 (10)0.0195 (10)0.0022 (7)0.0007 (7)0.0004 (8)
C120.0256 (13)0.0222 (14)0.0230 (16)0.0018 (10)0.0014 (11)0.0022 (11)
C220.0153 (12)0.0184 (13)0.0171 (16)0.0039 (9)0.0037 (11)0.0017 (11)
C320.0263 (14)0.0239 (14)0.0226 (17)0.0012 (11)0.0019 (12)0.0054 (12)
C420.0124 (12)0.0238 (14)0.0261 (17)0.0037 (10)0.0013 (11)0.0011 (12)
C520.0348 (16)0.0316 (15)0.0250 (18)0.0048 (12)0.0059 (13)0.0049 (13)
C620.0225 (14)0.0350 (16)0.0291 (18)0.0020 (11)0.0030 (12)0.0003 (13)
C720.0174 (13)0.0276 (14)0.0189 (15)0.0029 (10)0.0068 (11)0.0041 (11)
C820.0214 (13)0.0264 (14)0.0228 (16)0.0058 (10)0.0006 (11)0.0025 (11)
C920.0263 (13)0.0229 (13)0.0143 (14)0.0034 (10)0.0037 (11)0.0026 (11)
C1020.0394 (16)0.0211 (14)0.0307 (17)0.0060 (11)0.0017 (13)0.0008 (12)
C1120.0410 (16)0.0425 (18)0.0319 (17)0.0139 (13)0.0135 (13)0.0024 (14)
C1220.0273 (13)0.0204 (13)0.0261 (15)0.0052 (10)0.0065 (11)0.0065 (11)
C1320.0190 (12)0.0375 (16)0.0327 (17)0.0002 (11)0.0074 (11)0.0065 (13)
C1420.0246 (13)0.0217 (13)0.0234 (15)0.0015 (10)0.0025 (11)0.0099 (11)
C1520.0283 (14)0.0319 (15)0.0363 (18)0.0075 (11)0.0060 (12)0.0081 (13)
Cr30.0213 (2)0.0168 (2)0.0161 (3)0.00369 (15)0.00410 (18)0.00010 (17)
O130.0270 (10)0.0198 (9)0.0192 (11)0.0017 (7)0.0045 (8)0.0001 (8)
O230.0341 (10)0.0198 (9)0.0198 (11)0.0025 (7)0.0079 (8)0.0015 (8)
O330.0211 (9)0.0204 (9)0.0249 (11)0.0053 (7)0.0057 (8)0.0004 (8)
O430.0251 (9)0.0196 (9)0.0206 (11)0.0049 (7)0.0038 (8)0.0001 (8)
O530.0209 (9)0.0246 (9)0.0153 (10)0.0021 (7)0.0023 (7)0.0006 (7)
O630.0276 (10)0.0239 (9)0.0204 (10)0.0045 (7)0.0005 (8)0.0013 (8)
C130.0258 (13)0.0204 (13)0.0244 (16)0.0027 (10)0.0023 (12)0.0049 (11)
C230.0180 (13)0.0203 (13)0.0196 (16)0.0062 (10)0.0018 (11)0.0002 (11)
C330.0282 (14)0.0264 (14)0.0160 (16)0.0030 (11)0.0047 (12)0.0047 (11)
C430.0209 (13)0.0208 (13)0.0232 (17)0.0050 (10)0.0033 (12)0.0022 (12)
C530.0398 (16)0.0247 (14)0.0299 (19)0.0006 (12)0.0117 (14)0.0013 (13)
C630.0227 (14)0.0347 (17)0.048 (2)0.0097 (12)0.0046 (14)0.0008 (14)
C730.0228 (14)0.0263 (14)0.0164 (15)0.0005 (11)0.0064 (11)0.0023 (11)
C830.0236 (14)0.0214 (13)0.0328 (18)0.0001 (10)0.0018 (12)0.0010 (12)
C930.0336 (14)0.0175 (12)0.0112 (14)0.0008 (10)0.0072 (11)0.0030 (11)
C1030.0380 (15)0.0206 (14)0.0267 (16)0.0023 (11)0.0080 (13)0.0031 (12)
C1130.0273 (13)0.0255 (14)0.0297 (16)0.0015 (10)0.0092 (11)0.0023 (12)
C1230.0261 (13)0.0138 (12)0.0277 (16)0.0010 (10)0.0082 (11)0.0048 (11)
C1330.0246 (13)0.0217 (14)0.0286 (16)0.0042 (10)0.0027 (11)0.0040 (12)
C1430.0250 (13)0.0212 (13)0.0234 (15)0.0021 (10)0.0005 (11)0.0098 (11)
C1530.0291 (14)0.0322 (16)0.0334 (17)0.0020 (11)0.0090 (12)0.0042 (13)
Cr40.0155 (2)0.0164 (2)0.0155 (3)0.00076 (15)0.00230 (17)0.00091 (16)
O140.0222 (9)0.0185 (9)0.0208 (11)0.0003 (7)0.0019 (8)0.0005 (8)
O240.0220 (9)0.0196 (9)0.0204 (11)0.0021 (7)0.0040 (7)0.0036 (8)
O340.0167 (9)0.0201 (9)0.0225 (11)0.0015 (7)0.0015 (8)0.0002 (8)
O440.0202 (9)0.0212 (9)0.0199 (11)0.0008 (7)0.0017 (7)0.0021 (7)
O540.0219 (9)0.0233 (9)0.0183 (10)0.0003 (7)0.0037 (7)0.0017 (8)
O640.0185 (8)0.0263 (9)0.0219 (11)0.0025 (7)0.0002 (7)0.0009 (8)
C140.0245 (13)0.0215 (14)0.0224 (16)0.0005 (10)0.0032 (11)0.0025 (11)
C240.0151 (12)0.0203 (13)0.0181 (16)0.0053 (9)0.0020 (11)0.0021 (11)
C340.0216 (13)0.0251 (14)0.0144 (15)0.0012 (10)0.0013 (11)0.0053 (11)
C440.0133 (12)0.0234 (14)0.0210 (16)0.0036 (10)0.0006 (11)0.0019 (12)
C540.0312 (15)0.0294 (15)0.0280 (18)0.0033 (12)0.0074 (13)0.0024 (13)
C640.0180 (13)0.0348 (16)0.0348 (19)0.0066 (11)0.0006 (12)0.0018 (13)
C740.0169 (12)0.0282 (14)0.0127 (14)0.0008 (10)0.0040 (10)0.0028 (11)
C840.0162 (12)0.0258 (14)0.0269 (17)0.0051 (10)0.0003 (11)0.0023 (12)
C940.0296 (14)0.0153 (12)0.0157 (15)0.0047 (10)0.0062 (11)0.0024 (11)
C1040.0404 (15)0.0193 (13)0.0244 (16)0.0030 (11)0.0024 (12)0.0006 (12)
C1140.0320 (14)0.0386 (16)0.0290 (17)0.0043 (12)0.0131 (12)0.0034 (13)
C1240.0240 (13)0.0186 (13)0.0298 (16)0.0058 (10)0.0066 (11)0.0096 (11)
C1340.0219 (13)0.0276 (15)0.0306 (16)0.0005 (10)0.0063 (11)0.0063 (12)
C1440.0193 (12)0.0165 (13)0.0306 (17)0.0002 (10)0.0008 (11)0.0076 (11)
C1540.0241 (13)0.0256 (14)0.0333 (17)0.0031 (10)0.0033 (11)0.0034 (12)
Cr50.0233 (2)0.0166 (2)0.0157 (3)0.00434 (15)0.00386 (19)0.00003 (17)
O150.0342 (10)0.0180 (9)0.0239 (12)0.0024 (7)0.0067 (9)0.0003 (8)
O250.0323 (10)0.0194 (9)0.0192 (11)0.0018 (7)0.0090 (8)0.0011 (8)
O350.0252 (10)0.0167 (9)0.0267 (11)0.0033 (7)0.0071 (8)0.0008 (8)
O450.0253 (9)0.0200 (9)0.0200 (11)0.0048 (7)0.0035 (8)0.0022 (8)
O550.0213 (9)0.0259 (10)0.0188 (11)0.0023 (7)0.0036 (8)0.0024 (8)
O650.0292 (10)0.0268 (10)0.0219 (11)0.0072 (8)0.0001 (8)0.0003 (8)
C150.0254 (13)0.0211 (13)0.0227 (16)0.0011 (10)0.0019 (11)0.0034 (11)
C250.0148 (12)0.0213 (13)0.0186 (16)0.0051 (9)0.0067 (11)0.0023 (11)
C350.0306 (14)0.0234 (14)0.0158 (15)0.0008 (11)0.0036 (11)0.0011 (11)
C450.0183 (13)0.0246 (13)0.0079 (14)0.0053 (10)0.0001 (11)0.0001 (11)
C550.0296 (14)0.0303 (14)0.0116 (15)0.0010 (11)0.0046 (11)0.0004 (11)
C650.0224 (14)0.0368 (16)0.0338 (18)0.0086 (11)0.0044 (12)0.0011 (13)
C750.0230 (14)0.0246 (14)0.0248 (16)0.0011 (11)0.0101 (12)0.0050 (12)
C850.0233 (13)0.0217 (14)0.0323 (18)0.0015 (10)0.0063 (12)0.0004 (12)
C950.0310 (14)0.0176 (13)0.0208 (16)0.0009 (10)0.0102 (12)0.0018 (11)
C1050.0377 (15)0.0180 (13)0.0294 (17)0.0033 (11)0.0061 (13)0.0057 (12)
C1150.0318 (14)0.0293 (15)0.0336 (17)0.0005 (11)0.0087 (12)0.0047 (13)
C1250.0264 (13)0.0196 (13)0.0226 (15)0.0015 (10)0.0065 (11)0.0034 (11)
C1350.0217 (13)0.0339 (16)0.0323 (17)0.0008 (11)0.0032 (11)0.0046 (13)
C1450.0264 (13)0.0249 (14)0.0266 (16)0.0071 (11)0.0041 (11)0.0088 (12)
C1550.0374 (16)0.0424 (18)0.0358 (18)0.0093 (13)0.0091 (13)0.0063 (14)
Cr60.0213 (2)0.0153 (2)0.0178 (2)0.00277 (15)0.00406 (18)0.00034 (17)
O160.0275 (10)0.0178 (9)0.0220 (11)0.0012 (7)0.0061 (8)0.0004 (8)
O260.0345 (10)0.0170 (9)0.0198 (11)0.0010 (7)0.0087 (8)0.0007 (8)
O360.0212 (9)0.0172 (9)0.0253 (11)0.0013 (7)0.0058 (8)0.0007 (8)
O460.0240 (9)0.0191 (9)0.0226 (11)0.0036 (7)0.0022 (8)0.0016 (8)
O560.0175 (9)0.0261 (9)0.0193 (10)0.0005 (7)0.0011 (7)0.0000 (8)
O660.0268 (9)0.0249 (10)0.0213 (10)0.0044 (7)0.0013 (8)0.0009 (8)
C160.0286 (14)0.0190 (13)0.0243 (16)0.0020 (10)0.0018 (12)0.0025 (11)
C260.0182 (13)0.0211 (13)0.0197 (16)0.0033 (10)0.0068 (11)0.0029 (11)
C360.0289 (14)0.0202 (13)0.0228 (17)0.0050 (10)0.0056 (12)0.0043 (11)
C460.0164 (13)0.0223 (14)0.0250 (17)0.0044 (10)0.0005 (11)0.0012 (12)
C560.0375 (16)0.0270 (15)0.0277 (18)0.0003 (12)0.0105 (13)0.0021 (13)
C660.0241 (14)0.0307 (15)0.0366 (19)0.0056 (11)0.0066 (13)0.0006 (13)
C760.0212 (13)0.0267 (14)0.0179 (15)0.0009 (10)0.0096 (11)0.0032 (11)
C860.0273 (14)0.0242 (14)0.0246 (17)0.0004 (11)0.0042 (12)0.0003 (12)
C960.0349 (15)0.0171 (13)0.0159 (15)0.0006 (10)0.0084 (12)0.0040 (11)
C1060.0359 (15)0.0204 (14)0.0282 (17)0.0013 (11)0.0022 (12)0.0022 (12)
C1160.0317 (14)0.0313 (16)0.0345 (17)0.0007 (11)0.0090 (12)0.0048 (13)
C1260.0258 (13)0.0191 (13)0.0259 (15)0.0019 (10)0.0053 (11)0.0040 (11)
C1360.0221 (13)0.0278 (15)0.0383 (18)0.0032 (11)0.0059 (12)0.0038 (13)
C1460.0257 (13)0.0241 (14)0.0271 (16)0.0027 (10)0.0067 (11)0.0072 (12)
C1560.0323 (15)0.0418 (18)0.0354 (18)0.0051 (12)0.0092 (12)0.0021 (14)
Geometric parameters (Å, º) top
Cr1—O611.9437 (17)Cr4—O641.9460 (16)
Cr1—O111.9572 (17)Cr4—O141.9640 (17)
Cr1—O211.9580 (17)Cr4—O541.9663 (17)
Cr1—O511.9651 (18)Cr4—O241.9685 (18)
Cr1—O311.9690 (16)Cr4—O341.9696 (16)
Cr1—O411.9703 (16)Cr4—O441.9704 (17)
O11—C211.282 (3)O14—C241.278 (3)
O21—C411.275 (3)O24—C441.272 (3)
O31—C711.280 (3)O34—C741.270 (3)
O41—C911.279 (3)O44—C941.275 (3)
O51—C1211.280 (3)O54—C1241.285 (3)
O61—C1411.285 (3)O64—C1441.291 (3)
C11—C211.508 (3)C14—C241.508 (3)
C11—H11A0.9800C14—H14A0.9800
C11—H11B0.9800C14—H14B0.9800
C11—H11C0.9800C14—H14C0.9800
C21—C311.390 (3)C24—C341.390 (3)
C31—C411.403 (3)C34—C441.405 (3)
C31—H310.9500C34—H340.9500
C41—C511.503 (3)C44—C541.503 (3)
C51—H51A0.9800C54—H54A0.9800
C51—H51B0.9800C54—H54B0.9800
C51—H51C0.9800C54—H54C0.9800
C61—C711.506 (3)C64—C741.515 (3)
C61—H61A0.9800C64—H64A0.9800
C61—H61B0.9800C64—H64B0.9800
C61—H61C0.9800C64—H64C0.9800
C71—C811.397 (3)C74—C841.396 (3)
C81—C911.398 (3)C84—C941.394 (3)
C81—H810.9500C84—H840.9500
C91—C1011.504 (3)C94—C1041.509 (3)
C101—H10A0.9800C104—H10J0.9800
C101—H10B0.9800C104—H10K0.9800
C101—H10C0.9800C104—H10L0.9800
C111—C1211.499 (3)C114—C1241.500 (3)
C111—H11D0.9800C114—H11M0.9800
C111—H11E0.9800C114—H11N0.9800
C111—H11F0.9800C114—H11O0.9800
C121—C1311.405 (4)C124—C1341.392 (3)
C131—C1411.376 (4)C134—C1441.389 (3)
C131—H1310.9500C134—H1340.9500
C141—C1511.503 (3)C144—C1541.503 (3)
C151—H15A0.9800C154—H15J0.9800
C151—H15B0.9800C154—H15K0.9800
C151—H15C0.9800C154—H15L0.9800
Cr2—O621.9481 (16)Cr5—O651.9567 (17)
Cr2—O121.9541 (16)Cr5—O551.9561 (18)
Cr2—O521.9569 (17)Cr5—O151.9602 (17)
Cr2—O321.9662 (16)Cr5—O451.9670 (17)
Cr2—O421.9692 (16)Cr5—O251.9672 (17)
Cr2—O221.9705 (17)Cr5—O351.9673 (17)
O12—C221.291 (3)O15—C251.274 (3)
O22—C421.266 (3)O25—C451.271 (3)
O32—C721.280 (3)O35—C751.270 (3)
O42—C921.288 (3)O45—C951.274 (3)
O52—C1221.280 (3)O55—C1251.288 (3)
O62—C1421.279 (3)O65—C1451.290 (3)
C12—C221.510 (3)C15—C251.508 (3)
C12—H12A0.9800C15—H15M0.9800
C12—H12B0.9800C15—H15N0.9800
C12—H12C0.9800C15—H15O0.9800
C22—C321.384 (3)C25—C351.397 (3)
C32—C421.407 (3)C35—C451.403 (3)
C32—H320.9500C35—H350.9500
C42—C521.515 (4)C45—C551.505 (3)
C52—H52A0.9800C55—H55A0.9800
C52—H52B0.9800C55—H55B0.9800
C52—H52C0.9800C55—H55C0.9800
C62—C721.500 (3)C65—C751.511 (3)
C62—H62A0.9800C65—H65A0.9800
C62—H62B0.9800C65—H65B0.9800
C62—H62C0.9800C65—H65C0.9800
C72—C821.393 (3)C75—C851.402 (3)
C82—C921.390 (3)C85—C951.402 (3)
C82—H820.9500C85—H850.9500
C92—C1021.511 (3)C95—C1051.506 (3)
C102—H10D0.9800C105—H10M0.9800
C102—H10E0.9800C105—H10N0.9800
C102—H10F0.9800C105—H10O0.9800
C112—C1221.503 (3)C115—C1251.500 (3)
C112—H11G0.9800C115—H11P0.9800
C112—H11H0.9800C115—H11Q0.9800
C112—H11I0.9800C115—H11R0.9800
C122—C1321.405 (3)C125—C1351.390 (3)
C132—C1421.384 (3)C135—C1451.392 (4)
C132—H1320.9500C135—H1350.9500
C142—C1521.504 (3)C145—C1551.510 (3)
C152—H15D0.9800C155—H15P0.9800
C152—H15E0.9800C155—H15Q0.9800
C152—H15F0.9800C155—H15R0.9800
Cr3—O531.9564 (17)Cr6—O561.9501 (17)
Cr3—O131.9614 (17)Cr6—O161.9566 (17)
Cr3—O631.9623 (16)Cr6—O461.9629 (17)
Cr3—O231.9645 (18)Cr6—O661.9645 (16)
Cr3—O331.9676 (16)Cr6—O361.9682 (16)
Cr3—O431.9700 (17)Cr6—O261.9750 (17)
O13—C231.278 (3)O16—C261.284 (3)
O23—C431.267 (3)O26—C461.261 (3)
O33—C731.273 (3)O36—C761.275 (3)
O43—C931.273 (3)O46—C961.288 (3)
O53—C1231.282 (3)O56—C1261.287 (3)
O63—C1431.286 (3)O66—C1461.286 (3)
C13—C231.510 (3)C16—C261.512 (3)
C13—H13A0.9800C16—H16A0.9800
C13—H13B0.9800C16—H16B0.9800
C13—H13C0.9800C16—H16C0.9800
C23—C331.387 (3)C26—C361.386 (3)
C33—C431.400 (3)C36—C461.406 (3)
C33—H330.9500C36—H360.9500
C43—C531.513 (4)C46—C561.513 (4)
C53—H53A0.9800C56—H56A0.9800
C53—H53B0.9800C56—H56B0.9800
C53—H53C0.9800C56—H56C0.9800
C63—C731.514 (3)C66—C761.495 (3)
C63—H63A0.9800C66—H66A0.9800
C63—H63B0.9800C66—H66B0.9800
C63—H63C0.9800C66—H66C0.9800
C73—C831.397 (3)C76—C861.398 (3)
C83—C931.400 (3)C86—C961.392 (3)
C83—H830.9500C86—H860.9500
C93—C1031.506 (3)C96—C1061.511 (3)
C103—H10G0.9800C106—H10P0.9800
C103—H10H0.9800C106—H10Q0.9800
C103—H10I0.9800C106—H10R0.9800
C113—C1231.501 (3)C116—C1261.505 (3)
C113—H11J0.9800C116—H11S0.9800
C113—H11K0.9800C116—H11T0.9800
C113—H11L0.9800C116—H11U0.9800
C123—C1331.395 (3)C126—C1361.393 (3)
C133—C1431.403 (3)C136—C1461.393 (4)
C133—H1330.9500C136—H1360.9500
C143—C1531.508 (3)C146—C1561.506 (3)
C153—H15G0.9800C156—H15S0.9800
C153—H15H0.9800C156—H15T0.9800
C153—H15I0.9800C156—H15U0.9800
O61—Cr1—O1190.72 (7)O64—Cr4—O1490.29 (7)
O61—Cr1—O2187.66 (7)O64—Cr4—O5491.46 (7)
O11—Cr1—O2191.46 (7)O14—Cr4—O5488.99 (7)
O61—Cr1—O5191.38 (7)O64—Cr4—O2487.69 (7)
O11—Cr1—O5189.17 (7)O14—Cr4—O2491.48 (7)
O21—Cr1—O51178.85 (7)O54—Cr4—O24179.03 (7)
O61—Cr1—O31175.99 (8)O64—Cr4—O34176.24 (7)
O11—Cr1—O3189.08 (7)O14—Cr4—O3489.47 (7)
O21—Cr1—O3188.35 (7)O54—Cr4—O3492.29 (7)
O51—Cr1—O3192.62 (7)O24—Cr4—O3488.56 (7)
O61—Cr1—O4189.68 (7)O64—Cr4—O4489.92 (7)
O11—Cr1—O41177.96 (8)O14—Cr4—O44178.01 (7)
O21—Cr1—O4190.55 (7)O54—Cr4—O4489.02 (7)
O51—Cr1—O4188.82 (7)O24—Cr4—O4490.51 (7)
O31—Cr1—O4190.66 (7)O34—Cr4—O4490.45 (7)
C21—O11—Cr1126.90 (16)C24—O14—Cr4126.74 (16)
C41—O21—Cr1126.19 (15)C44—O24—Cr4125.80 (16)
C71—O31—Cr1126.21 (15)C74—O34—Cr4126.49 (15)
C91—O41—Cr1127.10 (15)C94—O44—Cr4127.05 (15)
C121—O51—Cr1126.21 (17)C124—O54—Cr4126.50 (17)
C141—O61—Cr1127.55 (17)C144—O64—Cr4126.96 (16)
C21—C11—H11A109.5C24—C14—H14A109.5
C21—C11—H11B109.5C24—C14—H14B109.5
H11A—C11—H11B109.5H14A—C14—H14B109.5
C21—C11—H11C109.5C24—C14—H14C109.5
H11A—C11—H11C109.5H14A—C14—H14C109.5
H11B—C11—H11C109.5H14B—C14—H14C109.5
O11—C21—C31124.6 (2)O14—C24—C34124.7 (2)
O11—C21—C11114.9 (2)O14—C24—C14114.4 (2)
C31—C21—C11120.5 (2)C34—C24—C14120.9 (2)
C21—C31—C41124.8 (2)C24—C34—C44125.0 (2)
C21—C31—H31117.6C24—C34—H34117.5
C41—C31—H31117.6C44—C34—H34117.5
O21—C41—C31125.3 (2)O24—C44—C34125.4 (2)
O21—C41—C51116.2 (2)O24—C44—C54115.6 (2)
C31—C41—C51118.5 (2)C34—C44—C54119.0 (2)
C41—C51—H51A109.5C44—C54—H54A109.5
C41—C51—H51B109.5C44—C54—H54B109.5
H51A—C51—H51B109.5H54A—C54—H54B109.5
C41—C51—H51C109.5C44—C54—H54C109.5
H51A—C51—H51C109.5H54A—C54—H54C109.5
H51B—C51—H51C109.5H54B—C54—H54C109.5
C71—C61—H61A109.5C74—C64—H64A109.5
C71—C61—H61B109.5C74—C64—H64B109.5
H61A—C61—H61B109.5H64A—C64—H64B109.5
C71—C61—H61C109.5C74—C64—H64C109.5
H61A—C61—H61C109.5H64A—C64—H64C109.5
H61B—C61—H61C109.5H64B—C64—H64C109.5
O31—C71—C81125.3 (2)O34—C74—C84125.2 (2)
O31—C71—C61115.4 (2)O34—C74—C64115.8 (2)
C81—C71—C61119.2 (2)C84—C74—C64119.0 (2)
C71—C81—C91124.6 (2)C94—C84—C74124.6 (2)
C71—C81—H81117.7C94—C84—H84117.7
C91—C81—H81117.7C74—C84—H84117.7
O41—C91—C81124.6 (2)O44—C94—C84124.8 (2)
O41—C91—C101115.8 (2)O44—C94—C104115.7 (2)
C81—C91—C101119.5 (2)C84—C94—C104119.5 (2)
C91—C101—H10A109.5C94—C104—H10J109.5
C91—C101—H10B109.5C94—C104—H10K109.5
H10A—C101—H10B109.5H10J—C104—H10K109.5
C91—C101—H10C109.5C94—C104—H10L109.5
H10A—C101—H10C109.5H10J—C104—H10L109.5
H10B—C101—H10C109.5H10K—C104—H10L109.5
C121—C111—H11D109.5C124—C114—H11M109.5
C121—C111—H11E109.5C124—C114—H11N109.5
H11D—C111—H11E109.5H11M—C114—H11N109.5
C121—C111—H11F109.5C124—C114—H11O109.5
H11D—C111—H11F109.5H11M—C114—H11O109.5
H11E—C111—H11F109.5H11N—C114—H11O109.5
O51—C121—C131124.8 (2)O54—C124—C134125.0 (2)
O51—C121—C111115.9 (2)O54—C124—C114115.9 (2)
C131—C121—C111119.2 (2)C134—C124—C114119.1 (2)
C141—C131—C121125.3 (2)C144—C134—C124125.0 (2)
C141—C131—H131117.3C144—C134—H134117.5
C121—C131—H131117.3C124—C134—H134117.5
O61—C141—C131124.4 (2)O64—C144—C134125.0 (2)
O61—C141—C151114.5 (2)O64—C144—C154113.8 (2)
C131—C141—C151121.0 (2)C134—C144—C154121.2 (2)
C141—C151—H15A109.5C144—C154—H15J109.5
C141—C151—H15B109.5C144—C154—H15K109.5
H15A—C151—H15B109.5H15J—C154—H15K109.5
C141—C151—H15C109.5C144—C154—H15L109.5
H15A—C151—H15C109.5H15J—C154—H15L109.5
H15B—C151—H15C109.5H15K—C154—H15L109.5
O62—Cr2—O1290.49 (7)O65—Cr5—O5590.93 (7)
O62—Cr2—O5291.57 (7)O65—Cr5—O1588.89 (7)
O12—Cr2—O5288.75 (7)O55—Cr5—O1588.97 (7)
O62—Cr2—O32176.20 (8)O65—Cr5—O4590.33 (7)
O12—Cr2—O3289.31 (7)O55—Cr5—O4590.19 (7)
O52—Cr2—O3292.22 (7)O15—Cr5—O45178.84 (7)
O62—Cr2—O4289.60 (7)O65—Cr5—O2590.89 (7)
O12—Cr2—O42178.02 (8)O55—Cr5—O25178.16 (7)
O52—Cr2—O4289.26 (7)O15—Cr5—O2591.24 (7)
O32—Cr2—O4290.73 (7)O45—Cr5—O2589.62 (7)
O62—Cr2—O2287.78 (7)O65—Cr5—O35178.13 (8)
O12—Cr2—O2291.48 (7)O55—Cr5—O3590.30 (7)
O52—Cr2—O22179.31 (7)O15—Cr5—O3589.73 (7)
O32—Cr2—O2288.43 (7)O45—Cr5—O3591.07 (7)
O42—Cr2—O2290.50 (7)O25—Cr5—O3587.88 (7)
C22—O12—Cr2126.62 (15)C25—O15—Cr5127.17 (16)
C42—O22—Cr2126.00 (16)C45—O25—Cr5126.75 (16)
C72—O32—Cr2126.32 (15)C75—O35—Cr5126.53 (16)
C92—O42—Cr2126.71 (15)C95—O45—Cr5127.02 (15)
C122—O52—Cr2126.62 (16)C125—O55—Cr5126.76 (16)
C142—O62—Cr2127.00 (16)C145—O65—Cr5126.02 (17)
C22—C12—H12A109.5C25—C15—H15M109.5
C22—C12—H12B109.5C25—C15—H15N109.5
H12A—C12—H12B109.5H15M—C15—H15N109.5
C22—C12—H12C109.5C25—C15—H15O109.5
H12A—C12—H12C109.5H15M—C15—H15O109.5
H12B—C12—H12C109.5H15N—C15—H15O109.5
O12—C22—C32124.7 (2)O15—C25—C35124.9 (2)
O12—C22—C12114.4 (2)O15—C25—C15115.3 (2)
C32—C22—C12120.9 (2)C35—C25—C15119.8 (2)
C22—C32—C42124.9 (3)C25—C35—C45124.7 (2)
C22—C32—H32117.5C25—C35—H35117.7
C42—C32—H32117.5C45—C35—H35117.7
O22—C42—C32125.4 (3)O25—C45—C35125.1 (2)
O22—C42—C52116.2 (2)O25—C45—C55116.4 (2)
C32—C42—C52118.4 (2)C35—C45—C55118.5 (2)
C42—C52—H52A109.5C45—C55—H55A109.5
C42—C52—H52B109.5C45—C55—H55B109.5
H52A—C52—H52B109.5H55A—C55—H55B109.5
C42—C52—H52C109.5C45—C55—H55C109.5
H52A—C52—H52C109.5H55A—C55—H55C109.5
H52B—C52—H52C109.5H55B—C55—H55C109.5
C72—C62—H62A109.5C75—C65—H65A109.5
C72—C62—H62B109.5C75—C65—H65B109.5
H62A—C62—H62B109.5H65A—C65—H65B109.5
C72—C62—H62C109.5C75—C65—H65C109.5
H62A—C62—H62C109.5H65A—C65—H65C109.5
H62B—C62—H62C109.5H65B—C65—H65C109.5
O32—C72—C82125.4 (2)O35—C75—C85125.3 (2)
O32—C72—C62115.5 (2)O35—C75—C65115.6 (2)
C82—C72—C62119.0 (2)C85—C75—C65119.1 (2)
C92—C82—C72124.6 (2)C75—C85—C95124.6 (2)
C92—C82—H82117.7C75—C85—H85117.7
C72—C82—H82117.7C95—C85—H85117.7
O42—C92—C82124.9 (2)O45—C95—C85124.7 (2)
O42—C92—C102114.7 (2)O45—C95—C105115.8 (2)
C82—C92—C102120.4 (2)C85—C95—C105119.5 (2)
C92—C102—H10D109.5C95—C105—H10M109.5
C92—C102—H10E109.5C95—C105—H10N109.5
H10D—C102—H10E109.5H10M—C105—H10N109.5
C92—C102—H10F109.5C95—C105—H10O109.5
H10D—C102—H10F109.5H10M—C105—H10O109.5
H10E—C102—H10F109.5H10N—C105—H10O109.5
C122—C112—H11G109.5C125—C115—H11P109.5
C122—C112—H11H109.5C125—C115—H11Q109.5
H11G—C112—H11H109.5H11P—C115—H11Q109.5
C122—C112—H11I109.5C125—C115—H11R109.5
H11G—C112—H11I109.5H11P—C115—H11R109.5
H11H—C112—H11I109.5H11Q—C115—H11R109.5
O52—C122—C132124.9 (2)O55—C125—C135124.5 (2)
O52—C122—C112115.9 (2)O55—C125—C115114.5 (2)
C132—C122—C112119.2 (2)C135—C125—C115121.0 (2)
C142—C132—C122124.6 (2)C125—C135—C145124.7 (2)
C142—C132—H132117.7C125—C135—H135117.6
C122—C132—H132117.7C145—C135—H135117.6
O62—C142—C132125.3 (2)O65—C145—C135125.2 (2)
O62—C142—C152114.5 (2)O65—C145—C155115.9 (2)
C132—C142—C152120.2 (2)C135—C145—C155118.9 (2)
C142—C152—H15D109.5C145—C155—H15P109.5
C142—C152—H15E109.5C145—C155—H15Q109.5
H15D—C152—H15E109.5H15P—C155—H15Q109.5
C142—C152—H15F109.5C145—C155—H15R109.5
H15D—C152—H15F109.5H15P—C155—H15R109.5
H15E—C152—H15F109.5H15Q—C155—H15R109.5
O53—Cr3—O1389.01 (7)O56—Cr6—O1689.04 (7)
O53—Cr3—O6391.07 (7)O56—Cr6—O4690.07 (7)
O13—Cr3—O6388.89 (7)O16—Cr6—O46179.03 (8)
O53—Cr3—O23178.26 (7)O56—Cr6—O6691.10 (7)
O13—Cr3—O2391.31 (7)O16—Cr6—O6689.30 (7)
O63—Cr3—O2390.65 (7)O46—Cr6—O6690.32 (7)
O53—Cr3—O3390.16 (7)O56—Cr6—O3690.18 (7)
O13—Cr3—O3389.76 (7)O16—Cr6—O3689.25 (7)
O63—Cr3—O33178.16 (7)O46—Cr6—O3691.15 (7)
O23—Cr3—O3388.13 (7)O66—Cr6—O36178.05 (8)
O53—Cr3—O4389.92 (7)O56—Cr6—O26178.33 (7)
O13—Cr3—O43178.77 (7)O16—Cr6—O2691.20 (7)
O63—Cr3—O4390.53 (7)O46—Cr6—O2689.70 (7)
O23—Cr3—O4389.78 (7)O66—Cr6—O2690.56 (7)
O33—Cr3—O4390.84 (7)O36—Cr6—O2688.17 (7)
C23—O13—Cr3126.81 (16)C26—O16—Cr6126.84 (16)
C43—O23—Cr3126.53 (17)C46—O26—Cr6126.63 (16)
C73—O33—Cr3126.61 (15)C76—O36—Cr6126.40 (15)
C93—O43—Cr3127.07 (15)C96—O46—Cr6126.63 (15)
C123—O53—Cr3126.66 (16)C126—O56—Cr6127.10 (16)
C143—O63—Cr3125.87 (16)C146—O66—Cr6125.82 (16)
C23—C13—H13A109.5C26—C16—H16A109.5
C23—C13—H13B109.5C26—C16—H16B109.5
H13A—C13—H13B109.5H16A—C16—H16B109.5
C23—C13—H13C109.5C26—C16—H16C109.5
H13A—C13—H13C109.5H16A—C16—H16C109.5
H13B—C13—H13C109.5H16B—C16—H16C109.5
O13—C23—C33124.9 (2)O16—C26—C36125.3 (2)
O13—C23—C13114.6 (2)O16—C26—C16114.7 (2)
C33—C23—C13120.5 (2)C36—C26—C16120.0 (2)
C23—C33—C43125.0 (3)C26—C36—C46124.5 (3)
C23—C33—H33117.5C26—C36—H36117.8
C43—C33—H33117.5C46—C36—H36117.8
O23—C43—C33125.3 (2)O26—C46—C36125.5 (3)
O23—C43—C53116.1 (2)O26—C46—C56116.2 (2)
C33—C43—C53118.6 (2)C36—C46—C56118.3 (2)
C43—C53—H53A109.5C46—C56—H56A109.5
C43—C53—H53B109.5C46—C56—H56B109.5
H53A—C53—H53B109.5H56A—C56—H56B109.5
C43—C53—H53C109.5C46—C56—H56C109.5
H53A—C53—H53C109.5H56A—C56—H56C109.5
H53B—C53—H53C109.5H56B—C56—H56C109.5
C73—C63—H63A109.5C76—C66—H66A109.5
C73—C63—H63B109.5C76—C66—H66B109.5
H63A—C63—H63B109.5H66A—C66—H66B109.5
C73—C63—H63C109.5C76—C66—H66C109.5
H63A—C63—H63C109.5H66A—C66—H66C109.5
H63B—C63—H63C109.5H66B—C66—H66C109.5
O33—C73—C83125.1 (2)O36—C76—C86125.4 (2)
O33—C73—C63115.5 (2)O36—C76—C66115.1 (2)
C83—C73—C63119.3 (2)C86—C76—C66119.5 (2)
C73—C83—C93124.8 (2)C96—C86—C76124.6 (2)
C73—C83—H83117.6C96—C86—H86117.7
C93—C83—H83117.6C76—C86—H86117.7
O43—C93—C83124.7 (2)O46—C96—C86125.1 (2)
O43—C93—C103115.3 (2)O46—C96—C106114.5 (2)
C83—C93—C103120.1 (2)C86—C96—C106120.4 (2)
C93—C103—H10G109.5C96—C106—H10P109.5
C93—C103—H10H109.5C96—C106—H10Q109.5
H10G—C103—H10H109.5H10P—C106—H10Q109.5
C93—C103—H10I109.5C96—C106—H10R109.5
H10G—C103—H10I109.5H10P—C106—H10R109.5
H10H—C103—H10I109.5H10Q—C106—H10R109.5
C123—C113—H11J109.5C126—C116—H11S109.5
C123—C113—H11K109.5C126—C116—H11T109.5
H11J—C113—H11K109.5H11S—C116—H11T109.5
C123—C113—H11L109.5C126—C116—H11U109.5
H11J—C113—H11L109.5H11S—C116—H11U109.5
H11K—C113—H11L109.5H11T—C116—H11U109.5
O53—C123—C133125.0 (2)O56—C126—C136124.4 (2)
O53—C123—C113114.7 (2)O56—C126—C116114.8 (2)
C133—C123—C113120.2 (2)C136—C126—C116120.8 (2)
C123—C133—C143124.1 (2)C146—C136—C126124.7 (2)
C123—C133—H133117.9C146—C136—H136117.7
C143—C133—H133117.9C126—C136—H136117.7
O63—C143—C133125.4 (2)O66—C146—C136125.4 (2)
O63—C143—C153115.7 (2)O66—C146—C156115.9 (2)
C133—C143—C153118.9 (2)C136—C146—C156118.7 (2)
C143—C153—H15G109.5C146—C156—H15S109.5
C143—C153—H15H109.5C146—C156—H15T109.5
H15G—C153—H15H109.5H15S—C156—H15T109.5
C143—C153—H15I109.5C146—C156—H15U109.5
H15G—C153—H15I109.5H15S—C156—H15U109.5
H15H—C153—H15I109.5H15T—C156—H15U109.5
O61—Cr1—O11—C2180.88 (19)O64—Cr4—O14—C2480.00 (19)
O21—Cr1—O11—C216.79 (19)O54—Cr4—O14—C24171.46 (19)
O51—Cr1—O11—C21172.25 (19)O24—Cr4—O14—C247.70 (19)
O31—Cr1—O11—C2195.12 (19)O34—Cr4—O14—C2496.25 (19)
O61—Cr1—O21—C4181.23 (19)O64—Cr4—O24—C4480.30 (19)
O11—Cr1—O21—C419.43 (19)O14—Cr4—O24—C449.93 (19)
O31—Cr1—O21—C4198.47 (19)O34—Cr4—O24—C4499.36 (19)
O41—Cr1—O21—C41170.88 (19)O44—Cr4—O24—C44170.20 (19)
O11—Cr1—O31—C71168.7 (2)O14—Cr4—O34—C74169.1 (2)
O21—Cr1—O31—C7177.2 (2)O54—Cr4—O34—C74102.0 (2)
O51—Cr1—O31—C71102.2 (2)O24—Cr4—O34—C7477.6 (2)
O41—Cr1—O31—C7113.3 (2)O44—Cr4—O34—C7412.9 (2)
O61—Cr1—O41—C91167.0 (2)O64—Cr4—O44—C94167.6 (2)
O21—Cr1—O41—C9179.3 (2)O54—Cr4—O44—C94100.9 (2)
O51—Cr1—O41—C91101.6 (2)O24—Cr4—O44—C9479.9 (2)
O31—Cr1—O41—C919.0 (2)O34—Cr4—O44—C948.6 (2)
O61—Cr1—O51—C1214.96 (19)O64—Cr4—O54—C1243.82 (18)
O11—Cr1—O51—C12195.67 (19)O14—Cr4—O54—C12494.08 (18)
O31—Cr1—O51—C121175.29 (19)O34—Cr4—O54—C124176.49 (18)
O41—Cr1—O51—C12184.68 (19)O44—Cr4—O54—C12486.08 (18)
O11—Cr1—O61—C14193.72 (19)O14—Cr4—O64—C14492.55 (18)
O21—Cr1—O61—C141174.85 (19)O54—Cr4—O64—C1443.55 (18)
O51—Cr1—O61—C1414.53 (19)O24—Cr4—O64—C144175.98 (18)
O41—Cr1—O61—C14184.28 (19)O44—Cr4—O64—C14485.47 (18)
Cr1—O11—C21—C311.1 (3)Cr4—O14—C24—C342.2 (3)
Cr1—O11—C21—C11178.53 (14)Cr4—O14—C24—C14178.18 (14)
O11—C21—C31—C415.5 (4)O14—C24—C34—C444.9 (4)
C11—C21—C31—C41174.9 (2)C14—C24—C34—C44174.8 (2)
Cr1—O21—C41—C316.6 (3)Cr4—O24—C44—C346.9 (3)
Cr1—O21—C41—C51175.18 (15)Cr4—O24—C44—C54175.16 (15)
C21—C31—C41—O212.5 (4)C24—C34—C44—O242.3 (4)
C21—C31—C41—C51175.7 (2)C24—C34—C44—C54175.6 (2)
Cr1—O31—C71—C8110.7 (4)Cr4—O34—C74—C8410.5 (4)
Cr1—O31—C71—C61171.14 (16)Cr4—O34—C74—C64172.04 (17)
O31—C71—C81—C911.1 (4)O34—C74—C84—C941.1 (4)
C61—C71—C81—C91177.0 (3)C64—C74—C84—C94176.3 (3)
Cr1—O41—C91—C811.8 (4)Cr4—O44—C94—C841.5 (4)
Cr1—O41—C91—C101179.46 (16)Cr4—O44—C94—C104179.61 (16)
C71—C81—C91—O415.9 (4)C74—C84—C94—O445.9 (4)
C71—C81—C91—C101172.8 (3)C74—C84—C94—C104172.9 (2)
Cr1—O51—C121—C1313.5 (3)Cr4—O54—C124—C1342.8 (3)
Cr1—O51—C121—C111175.13 (16)Cr4—O54—C124—C114175.95 (15)
O51—C121—C131—C1410.5 (4)O54—C124—C134—C1440.0 (4)
C111—C121—C131—C141179.1 (2)C114—C124—C134—C144178.7 (2)
Cr1—O61—C141—C1312.5 (3)Cr4—O64—C144—C1342.2 (3)
Cr1—O61—C141—C151177.85 (15)Cr4—O64—C144—C154178.64 (15)
C121—C131—C141—O611.1 (4)C124—C134—C144—O640.3 (4)
C121—C131—C141—C151178.6 (2)C124—C134—C144—C154178.7 (2)
O62—Cr2—O12—C2279.57 (18)O65—Cr5—O15—C2593.1 (2)
O52—Cr2—O12—C22171.13 (18)O55—Cr5—O15—C25176.0 (2)
O32—Cr2—O12—C2296.64 (18)O25—Cr5—O15—C252.2 (2)
O22—Cr2—O12—C228.22 (18)O35—Cr5—O15—C2585.7 (2)
O62—Cr2—O22—C4280.84 (19)O65—Cr5—O25—C4591.79 (19)
O12—Cr2—O22—C429.59 (19)O15—Cr5—O25—C452.88 (19)
O32—Cr2—O22—C4298.86 (19)O45—Cr5—O25—C45177.89 (19)
O42—Cr2—O22—C42170.42 (19)O35—Cr5—O25—C4586.81 (19)
O12—Cr2—O32—C72169.4 (2)O55—Cr5—O35—C7599.7 (2)
O52—Cr2—O32—C72101.9 (2)O15—Cr5—O35—C75171.3 (2)
O42—Cr2—O32—C7212.6 (2)O45—Cr5—O35—C759.5 (2)
O22—Cr2—O32—C7277.9 (2)O25—Cr5—O35—C7580.1 (2)
O62—Cr2—O42—C92168.4 (2)O65—Cr5—O45—C95172.0 (2)
O52—Cr2—O42—C92100.0 (2)O55—Cr5—O45—C9597.0 (2)
O32—Cr2—O42—C927.8 (2)O25—Cr5—O45—C9581.1 (2)
O22—Cr2—O42—C9280.6 (2)O35—Cr5—O45—C956.7 (2)
O62—Cr2—O52—C1220.13 (19)O65—Cr5—O55—C12513.62 (19)
O12—Cr2—O52—C12290.32 (19)O15—Cr5—O55—C12575.26 (19)
O32—Cr2—O52—C122179.59 (18)O45—Cr5—O55—C125103.95 (19)
O42—Cr2—O52—C12289.71 (19)O35—Cr5—O55—C125164.98 (19)
O12—Cr2—O62—C14288.17 (19)O55—Cr5—O65—C14513.5 (2)
O52—Cr2—O62—C1420.60 (19)O15—Cr5—O65—C14575.4 (2)
O42—Cr2—O62—C14289.85 (19)O45—Cr5—O65—C145103.7 (2)
O22—Cr2—O62—C142179.63 (19)O25—Cr5—O65—C145166.67 (19)
Cr2—O12—C22—C323.4 (3)Cr5—O15—C25—C352.1 (3)
Cr2—O12—C22—C12177.82 (14)Cr5—O15—C25—C15178.53 (15)
O12—C22—C32—C423.9 (4)O15—C25—C35—C451.9 (4)
C12—C22—C32—C42174.8 (2)C15—C25—C35—C45178.8 (2)
Cr2—O22—C42—C326.3 (3)Cr5—O25—C45—C353.6 (3)
Cr2—O22—C42—C52175.47 (15)Cr5—O25—C45—C55175.63 (15)
C22—C32—C42—O222.3 (4)C25—C35—C45—O252.7 (4)
C22—C32—C42—C52176.0 (2)C25—C35—C45—C55176.5 (2)
Cr2—O32—C72—C8210.6 (4)Cr5—O35—C75—C857.5 (4)
Cr2—O32—C72—C62171.82 (17)Cr5—O35—C75—C65175.72 (17)
O32—C72—C82—C920.8 (5)O35—C75—C85—C950.8 (5)
C62—C72—C82—C92176.8 (3)C65—C75—C85—C95175.9 (3)
Cr2—O42—C92—C820.6 (4)Cr5—O45—C95—C851.8 (4)
Cr2—O42—C92—C102179.47 (16)Cr5—O45—C95—C105179.34 (16)
C72—C82—C92—O426.1 (4)C75—C85—C95—O453.9 (5)
C72—C82—C92—C102172.7 (3)C75—C85—C95—C105175.0 (3)
Cr2—O52—C122—C1320.8 (3)Cr5—O55—C125—C1357.8 (3)
Cr2—O52—C122—C112178.39 (16)Cr5—O55—C125—C115173.24 (16)
O52—C122—C132—C1421.4 (4)O55—C125—C135—C1453.8 (4)
C112—C122—C132—C142177.7 (2)C115—C125—C135—C145175.1 (2)
Cr2—O62—C142—C1320.2 (3)Cr5—O65—C145—C1357.8 (4)
Cr2—O62—C142—C152179.13 (15)Cr5—O65—C145—C155171.48 (16)
C122—C132—C142—O620.9 (4)C125—C135—C145—O653.7 (4)
C122—C132—C142—C152179.8 (2)C125—C135—C145—C155177.0 (2)
O53—Cr3—O13—C23174.33 (19)O56—Cr6—O16—C26176.20 (19)
O63—Cr3—O13—C2394.58 (19)O66—Cr6—O16—C2692.69 (19)
O23—Cr3—O13—C233.96 (19)O36—Cr6—O16—C2686.01 (19)
O33—Cr3—O13—C2384.16 (19)O26—Cr6—O16—C262.15 (19)
O13—Cr3—O23—C434.5 (2)O16—Cr6—O26—C463.0 (2)
O63—Cr3—O23—C4393.4 (2)O46—Cr6—O26—C46177.3 (2)
O33—Cr3—O23—C4385.2 (2)O66—Cr6—O26—C4692.3 (2)
O43—Cr3—O23—C43176.1 (2)O36—Cr6—O26—C4686.2 (2)
O53—Cr3—O33—C7399.8 (2)O56—Cr6—O36—C7699.8 (2)
O13—Cr3—O33—C73171.2 (2)O16—Cr6—O36—C76171.1 (2)
O23—Cr3—O33—C7379.9 (2)O46—Cr6—O36—C769.7 (2)
O43—Cr3—O33—C739.8 (2)O26—Cr6—O36—C7679.9 (2)
O53—Cr3—O43—C9397.4 (2)O56—Cr6—O46—C9696.8 (2)
O63—Cr3—O43—C93171.5 (2)O66—Cr6—O46—C96172.1 (2)
O23—Cr3—O43—C9380.9 (2)O36—Cr6—O46—C966.6 (2)
O33—Cr3—O43—C937.2 (2)O26—Cr6—O46—C9681.6 (2)
O13—Cr3—O53—C12375.14 (18)O16—Cr6—O56—C12677.55 (19)
O63—Cr3—O53—C12313.72 (18)O46—Cr6—O56—C126102.06 (19)
O33—Cr3—O53—C123164.91 (18)O66—Cr6—O56—C12611.74 (19)
O43—Cr3—O53—C123104.25 (18)O36—Cr6—O56—C126166.79 (19)
O53—Cr3—O63—C14313.62 (19)O56—Cr6—O66—C14611.94 (19)
O13—Cr3—O63—C14375.37 (19)O16—Cr6—O66—C14677.09 (19)
O23—Cr3—O63—C143166.67 (19)O46—Cr6—O66—C146102.02 (19)
O43—Cr3—O63—C143103.55 (19)O26—Cr6—O66—C146168.28 (19)
Cr3—O13—C23—C332.9 (3)Cr6—O16—C26—C361.3 (3)
Cr3—O13—C23—C13177.46 (14)Cr6—O16—C26—C16178.16 (15)
O13—C23—C33—C430.7 (4)O16—C26—C36—C460.3 (4)
C13—C23—C33—C43179.7 (2)C16—C26—C36—C46179.1 (2)
Cr3—O23—C43—C334.0 (4)Cr6—O26—C46—C363.1 (4)
Cr3—O23—C43—C53175.81 (16)Cr6—O26—C46—C56176.67 (16)
C23—C33—C43—O231.3 (4)C26—C36—C46—O261.3 (4)
C23—C33—C43—C53178.5 (2)C26—C36—C46—C56178.5 (2)
Cr3—O33—C73—C837.3 (4)Cr6—O36—C76—C868.0 (4)
Cr3—O33—C73—C63175.01 (17)Cr6—O36—C76—C66174.79 (17)
O33—C73—C83—C931.6 (4)O36—C76—C86—C960.4 (4)
C63—C73—C83—C93176.0 (3)C66—C76—C86—C96176.7 (3)
Cr3—O43—C93—C831.9 (4)Cr6—O46—C96—C861.5 (4)
Cr3—O43—C93—C103178.96 (16)Cr6—O46—C96—C106179.13 (16)
C73—C83—C93—O434.5 (4)C76—C86—C96—O463.9 (4)
C73—C83—C93—C103174.6 (2)C76—C86—C96—C106175.4 (2)
Cr3—O53—C123—C1338.7 (3)Cr6—O56—C126—C1366.1 (3)
Cr3—O53—C123—C113174.19 (15)Cr6—O56—C126—C116175.08 (15)
O53—C123—C133—C1432.0 (4)O56—C126—C136—C1464.3 (4)
C113—C123—C133—C143175.0 (2)C116—C126—C136—C146174.5 (2)
Cr3—O63—C143—C1338.7 (3)Cr6—O66—C146—C1366.7 (4)
Cr3—O63—C143—C153172.26 (15)Cr6—O66—C146—C156172.15 (16)
C123—C133—C143—O632.0 (4)C126—C136—C146—O663.9 (4)
C123—C133—C143—C153177.1 (2)C126—C136—C146—C156177.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C51—H51C···O520.982.493.465 (3)172
C52—H52B···O530.982.453.423 (3)173
C53—H53C···O51i0.982.523.470 (3)163
C54—H54B···O550.982.463.438 (3)173
C55—H55C···O560.982.493.458 (3)169
C56—H56B···O54ii0.982.523.468 (3)163
C101—H10C···O11iii0.982.603.584 (3)179
C102—H10D···O12iv0.982.603.582 (3)177
C103—H10I···O13iii0.982.533.509 (3)176
C104—H10J···O14iv0.982.613.591 (3)178
C105—H10O···O15iii0.982.563.533 (3)173
C106—H10P···O16iv0.982.523.493 (3)175
C151—H15B···O46iii0.982.613.580 (3)172
C152—H15E···O450.982.613.587 (3)172
C153—H15I···O44iii0.982.593.550 (3)165
C154—H15K···O43iv0.982.623.591 (3)171
C155—H15R···O420.982.563.531 (3)169
C156—H15T···O41iv0.982.603.562 (3)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formula[Cr(C5H7O2)3][Cr(C5H7O2)3]
Mr349.32349.32
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)290110
a, b, c (Å)13.9970 (8), 7.5441 (4), 16.3590 (12)27.5823 (2), 7.4656 (1), 48.6012 (4)
β (°) 99.031 (2) 99.2731 (3)
V3)1706.01 (18)9877.09 (17)
Z424
Radiation typeMo KαMo Kα
µ (mm1)0.690.72
Crystal size (mm)0.30 × 0.27 × 0.120.39 × 0.29 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SORTAV; Blessing, 1987)
Tmin, Tmax0.68, 0.920.82, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
45735, 3924, 3135 101596, 18651, 9662
Rint0.0300.052
(sin θ/λ)max1)0.6500.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.04 0.040, 0.139, 1.06
No. of reflections392418651
No. of parameters2051225
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.390.35, 0.60

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2005), HKL-2000 (Otwinowski & Minor, (1997), EVAL14 (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002), EVAL14 (set 1) (Duisenberg et al., 2003), HKL-2000 (set 2) (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1987), coordinates where taken from the isostructural α-Co(acac)3 compound (von Chrzanowski et al., 2007b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), manual editing of SHELXL97 output.

Selected bond lengths (Å) for (Ia) top
Cr1—O51.9413 (18)Cr1—O31.9609 (16)
Cr1—O61.9548 (17)Cr1—O21.9616 (16)
Cr1—O41.9572 (16)Cr1—O11.9645 (17)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
C51—H51C···O520.982.493.465 (3)172
C52—H52B···O530.982.453.423 (3)173
C53—H53C···O51i0.982.523.470 (3)163
C54—H54B···O550.982.463.438 (3)173
C55—H55C···O560.982.493.458 (3)169
C56—H56B···O54ii0.982.523.468 (3)163
C101—H10C···O11iii0.982.603.584 (3)179
C102—H10D···O12iv0.982.603.582 (3)177
C103—H10I···O13iii0.982.533.509 (3)176
C104—H10J···O14iv0.982.613.591 (3)178
C105—H10O···O15iii0.982.563.533 (3)173
C106—H10P···O16iv0.982.523.493 (3)175
C151—H15B···O46iii0.982.613.580 (3)172
C152—H15E···O450.982.613.587 (3)172
C153—H15I···O44iii0.982.593.550 (3)165
C154—H15K···O43iv0.982.623.591 (3)171
C155—H15R···O420.982.563.531 (3)169
C156—H15T···O41iv0.982.603.562 (3)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y1, z; (iv) x, y+1, z.
Table 2 Averaged C—H···O interactions of ligands C1X–C5X, C5X–C10X and C11X–C15X (Å) for the δ polymorph (Ib) at 110 K top
D—H···AH···AD···A
C5X—H5X···O5X2.493.45 (2)
C10X—H10Y···O1X2.573.55 (4)
C15X—H15Y···O4X2.603.57 (2)
Calculation of the average values: [(Σ CX—HXY···OX)/6] with X = 1–6 for molecules 1–6.
Table 3 Averaged C—H···O interactions for molecules 1–6 (Å) for the δ polymorph (Ib) at 110 K top
groupmoleculeH···AD···A
112.573.54 (7)
122.563.53 (9)
142.563.54 (9)
232.553.51 (4)
252.543.51 (4)
262.543.51 (5)
Calculation of the average values: [(C5X—H5X···O5X + C10X—H10X···O1X + C15X—H15X···O4X)/3] with X = 1–6 for molecules 1–6.
Table 4 Intensity statistics in (Ib) at 110 K top
reflections<I><σ><I>/<σ><I/σ>
A311523111.90467.5349.4332.17
B62161652.1695.2917.3413.73
C9320138.8859.672.332.31
A: h = 2n and l = 3m (m and n are integers). B: h ≠ 2n and l ≠ 3m (m and n are integers). C: neither A nor B.
Table 5 Cr—O bond distances (Å) for the δ polymorph (Ib) at 110 K top
X = 1X = 2X = 3X = 4X = 5X = 6dmax-dmin
Cr1-OX11.9572 (17)1.9580 (17)1.9690 (16)1.9703 (16)1.9651 (18)1.9437 (17)0.0266
Cr2-OX21.9541 (16)1.9705 (17)1.9662 (16)1.9692 (16)1.9569 (17)1.9481 (16)0.0224
Cr3-OX31.9614 (17)1.9645 (18)1.9676 (16)1.9700 (17)1.9564 (17)1.9623 (16)0.0136
Cr4-OX41.9640 (17)1.9685 (18)1.9696 (16)1.9704 (17)1.9663 (17)1.9460 (16)0.0244
Cr5-OX51.9602 (17)1.9672 (17)1.9673 (17)1.9670 (17)1.9561 (18)1.9567 (17)0.0166
Cr6-OX61.9566 (17)1.9750 (17)1.9682 (16)1.9629 (17)1.9501 (17)1.9645 (16)0.0249
average1.95891.96731.96801.96831.95851.9536
X = 1–6 for molecules 1–6.
Table 6 Cr—O bond distances (Å) for the α polymorph (Ia) at 290 K top
Cr1—O51.9413 (18)
Cr1—O61.9548 (17)
Cr1—O41.9572 (16)
Cr1—O31.9609 (16)
Cr1—O21.9616 (16)
Cr1—O11.9645 (17)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds