Download citation
Download citation
link to html
The title organic–inorganic hybrid compound, [Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2O, consists of [Co(bpdo)2(H2O)2]2+ (bpdo is 2,2-bipyridine N,N′-dioxide) and ξ-­[Mo8O26]4− groups in a 2:1 ratio, plus two water solvent mol­ecules. The independent Co atom in the cation is coordinated by four O atoms from two bpdo ligands and two water mol­ecules, in a distorted octa­hedral geometry. The counter-anions, built up around a symmetry center, are linked by solvent water mol­ecules through O—H...O hydrogen bonds to generate two-dimensional layers, which are in turn linked by coordinated water mol­ecules from the cationic units through further O—H...O hydrogen bonds, forming a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107018914/bg3034sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107018914/bg3034Isup2.hkl
Contains datablock I

CCDC reference: 669164

Comment top

Polyoxometalates (Pope, 1983; Hill, 1998; Fukaya & Yamase, 2003), as a unique class of metal–oxide clusters, have many properties that make them attractive for applications in catalysis, biology, magnetism, optics and medicine (Kögerler & Cronin, 2005; Yamase, 1998). Recently, important advances have been achieved in the coordination chemistry of polyoxoanions with classical transition metal coordination complexes or fragments. Among the various polyoxometalate structures of interest, the octamolybdate is a particularly attractive cluster with a variety of structural isomers (Hagrman et al., 1997; Yang et al., 2002). As reported previously (Finn & Zubieta, 2001; Liu et al., 2001), much of the work has been focused on the transition metal complexes with α-[Mo8O26]4− and β-[Mo8O26]4−clusters. However, research on the ξ-[Mo8O26]4− cluster with metal complexes is comparatively scarce. In the present work, the assembly by the hydrothermal method of Na2MoO4, 2,2-bipyridine N,N'-dioxide (bpdo) and cobalt(II) nitrate resulted in the complex [Co(bpdo)2(H2O)2][Mo4O13].H2O, (I).

As shown in Fig. 1, the compound contains two subunits (in a 2:1 ratio), viz. a cationic group, [Co(bpdo)2(H2O)2]2+, and its anionic counterpart, a ξ-[Mo8O26]4− cluster which lies around an inversion center. The structure is completed by a hydration water molecule. The CoII ion exhibits a distorted octahedral geometry, and it is coordinated by four O atoms from two bpdo ligands with Co—O distances ranging from 2.061 (2) to 2.069 (2) Å and two water molecules with coordination distances of 2.098 (2) and 2.109 (2) Å, similar to other Co—O distances in the literature (viz. Zhang et al., 2005). Two kinds of bpdo ligands coordinate the CoII ion as bidentate ligands. The dihedral angles between two rings from the same bpdo ligand are 29.1 (1) and 29.4 (1)°, respectively.

The ξ- [Mo8O26]4− octamolybdate anion exhibits an open structure (Xu et al., 1999; Bridgeman, 2002). Each cluster contains an Mo6O6 ring capped on opposite faces by MoO6 octahedra. In the ring, the linkage between any two MoO5 trigonal bipyramids is edge-shared, while that between any MoO6 and MoO5 groups is corner-shared. Each capping MoO6 octahedron is linked to four groups in the ring: two MoO6 octahedra and one MoO5 pyramid by edge sharing and a second MoO5 bipyramid by corner sharing. In additon, the capping MoO6 octahedra are attached to each other by edge sharing. So, three kinds of O atoms exist in the cluster, according to their coordination behaviour, viz. six O(µ3), six O(µ2) and 14 terminal O atoms O(t). The Mo—O distances are similar to those in other reported ξ-[Mo8O26]4− clusters (Xu et al., 1999).

The structure presents an interesting water cluster. As shown in Table 2, one coordinated water (O3W) and one solvent water molecule (O1W) assemble into a dimer with an OW···OW distance of 2.691 (4) Å, shorter than those in regular ice, liquid water and water vapor (2.74, 2.85 and 2.98 Å, respectively). Each O1W molecule, in turn, links two different ξ-[Mo8O26]4− anions to form a two-dimensional anionic layer (Table 2 and Fig. 2).

In addition, the [Co(bpdo)2(H2O)2]2+units form hydrogen-bonded dimers through the O2W···O17iii hydrogen bonds (Table 2). These dimers, in turn, link four ξ-[Mo8O26]4− anions from adjacent two-dimensional inorganic sheets to generate a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For related literature, see: Bridgeman (2002); Finn & Zubieta (2001); Fukaya & Yamase (2003); Hagrman et al. (1997); Hill (1998); KPgerler & Cronin (2005); Liu et al. (2001); Pope (1983); Simpsox et al. (1963); Xu et al. (1999); Yamase (1998); Yang et al. (2002); Zhang et al. (2005).

Experimental top

Ligand bpdo was synthesized according to the method reported by Simpsox et al. (1963). A mixture of Co(NO3)2.6H2O (0.146 g, 0.5 mmol), Na2MoO4.2H2O (0.484 g, 2.0 mmol), bpdo(0.188 g, 1.0 mmol) and water (10 ml) was adjusted to approximately pH 3 with HNO3 (6 mol l−1) and stirred for 1 h, and then transferred and sealed in a 25 ml Teflon-lined stainless steel container. The container was heated to 423 K and held at that temperature for 72 h, then cooled to 373 K at a rate of 5 K h−1 and held for 8 h, followed by further cooling to 303 K at a rate of 3 K h−1. Pink crystals of the title compound were collected in 76.2% yield based on Co(NO3)2. Elemental analyses calculated for C20H22CoMo4N4O20 (1081.11): C 22.22, H 2.05, N 5.18%; found: C 22.35, H 2.03, N 5.21%.

Refinement top

All H atoms of water molecules were located in difference maps and refined isotropically with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and allowed to ride on their parent atoms at C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A split view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. (a) The [Co(bpdo)2(H2O)2]2+ unit and a solvent water molecule and (b) the ξ-[Mo8O26]4− cluster. Full (empty) ellipsoids represent independent (symmetry-related) atoms.
[Figure 2] Fig. 2. The inorganic layer, composed of hydrogen-bonded ξ- [Mo8O26]4− clusters and solvent water molecules.
[Figure 3] Fig. 3. A view of a cationic dimer connecting four ξ- [Mo8O26]4− clusters from adjacent inorganic sheets into a three-dimensional structure.
Bis[diaquabis(2,2-bipyridine N,N'-dioxide-κ2O,O')cobalt(II)] ξ-octamolybdate dihydrate top
Crystal data top
[Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2OF(000) = 2100
Mr = 2162.22Dx = 2.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 18203 reflections
a = 12.603 (3) Åθ = 1.8–28.6°
b = 18.014 (3) ŵ = 2.18 mm1
c = 14.658 (4) ÅT = 293 K
β = 110.392 (5)°Block, pink
V = 3119.3 (11) Å30.43 × 0.30 × 0.19 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
7333 independent reflections
Radiation source: fine-focus sealed tube5992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.466, Tmax = 0.661k = 2323
18887 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2]
where P = (Fo2 + 2Fc2)/3
7333 reflections(Δ/σ)max = 0.005
460 parametersΔρmax = 0.45 e Å3
10 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2OV = 3119.3 (11) Å3
Mr = 2162.22Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.603 (3) ŵ = 2.18 mm1
b = 18.014 (3) ÅT = 293 K
c = 14.658 (4) Å0.43 × 0.30 × 0.19 mm
β = 110.392 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5992 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.661Rint = 0.033
18887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02810 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
7333 reflectionsΔρmin = 0.61 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.33083 (3)0.58433 (2)0.95239 (3)0.02411 (9)
Mo10.543714 (19)0.507447 (13)0.622772 (17)0.01935 (6)
Mo20.59104 (2)0.348410 (14)0.513293 (19)0.02563 (7)
Mo30.72191 (2)0.634742 (14)0.59093 (2)0.02681 (7)
Mo40.81235 (2)0.464469 (15)0.59258 (2)0.03340 (8)
C10.4589 (3)0.68656 (16)0.8005 (2)0.0310 (7)
H10.39540.67220.74830.037*
C20.5600 (3)0.69702 (17)0.7865 (2)0.0346 (7)
H20.56500.68930.72540.042*
C30.6535 (3)0.71877 (18)0.8627 (2)0.0375 (8)
H30.72290.72530.85470.045*
C40.6421 (3)0.73086 (18)0.9522 (2)0.0381 (8)
H40.70430.74701.00420.046*
C50.5407 (3)0.71944 (16)0.9655 (2)0.0282 (7)
C60.5290 (2)0.73148 (16)1.0608 (2)0.0286 (7)
C70.5545 (3)0.79829 (19)1.1097 (3)0.0427 (9)
H70.57140.83971.07930.051*
C80.5549 (3)0.8035 (2)1.2044 (3)0.0472 (9)
H80.57320.84811.23820.057*
C90.5282 (3)0.7425 (2)1.2472 (2)0.0443 (9)
H90.52780.74571.31040.053*
C100.5022 (3)0.67686 (19)1.1980 (2)0.0348 (7)
H100.48370.63561.22750.042*
C110.1999 (3)0.48726 (19)0.7187 (2)0.0416 (8)
H110.20750.53180.68950.050*
C120.2041 (3)0.4216 (2)0.6728 (3)0.0512 (10)
H120.21380.42190.61270.061*
C130.1941 (3)0.3559 (2)0.7156 (3)0.0473 (9)
H130.19870.31090.68610.057*
C140.1769 (3)0.35773 (17)0.8038 (2)0.0365 (8)
H140.16770.31350.83290.044*
C150.1732 (2)0.42429 (16)0.8489 (2)0.0287 (7)
C160.1495 (2)0.42856 (16)0.9404 (2)0.0280 (7)
C170.0515 (3)0.39960 (17)0.9491 (3)0.0373 (8)
H170.00210.37700.89580.045*
C180.0327 (3)0.4040 (2)1.0360 (3)0.0440 (9)
H180.03290.38451.04190.053*
C190.1135 (3)0.4380 (2)1.1147 (3)0.0423 (8)
H190.10180.44231.17380.051*
C200.2099 (3)0.46483 (18)1.1051 (2)0.0357 (7)
H200.26440.48711.15820.043*
N10.45024 (19)0.69676 (12)0.88836 (18)0.0251 (5)
N20.50336 (19)0.67194 (13)1.10662 (17)0.0265 (5)
N30.1851 (2)0.48856 (13)0.80467 (18)0.0280 (6)
N40.2275 (2)0.45965 (13)1.01980 (18)0.0276 (6)
O10.93189 (19)0.45556 (15)0.6898 (2)0.0574 (7)
O20.8421 (2)0.43450 (14)0.49443 (19)0.0560 (7)
O30.63608 (18)0.31875 (13)0.42299 (15)0.0412 (6)
O40.56136 (18)0.26972 (12)0.56265 (17)0.0413 (6)
O50.40947 (15)0.53068 (10)0.51972 (14)0.0226 (4)
O60.52155 (17)0.53516 (11)0.72502 (15)0.0308 (5)
O70.78768 (18)0.67733 (12)0.69925 (17)0.0430 (6)
O80.7074 (2)0.70082 (13)0.50544 (18)0.0512 (7)
O90.70207 (15)0.52167 (10)0.65454 (14)0.0241 (4)
O100.56548 (15)0.62338 (10)0.57441 (14)0.0254 (4)
O110.8173 (2)0.57021 (12)0.55893 (18)0.0461 (6)
O120.73061 (16)0.37787 (10)0.60828 (14)0.0277 (5)
O130.53144 (16)0.41088 (10)0.62459 (14)0.0260 (4)
O140.18014 (16)0.55321 (11)0.84665 (15)0.0305 (5)
O150.32542 (16)0.48245 (11)1.01460 (15)0.0307 (5)
O160.35021 (15)0.68711 (10)0.89835 (15)0.0287 (5)
O170.48416 (16)0.60604 (11)1.06117 (15)0.0309 (5)
O1W0.2293 (3)0.66531 (15)1.19770 (18)0.0593 (8)
O2W0.42366 (18)0.52741 (12)0.87911 (18)0.0351 (5)
O3W0.2338 (2)0.64482 (12)1.01737 (17)0.0363 (5)
H1B0.262 (3)0.7063 (12)1.210 (2)0.055*
H1A0.235 (3)0.6443 (17)1.2505 (18)0.055*
H2A0.466 (3)0.5395 (18)0.848 (2)0.055*
H2B0.439 (3)0.4846 (12)0.900 (3)0.055*
H3A0.239 (3)0.6446 (18)1.0760 (14)0.055*
H3B0.226 (3)0.6892 (12)0.998 (2)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0257 (2)0.0198 (2)0.0282 (2)0.00266 (15)0.01122 (18)0.00036 (16)
Mo10.02250 (12)0.01884 (12)0.01712 (12)0.00070 (9)0.00741 (10)0.00009 (10)
Mo20.03046 (14)0.02076 (13)0.02293 (14)0.00715 (10)0.00585 (12)0.00089 (10)
Mo30.02998 (14)0.02294 (13)0.02981 (15)0.00604 (10)0.01333 (12)0.00416 (11)
Mo40.03895 (16)0.02831 (15)0.04067 (18)0.00516 (12)0.02359 (15)0.00030 (13)
C10.0400 (17)0.0266 (16)0.0244 (16)0.0033 (13)0.0089 (15)0.0039 (13)
C20.050 (2)0.0304 (17)0.0278 (17)0.0067 (14)0.0184 (16)0.0046 (14)
C30.0406 (18)0.0381 (19)0.038 (2)0.0114 (15)0.0193 (17)0.0024 (16)
C40.0419 (19)0.043 (2)0.0300 (18)0.0190 (15)0.0131 (16)0.0043 (15)
C50.0372 (16)0.0235 (15)0.0244 (16)0.0101 (13)0.0113 (14)0.0010 (13)
C60.0344 (16)0.0254 (16)0.0263 (16)0.0064 (13)0.0111 (14)0.0011 (13)
C70.061 (2)0.0318 (18)0.039 (2)0.0173 (16)0.0225 (19)0.0081 (15)
C80.062 (2)0.046 (2)0.038 (2)0.0170 (18)0.023 (2)0.0185 (17)
C90.046 (2)0.062 (2)0.0290 (19)0.0057 (18)0.0184 (17)0.0085 (17)
C100.0358 (17)0.045 (2)0.0255 (17)0.0051 (15)0.0124 (15)0.0069 (15)
C110.052 (2)0.042 (2)0.0331 (19)0.0121 (16)0.0182 (18)0.0002 (16)
C120.067 (2)0.056 (2)0.038 (2)0.0082 (19)0.026 (2)0.0134 (19)
C130.056 (2)0.039 (2)0.046 (2)0.0054 (17)0.017 (2)0.0209 (18)
C140.0422 (19)0.0273 (17)0.0356 (19)0.0043 (14)0.0082 (16)0.0088 (15)
C150.0268 (15)0.0284 (16)0.0260 (16)0.0029 (12)0.0033 (13)0.0004 (13)
C160.0310 (16)0.0228 (15)0.0255 (16)0.0011 (12)0.0040 (14)0.0001 (13)
C170.0364 (18)0.0300 (17)0.043 (2)0.0081 (14)0.0107 (16)0.0007 (15)
C180.0382 (19)0.048 (2)0.052 (2)0.0039 (16)0.0232 (18)0.0118 (18)
C190.047 (2)0.050 (2)0.036 (2)0.0025 (17)0.0219 (18)0.0093 (17)
C200.0401 (18)0.0377 (19)0.0248 (17)0.0000 (14)0.0055 (15)0.0012 (14)
N10.0298 (13)0.0186 (12)0.0272 (14)0.0015 (10)0.0102 (12)0.0014 (10)
N20.0282 (13)0.0269 (13)0.0235 (13)0.0044 (10)0.0080 (11)0.0001 (11)
N30.0303 (13)0.0260 (13)0.0244 (13)0.0030 (10)0.0055 (12)0.0057 (11)
N40.0267 (13)0.0270 (13)0.0284 (14)0.0026 (10)0.0087 (12)0.0010 (11)
O10.0318 (13)0.0647 (18)0.072 (2)0.0031 (12)0.0130 (14)0.0048 (15)
O20.0842 (19)0.0399 (14)0.0685 (18)0.0081 (13)0.0575 (17)0.0010 (13)
O30.0402 (13)0.0515 (15)0.0275 (12)0.0196 (11)0.0062 (11)0.0068 (11)
O40.0522 (14)0.0233 (11)0.0444 (14)0.0025 (10)0.0120 (12)0.0026 (10)
O50.0249 (10)0.0205 (10)0.0211 (10)0.0005 (8)0.0062 (9)0.0003 (8)
O60.0387 (12)0.0336 (12)0.0232 (11)0.0012 (9)0.0148 (10)0.0033 (9)
O70.0382 (13)0.0443 (14)0.0430 (14)0.0118 (10)0.0098 (12)0.0148 (12)
O80.0607 (16)0.0451 (15)0.0549 (16)0.0039 (12)0.0290 (14)0.0137 (13)
O90.0250 (10)0.0256 (10)0.0200 (10)0.0033 (8)0.0056 (9)0.0016 (8)
O100.0274 (10)0.0200 (10)0.0263 (11)0.0004 (8)0.0063 (9)0.0025 (8)
O110.0635 (16)0.0308 (13)0.0639 (17)0.0038 (11)0.0474 (15)0.0019 (12)
O120.0301 (11)0.0270 (11)0.0223 (11)0.0092 (8)0.0045 (9)0.0025 (9)
O130.0338 (11)0.0217 (10)0.0236 (11)0.0013 (8)0.0112 (9)0.0024 (8)
O140.0339 (11)0.0221 (10)0.0321 (12)0.0004 (9)0.0072 (10)0.0048 (9)
O150.0264 (11)0.0307 (11)0.0344 (12)0.0069 (9)0.0099 (10)0.0033 (10)
O160.0272 (10)0.0245 (10)0.0363 (13)0.0002 (8)0.0135 (10)0.0052 (9)
O170.0345 (11)0.0196 (10)0.0346 (12)0.0003 (8)0.0070 (10)0.0010 (9)
O1W0.100 (2)0.0489 (17)0.0311 (15)0.0069 (16)0.0263 (16)0.0029 (13)
O2W0.0412 (13)0.0271 (12)0.0475 (15)0.0093 (10)0.0286 (12)0.0089 (11)
O3W0.0462 (13)0.0305 (12)0.0388 (14)0.0008 (10)0.0229 (13)0.0060 (11)
Geometric parameters (Å, º) top
Co1—O152.061 (2)C7—H70.9300
Co1—O162.0615 (19)C8—C91.365 (5)
Co1—O142.067 (2)C8—H80.9300
Co1—O172.069 (2)C9—C101.364 (5)
Co1—O3W2.098 (2)C9—H90.9300
Co1—O2W2.109 (2)C10—N21.348 (4)
Mo1—O61.693 (2)C10—H100.9300
Mo1—O131.7475 (19)C11—N31.336 (4)
Mo1—O51.8811 (18)C11—C121.371 (5)
Mo1—O91.9020 (19)C11—H110.9300
Mo1—O102.2526 (19)C12—C131.366 (5)
Mo1—O5i2.458 (2)C12—H120.9300
Mo2—O41.692 (2)C13—C141.383 (5)
Mo2—O31.698 (2)C13—H130.9300
Mo2—O121.8993 (19)C14—C151.378 (4)
Mo2—O10i2.0088 (19)C14—H140.9300
Mo2—O5i2.2307 (18)C15—N31.361 (4)
Mo2—O132.3121 (19)C15—C161.475 (4)
Mo3—O81.691 (2)C16—N41.356 (4)
Mo3—O71.697 (2)C16—C171.387 (4)
Mo3—O111.846 (2)C17—C181.376 (5)
Mo3—O101.9118 (19)C17—H170.9300
Mo3—O92.2899 (19)C18—C191.387 (5)
Mo4—O11.682 (3)C18—H180.9300
Mo4—O21.696 (2)C19—C201.360 (4)
Mo4—O121.927 (2)C19—H190.9300
Mo4—O111.974 (2)C20—N41.348 (4)
Mo4—O92.1675 (19)C20—H200.9300
C1—N11.343 (4)N1—O161.330 (3)
C1—C21.372 (4)N2—O171.341 (3)
C1—H10.9300N3—O141.329 (3)
C2—C31.368 (4)N4—O151.328 (3)
C2—H20.9300O5—Mo2i2.2307 (18)
C3—C41.385 (4)O5—Mo1i2.458 (2)
C3—H30.9300O10—Mo2i2.0088 (18)
C4—C51.375 (4)O1W—H1B0.836 (17)
C4—H40.9300O1W—H1A0.843 (17)
C5—N11.359 (3)O2W—H2A0.84 (4)
C5—C61.471 (4)O2W—H2B0.830 (17)
C6—N21.362 (4)O3W—H3A0.837 (17)
C6—C71.380 (4)O3W—H3B0.843 (17)
C7—C81.389 (5)
O15—Co1—O16175.11 (8)N2—C6—C7118.9 (3)
O15—Co1—O1485.81 (8)N2—C6—C5118.1 (3)
O16—Co1—O1499.00 (8)C7—C6—C5122.6 (3)
O15—Co1—O1789.62 (8)C6—C7—C8119.8 (3)
O16—Co1—O1785.55 (8)C6—C7—H7120.1
O14—Co1—O17175.14 (8)C8—C7—H7120.1
O15—Co1—O3W98.46 (9)C9—C8—C7119.2 (3)
O16—Co1—O3W82.76 (9)C9—C8—H8120.4
O14—Co1—O3W87.29 (9)C7—C8—H8120.4
O17—Co1—O3W95.03 (9)C10—C9—C8120.6 (3)
O15—Co1—O2W84.39 (9)C10—C9—H9119.7
O16—Co1—O2W94.58 (8)C8—C9—H9119.7
O14—Co1—O2W90.81 (9)N2—C10—C9119.9 (3)
O17—Co1—O2W87.11 (9)N2—C10—H10120.1
O3W—Co1—O2W176.44 (9)C9—C10—H10120.1
O6—Mo1—O13103.73 (9)N3—C11—C12121.4 (3)
O6—Mo1—O5105.41 (9)N3—C11—H11119.3
O13—Mo1—O5100.03 (8)C12—C11—H11119.3
O6—Mo1—O9103.08 (9)C13—C12—C11119.7 (3)
O13—Mo1—O9102.78 (8)C13—C12—H12120.1
O5—Mo1—O9137.73 (8)C11—C12—H12120.1
O6—Mo1—O1094.64 (9)C12—C13—C14118.6 (3)
O13—Mo1—O10161.59 (8)C12—C13—H13120.7
O5—Mo1—O1073.45 (7)C14—C13—H13120.7
O9—Mo1—O1073.73 (7)C15—C14—C13120.7 (3)
O6—Mo1—O5i175.84 (8)C15—C14—H14119.6
O13—Mo1—O5i77.50 (8)C13—C14—H14119.6
O5—Mo1—O5i78.16 (8)N3—C15—C14119.0 (3)
O9—Mo1—O5i72.76 (7)N3—C15—C16118.7 (3)
O10—Mo1—O5i84.26 (7)C14—C15—C16122.2 (3)
O4—Mo2—O3104.68 (11)N4—C16—C17118.6 (3)
O4—Mo2—O12101.94 (9)N4—C16—C15119.1 (3)
O3—Mo2—O12100.58 (10)C17—C16—C15122.3 (3)
O4—Mo2—O10i99.88 (9)C18—C17—C16120.6 (3)
O3—Mo2—O10i95.81 (9)C18—C17—H17119.7
O12—Mo2—O10i148.27 (8)C16—C17—H17119.7
O4—Mo2—O5i157.92 (9)C17—C18—C19118.9 (3)
O3—Mo2—O5i96.58 (10)C17—C18—H18120.6
O12—Mo2—O5i79.52 (7)C19—C18—H18120.6
O10i—Mo2—O5i71.71 (7)C20—C19—C18119.6 (3)
O4—Mo2—O1386.07 (9)C20—C19—H19120.2
O3—Mo2—O13169.17 (9)C18—C19—H19120.2
O12—Mo2—O1378.02 (8)N4—C20—C19120.9 (3)
O10i—Mo2—O1380.82 (8)N4—C20—H20119.6
O5i—Mo2—O1372.59 (7)C19—C20—H20119.6
O8—Mo3—O7105.46 (12)O16—N1—C1119.0 (2)
O8—Mo3—O1199.61 (12)O16—N1—C5120.0 (2)
O7—Mo3—O11111.93 (11)C1—N1—C5121.0 (2)
O8—Mo3—O1098.09 (10)O17—N2—C10119.3 (2)
O7—Mo3—O10108.23 (10)O17—N2—C6119.0 (2)
O11—Mo3—O10129.36 (9)C10—N2—C6121.6 (3)
O8—Mo3—O9158.23 (10)O14—N3—C11119.8 (3)
O7—Mo3—O996.21 (9)O14—N3—C15119.6 (2)
O11—Mo3—O973.53 (8)C11—N3—C15120.6 (3)
O10—Mo3—O972.67 (7)O15—N4—C20119.3 (2)
O1—Mo4—O2106.91 (13)O15—N4—C16119.3 (2)
O1—Mo4—O12100.36 (11)C20—N4—C16121.4 (3)
O2—Mo4—O1297.41 (11)Mo1—O5—Mo2i108.98 (8)
O1—Mo4—O11101.94 (12)Mo1—O5—Mo1i101.84 (8)
O2—Mo4—O1193.42 (11)Mo2i—O5—Mo1i94.13 (7)
O12—Mo4—O11151.12 (8)Mo1—O9—Mo4127.21 (9)
O1—Mo4—O9101.89 (11)Mo1—O9—Mo3105.92 (8)
O2—Mo4—O9150.47 (10)Mo4—O9—Mo394.32 (7)
O12—Mo4—O983.53 (8)Mo3—O10—Mo2i142.50 (11)
O11—Mo4—O974.13 (8)Mo3—O10—Mo1107.02 (8)
N1—C1—C2120.9 (3)Mo2i—O10—Mo1103.64 (8)
N1—C1—H1119.5Mo3—O11—Mo4117.66 (11)
C2—C1—H1119.5Mo2—O12—Mo4122.40 (10)
C3—C2—C1119.9 (3)Mo1—O13—Mo2114.93 (9)
C3—C2—H2120.1N3—O14—Co1113.92 (15)
C1—C2—H2120.1N4—O15—Co1118.40 (16)
C2—C3—C4118.3 (3)N1—O16—Co1113.79 (15)
C2—C3—H3120.8N2—O17—Co1120.56 (15)
C4—C3—H3120.8H1B—O1W—H1A109 (3)
C5—C4—C3121.3 (3)Co1—O2W—H2A136 (2)
C5—C4—H4119.4Co1—O2W—H2B111 (2)
C3—C4—H4119.4H2A—O2W—H2B110 (2)
N1—C5—C4118.6 (3)Co1—O3W—H3A128 (2)
N1—C5—C6120.2 (3)Co1—O3W—H3B111 (2)
C4—C5—C6121.3 (3)H3A—O3W—H3B108 (2)
N1—C1—C2—C30.6 (5)O11—Mo4—O9—Mo33.92 (8)
C1—C2—C3—C41.1 (5)O8—Mo3—O9—Mo160.6 (3)
C2—C3—C4—C51.8 (5)O7—Mo3—O9—Mo1114.01 (10)
C3—C4—C5—N10.9 (5)O11—Mo3—O9—Mo1134.91 (12)
C3—C4—C5—C6179.3 (3)O10—Mo3—O9—Mo16.81 (8)
N1—C5—C6—N263.7 (4)O8—Mo3—O9—Mo470.1 (3)
C4—C5—C6—N2116.4 (3)O7—Mo3—O9—Mo4115.28 (9)
N1—C5—C6—C7123.3 (3)O11—Mo3—O9—Mo44.21 (9)
C4—C5—C6—C756.6 (5)O10—Mo3—O9—Mo4137.52 (9)
N2—C6—C7—C80.7 (5)O8—Mo3—O10—Mo2i10.4 (2)
C5—C6—C7—C8172.2 (3)O7—Mo3—O10—Mo2i119.74 (18)
C6—C7—C8—C91.0 (6)O11—Mo3—O10—Mo2i99.11 (19)
C7—C8—C9—C100.5 (6)O9—Mo3—O10—Mo2i149.31 (19)
C8—C9—C10—N20.3 (5)O8—Mo3—O10—Mo1153.98 (11)
N3—C11—C12—C130.6 (6)O7—Mo3—O10—Mo196.73 (11)
C11—C12—C13—C141.6 (5)O11—Mo3—O10—Mo144.42 (15)
C12—C13—C14—C151.8 (5)O9—Mo3—O10—Mo15.78 (7)
C13—C14—C15—N31.0 (5)O6—Mo1—O10—Mo3109.21 (10)
C13—C14—C15—C16176.9 (3)O13—Mo1—O10—Mo374.6 (3)
N3—C15—C16—N463.4 (4)O5—Mo1—O10—Mo3146.08 (11)
C14—C15—C16—N4120.6 (3)O9—Mo1—O10—Mo36.93 (9)
N3—C15—C16—C17118.8 (3)O5i—Mo1—O10—Mo366.75 (9)
C14—C15—C16—C1757.2 (4)O6—Mo1—O10—Mo2i92.65 (10)
N4—C16—C17—C181.6 (5)O13—Mo1—O10—Mo2i83.5 (3)
C15—C16—C17—C18179.4 (3)O5—Mo1—O10—Mo2i12.06 (8)
C16—C17—C18—C190.1 (5)O9—Mo1—O10—Mo2i165.07 (11)
C17—C18—C19—C201.2 (5)O5i—Mo1—O10—Mo2i91.39 (8)
C18—C19—C20—N40.7 (5)O8—Mo3—O11—Mo4153.57 (14)
C2—C1—N1—O16179.0 (3)O7—Mo3—O11—Mo495.35 (15)
C2—C1—N1—C51.6 (4)O10—Mo3—O11—Mo444.7 (2)
C4—C5—N1—O16178.2 (3)O9—Mo3—O11—Mo45.20 (11)
C6—C5—N1—O161.6 (4)O1—Mo4—O11—Mo3104.62 (16)
C4—C5—N1—C10.9 (4)O2—Mo4—O11—Mo3147.29 (15)
C6—C5—N1—C1179.0 (3)O12—Mo4—O11—Mo335.2 (3)
C9—C10—N2—O17176.1 (3)O9—Mo4—O11—Mo35.48 (12)
C9—C10—N2—C60.7 (5)O4—Mo2—O12—Mo4178.33 (12)
C7—C6—N2—O17176.6 (3)O3—Mo2—O12—Mo470.68 (13)
C5—C6—N2—O173.4 (4)O10i—Mo2—O12—Mo449.2 (2)
C7—C6—N2—C100.1 (4)O5i—Mo2—O12—Mo424.14 (11)
C5—C6—N2—C10173.4 (3)O13—Mo2—O12—Mo498.36 (12)
C12—C11—N3—O14179.2 (3)O1—Mo4—O12—Mo2173.48 (13)
C12—C11—N3—C150.3 (5)O2—Mo4—O12—Mo264.70 (14)
C14—C15—N3—O14179.0 (2)O11—Mo4—O12—Mo246.4 (2)
C16—C15—N3—O142.9 (4)O9—Mo4—O12—Mo285.57 (12)
C14—C15—N3—C110.1 (4)O6—Mo1—O13—Mo2168.31 (10)
C16—C15—N3—C11176.0 (3)O5—Mo1—O13—Mo282.97 (10)
C19—C20—N4—O15176.0 (3)O9—Mo1—O13—Mo261.19 (11)
C19—C20—N4—C160.9 (5)O10—Mo1—O13—Mo215.6 (3)
C17—C16—N4—O15174.9 (3)O5i—Mo1—O13—Mo27.61 (8)
C15—C16—N4—O153.0 (4)O4—Mo2—O13—Mo1177.15 (12)
C17—C16—N4—C202.1 (4)O3—Mo2—O13—Mo19.6 (5)
C15—C16—N4—C20180.0 (3)O12—Mo2—O13—Mo174.05 (11)
O6—Mo1—O5—Mo2i79.17 (10)O10i—Mo2—O13—Mo182.17 (10)
O13—Mo1—O5—Mo2i173.45 (9)O5i—Mo2—O13—Mo18.58 (9)
O9—Mo1—O5—Mo2i51.53 (15)C11—N3—O14—Co198.5 (3)
O10—Mo1—O5—Mo2i11.15 (8)C15—N3—O14—Co182.6 (3)
O5i—Mo1—O5—Mo2i98.62 (10)O15—Co1—O14—N354.33 (19)
O6—Mo1—O5—Mo1i177.79 (8)O16—Co1—O14—N3124.75 (18)
O13—Mo1—O5—Mo1i74.83 (9)O3W—Co1—O14—N3153.03 (19)
O9—Mo1—O5—Mo1i47.08 (13)O2W—Co1—O14—N329.98 (19)
O10—Mo1—O5—Mo1i87.47 (8)C20—N4—O15—Co1101.9 (3)
O5i—Mo1—O5—Mo1i0.0C16—N4—O15—Co181.1 (3)
O6—Mo1—O9—Mo4154.83 (12)O14—Co1—O15—N443.57 (19)
O13—Mo1—O9—Mo447.22 (13)O17—Co1—O15—N4138.07 (19)
O5—Mo1—O9—Mo473.78 (16)O3W—Co1—O15—N443.0 (2)
O10—Mo1—O9—Mo4114.10 (13)O2W—Co1—O15—N4134.8 (2)
O5i—Mo1—O9—Mo425.15 (10)C1—N1—O16—Co197.9 (2)
O6—Mo1—O9—Mo396.82 (10)C5—N1—O16—Co184.6 (3)
O13—Mo1—O9—Mo3155.57 (8)O14—Co1—O16—N1127.34 (18)
O5—Mo1—O9—Mo334.57 (15)O17—Co1—O16—N150.93 (18)
O10—Mo1—O9—Mo35.75 (7)O3W—Co1—O16—N1146.58 (19)
O5i—Mo1—O9—Mo383.20 (8)O2W—Co1—O16—N135.80 (18)
O1—Mo4—O9—Mo1143.12 (14)C10—N2—O17—Co1105.4 (3)
O2—Mo4—O9—Mo149.7 (3)C6—N2—O17—Co177.8 (3)
O12—Mo4—O9—Mo143.86 (12)O15—Co1—O17—N2134.15 (19)
O11—Mo4—O9—Mo1117.67 (14)O16—Co1—O17—N246.62 (19)
O1—Mo4—O9—Mo3103.13 (10)O3W—Co1—O17—N235.7 (2)
O2—Mo4—O9—Mo364.0 (2)O2W—Co1—O17—N2141.5 (2)
O12—Mo4—O9—Mo3157.60 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O12ii0.84 (2)2.00 (2)2.819 (3)163 (3)
O1W—H1B···O7iii0.84 (2)2.14 (2)2.927 (4)158 (3)
O2W—H2A···O60.84 (4)2.16 (2)2.930 (3)154 (3)
O2W—H2B···O17ii0.83 (2)1.88 (2)2.681 (3)162 (3)
O3W—H3A···O1W0.84 (2)1.87 (2)2.689 (4)166 (3)
O3W—H3B···O8iii0.84 (2)2.00 (2)2.799 (3)157 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2O
Mr2162.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.603 (3), 18.014 (3), 14.658 (4)
β (°) 110.392 (5)
V3)3119.3 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.43 × 0.30 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.466, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
18887, 7333, 5992
Rint0.033
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.04
No. of reflections7333
No. of parameters460
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.61

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected bond lengths (Å) top
Co1—O152.061 (2)Mo2—O121.8993 (19)
Co1—O162.0615 (19)Mo2—O10i2.0088 (19)
Co1—O142.067 (2)Mo2—O5i2.2307 (18)
Co1—O172.069 (2)Mo2—O132.3121 (19)
Co1—O3W2.098 (2)Mo3—O81.691 (2)
Co1—O2W2.109 (2)Mo3—O71.697 (2)
Mo1—O61.693 (2)Mo3—O111.846 (2)
Mo1—O131.7475 (19)Mo3—O101.9118 (19)
Mo1—O51.8811 (18)Mo3—O92.2899 (19)
Mo1—O91.9020 (19)Mo4—O11.682 (3)
Mo1—O102.2526 (19)Mo4—O21.696 (2)
Mo1—O5i2.458 (2)Mo4—O121.927 (2)
Mo2—O41.692 (2)Mo4—O111.974 (2)
Mo2—O31.698 (2)Mo4—O92.1675 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O12ii0.843 (17)2.00 (2)2.819 (3)163 (3)
O1W—H1B···O7iii0.836 (17)2.14 (2)2.927 (4)158 (3)
O2W—H2A···O60.84 (4)2.16 (2)2.930 (3)154 (3)
O2W—H2B···O17ii0.830 (17)1.88 (2)2.681 (3)162 (3)
O3W—H3A···O1W0.837 (17)1.87 (2)2.689 (4)166 (3)
O3W—H3B···O8iii0.843 (17)2.00 (2)2.799 (3)157 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds