Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu3(C3H5O2)6(C6H7NO)4]n, is composed of polymeric chains formed by alternating centrosymmetric Cu2(μ-CH3CH2CO2)4 and Cu(C3H5O2)2(C6H7NO)2 units. These elemental units are linked by two bridging 3-pyridylmethanol (3PM) ligands. The Cu2(μ-CH3CH2CO2)4 group presents a centrosymmetric tetra­bridged structure with four synsyn bridging propionate ligands to which two 3PM mol­ecules are bonded (through N), occupying the apical positions of each square-pyramidal polyhedron around the CuII ions. The remaining mononuclear group is centred around a third CuII ion, which lies on a symmetry centre and is bound to two monodentate propionate groups (through O), two monodentate 3PM mol­ecules (through N) and two bridging 3PM mol­ecules (through O), thus completing a square-bipyramidal CuO2N2O2 coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107004386/bg3026sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004386/bg3026Isup2.hkl
Contains datablock I

CCDC reference: 285449

Comment top

3-Pyridylmethanol (3PM) is a non-steroidal anti-inflammatory agent in current use. It can act as an effective ligand in coordination compounds, where it presents a variety of binding modes. In the monomeric structures [CuCl2(3PM)4], (II) (Moncol et al., 2004), and [Cu(2-nitrobenzoato)2(3PM)2(H2O)2], (III) (Stachová et al., 2006), 3PM behaves as a terminal ligand, coordinating through the N atom of its pyridine ring. An analogous binding mode is found in dimeric [Cu2(µ-CH3CO2)4(3PM)2]·CH2Cl2, (IV) (Melník et al., 1985), where the CuII atoms are bridged into pairs by four acetate groups to form two crystallographically independent binuclear molecules, with the N atoms of the 3PM ligands situated at the vertices of a slightly deformed square pyramid around the cations. More complex intermolecular interactions are achieved in complexes of general formula [Cu(RCO2)2(µ-3PM)2]n. For RCO2 = salicylate, (V) (Hoang et al., 1992, Maroszová, Moncol et al., 2006), 4-chlorosalicylate, (VI) (Maroszová, Martiška et al., 2006), flufenamate, (VII) (Lörinc et al., 2004), clofibriate, (VIII) (Moncol et al., 2001), or 2-chlorobenzoate, (IX) (Moncol et al., 2006), a two-dimensional sheet is built up with CuII ions linked by bridging 3PM ligands. When RCO2 = trichloroacetate, (X) (Múdra et al., 2003), dichloroacetate, (XI) (Múdra et al., 2003), 3-nitrobenzoate, (XII) (Stachová et al., 2005), 3,5-dinitrobenzoate, (XIII) (Stachová et al., 2006), niflumate, (XIV) (Valach et al., 1997), or 2-methylthionicotinate, (XV) (Moncol et al., 2006), the result is a one-dimensional coordination polymer. Finally, the crystal structure of [Cu3(2-chloronicotinate)6(µ-3PM)4(3PM)2]n, (XVI) (Moncol et al., 2006), consists of one-dimensional `accordion chain' coordination polymers with different coordination environments around the CuII ions (square bipyramidal and square pyramidal).

The crystal structure of (I) consists of zigzag chains (Fig. 1.) that are formed by alternating dinuclear Cu2(µ-CH3CH2CO2)4 and mononuclear Cu(CH3CH2CO2)2(3PM)2 units linked by bridging 3PM molecules. The dimeric unit is formed around a symmetry centre and presents a tetrabridged paddle-wheel structure with four synsyn bridging propionates. The Cu2···Cu2i [symmetry code: (i) -x, 1 - y, 1 - z] distance is 2.6367 (12) Å, very similar to the values found in other dimeric copper(II) propionate complexes (range 2.569–2.655 Å; Melník et al., 1998). The τ value (Addison et al., 1984) is 0.005 for atom Cu2, which is typical for a square-pyramidal geometry. The basal plane consists of four O atoms, O4, O5i, O6 and O7i, at distances of 1.958 (3)–1.964 (3) Å. The apical site is occupied by the N atom of the 3PM pyridine ring [Cu2—N2 = 2.176 (3) Å]. Atom Cu2 is displaced from the least-squares plane defined by the basal atoms by 0.207 (1) Å towards the apical N atom. The Cu(CH3CH2CO2)2(3PM)2 unit also has a centrosymmetric structure, with a CuO2N2O2 square-bipyramidal coordination around atom Cu1, which lies at the symmetry centre. The environment is defined by two O atoms from two unidentate propionate groups, two N atoms from two unidentate 3PM molecules and two O atoms from two bridging 3PM molecules. The basal plane is built up by a pair of carboxylate O atoms [Cu1—O1 = 1.954 (2) Å] and a pair of N atoms [Cu1—N1 = 2.003 (2) Å] from the pyridine rings in the terminal neutral 3-pyridylmethanol molecules. The axial positions are occupied by two hydroxyl O atoms [Cu1—O8 = 2.502 (3) Å] from the bridging 3PM ligands.

Intramolecular hydrogen bonds [O8···O2 = 2.625 (5) Å] create a six-membered metallocycle and stabilize the molecular structure of the chain building units. The crystal structure of (I) consists of zigzag one-dimensional chains (Fig. 2), which are connected by intermolecular hydrogen bonds [O3···O2iii = 2.768 (5) Å; symmetry code: x + 1, y, z] to form two-dimensional sheets.

The structure of (I) can be compared with the dimeric structure of (IV) mentioned above and the polymeric structures (V)–(XV). The Cu2···Cu2i distance and the average Cu2—Ocarb and Cu2—N2 bond distances of the Cu2(µ-CH3CH2CO2)4 unit are very similar to the bond distances in (IV), where the molecular structure consists of two crystallographically independent molecules of Cu2(CH3CO2)4(3PM)2. The Cu···Cu distance, and average Cu—Ocarb (acetate anions) and Cu—Nax (N atom of the pyridine ring of 3PM) bond lengths in the two independent dimers of (IV) are 2.654 (1), 1.963 (4) and 2.197 (5) Å, and 2.634 (1), 1.969 (4) and 2.152 (5) Å, respectively. The geometry of the Cu(CH3CH2CO2)2(3PM)2 unit and the bond distances are very similar to the molecular structure of complexes with the formula [Cu(RCO2)2(µ-3PM)2]n, (V)–(XV). The present crystal structure can be considered as the connecting link between two types of structures of copper(II) carboxylate adducts with 3-pyridylmethanol (dimeric and polymeric).

Related literature top

For related literature, see: Addison et al. (1984); Battaglia & Corradi (1986); Hoang et al. (1992); Lörinc et al. (2004); Múdra et al. (2003); Maroszová, Martiška, Valigura, Koman & Głowiak (2006); Maroszová, Moncol, Koman, Melník & Głowiak (2006); Melník et al. (1985, 1998); Moncol et al. (2001, 2004, 2006); Sheldrick (1997); Stachová et al. (2005, 2006); Valach et al. (1997).

Experimental top

Cu(CH3CH2CO2)2·H2O was prepared as described by Battaglia & Corradi (1986). Compound (I) was prepared by treating 3-pyridylmethanol with Cu(CH3CH2CO2)2·H2O in a 2:3 molar ratio in hot methanol. The resulting solution was filtered and the filtrate left to stand at room temperature, allowing fine green crystals to precipitate out. These crystals were filtered off, washed with cold methanol and dried at room temperature. Crystals of (I) suitable for structural determination were obtained by recrystallizing the crude product from methanol with a small amount of acetone (yield 70%). Analysis, found: C 47.56, H 5.68, N 5.30, Cu 17.82%; C42H58Cu3N4O16 requires: C 47.34, H 5.49, N 5.26, Cu 17.89%.

Refinement top

All H atoms attached to C atoms were placed in calculated positions with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl groups, respectively. The hydroxyl H atom was positioned using the AFIX 147 facility in SHELXL97 (Sheldrick, 1997) (O—H = 0.82 Å). In all cases, Uiso(H) = xUiso(C,O), where x = 1.2 for aromatic and methylene H, and 1.5 for methyl and hydroxyl H.

Computing details top

Data collection: P21 Software (Syntex, 1973); cell refinement: P21 Software; data reduction: XP21 (Pavelčík, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, -y, -z.]
[Figure 2] Fig. 2. The O—H···O hydrogen bonds in the crystal structure of (I). [Symmetry code: (iii) x + 1, y, z.]
catena-Poly[[tetrakis(µ-propionato-κ2O:O')dicopper(II)]-µ-3- pyridylmethanol-κ2N:O-[bis(propionato-κO)bis(µ-3-pyridylmethanol- κ2N,O)copper(II)]-µ-3-pyridylmethanol-κO:N] top
Crystal data top
[Cu3(C6H7NO)4(C3H5O2)6]Z = 1
Mr = 1065.54F(000) = 553
Triclinic, P1Dx = 1.507 Mg m3
Dm = 1.50 Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.194 (2) ÅCell parameters from 25 reflections
b = 9.959 (2) Åθ = 5.2–11.6°
c = 15.358 (3) ŵ = 1.42 mm1
α = 104.27 (3)°T = 293 K
β = 103.99 (3)°Rectangular prism, green
γ = 91.10 (3)°0.45 × 0.40 × 0.30 mm
V = 1174.4 (4) Å3
Data collection top
Syntex P21
diffractometer
3645 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.6°, θmin = 1.4°
θ/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.576, Tmax = 0.654l = 1919
5808 measured reflections2 standard reflections every 100 reflections
5428 independent reflections intensity decay: 15%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.103P)2]
where P = (Fo2 + 2Fc2)/3
5428 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu3(C6H7NO)4(C3H5O2)6]γ = 91.10 (3)°
Mr = 1065.54V = 1174.4 (4) Å3
Triclinic, P1Z = 1
a = 8.194 (2) ÅMo Kα radiation
b = 9.959 (2) ŵ = 1.42 mm1
c = 15.358 (3) ÅT = 293 K
α = 104.27 (3)°0.45 × 0.40 × 0.30 mm
β = 103.99 (3)°
Data collection top
Syntex P21
diffractometer
3645 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.576, Tmax = 0.6542 standard reflections every 100 reflections
5808 measured reflections intensity decay: 15%
5428 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.76 e Å3
5428 reflectionsΔρmin = 0.70 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.04309 (17)
Cu20.08880 (5)0.48991 (4)0.41438 (3)0.04171 (15)
N10.1691 (4)0.1037 (3)0.11617 (19)0.0426 (7)
N20.2456 (4)0.4675 (3)0.27445 (19)0.0431 (6)
O10.0104 (3)0.1549 (3)0.05617 (18)0.0509 (6)
O20.2367 (4)0.1215 (4)0.1079 (3)0.0839 (10)
O30.5601 (4)0.1069 (3)0.2295 (2)0.0713 (8)
H3O0.61430.11310.19040.107*
O40.0106 (4)0.3028 (3)0.38880 (19)0.0616 (7)
O50.1414 (4)0.3211 (3)0.5329 (2)0.0612 (7)
O60.2710 (3)0.4164 (3)0.45697 (19)0.0567 (7)
O70.1223 (3)0.4353 (3)0.60164 (19)0.0603 (7)
O80.2244 (3)0.1192 (3)0.06742 (19)0.0589 (7)
H8O0.25200.04240.07240.088*
C10.1125 (5)0.1846 (4)0.0973 (3)0.0512 (9)
C20.0819 (7)0.3103 (5)0.1365 (4)0.0822 (15)
H2A0.09410.28530.19960.099*
H2B0.16950.38340.10050.099*
C30.0782 (10)0.3655 (8)0.1376 (7)0.140 (3)
H3A0.09420.38810.07590.210*
H3B0.08170.44790.15970.210*
H3C0.16630.29760.17810.210*
C40.2984 (4)0.0411 (4)0.1572 (2)0.0436 (8)
H40.30610.05250.13100.052*
C50.4184 (4)0.1070 (4)0.2349 (2)0.0449 (8)
C60.4030 (5)0.2451 (4)0.2750 (2)0.0493 (9)
H60.48250.29410.32830.059*
C70.2698 (5)0.3081 (4)0.2353 (3)0.0529 (9)
H70.25610.40010.26250.063*
C80.1561 (5)0.2367 (4)0.1556 (3)0.0479 (8)
H80.06770.28210.12820.057*
C90.5635 (5)0.0319 (5)0.2768 (3)0.0679 (12)
H9A0.66870.07980.27830.081*
H9B0.56190.03680.34050.081*
C100.0850 (5)0.2571 (4)0.4502 (3)0.0519 (9)
C110.1405 (7)0.1136 (5)0.4207 (4)0.0819 (15)
H11A0.25680.12360.41750.098*
H11B0.13960.06780.46950.098*
C120.0474 (9)0.0230 (6)0.3351 (5)0.136 (3)
H12A0.04730.02380.34510.204*
H12B0.11890.04440.31160.204*
H12C0.00800.07610.29090.204*
C130.2545 (5)0.4028 (4)0.5368 (3)0.0501 (9)
C140.4064 (5)0.3461 (5)0.5597 (4)0.0683 (12)
H14A0.43500.41670.60850.082*
H14B0.50090.32980.50520.082*
C150.3874 (9)0.2213 (7)0.5888 (7)0.138 (3)
H15A0.35820.15040.54150.206*
H15B0.49150.19170.59940.206*
H15C0.29960.23750.64530.206*
C160.2530 (4)0.3513 (4)0.2078 (2)0.0437 (8)
H160.17940.28460.22040.052*
C170.3636 (4)0.3245 (4)0.1213 (2)0.0441 (8)
C180.4732 (5)0.4234 (4)0.1039 (3)0.0509 (9)
H180.55140.40870.04660.061*
C190.4657 (5)0.5434 (4)0.1717 (3)0.0546 (9)
H190.53810.61170.16110.066*
C200.3514 (5)0.5615 (4)0.2547 (3)0.0473 (8)
H200.34680.64400.30010.057*
C210.3676 (6)0.1906 (4)0.0478 (3)0.0643 (11)
H21A0.46660.13100.04240.077*
H21B0.37800.21170.01150.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0457 (3)0.0385 (3)0.0375 (3)0.0032 (2)0.0010 (2)0.0060 (2)
Cu20.0364 (2)0.0450 (3)0.0365 (2)0.00480 (17)0.00507 (16)0.00131 (17)
N10.0441 (15)0.0375 (15)0.0375 (14)0.0005 (12)0.0042 (12)0.0000 (12)
N20.0417 (15)0.0442 (16)0.0388 (15)0.0060 (12)0.0087 (12)0.0035 (12)
O10.0553 (15)0.0432 (14)0.0519 (15)0.0001 (11)0.0068 (12)0.0149 (11)
O20.070 (2)0.095 (3)0.108 (3)0.0291 (19)0.038 (2)0.049 (2)
O30.0648 (19)0.0631 (18)0.091 (2)0.0228 (15)0.0229 (17)0.0251 (17)
O40.0688 (18)0.0528 (16)0.0506 (16)0.0195 (14)0.0055 (14)0.0010 (13)
O50.0655 (17)0.0505 (15)0.0564 (17)0.0140 (13)0.0037 (14)0.0039 (13)
O60.0397 (13)0.0731 (19)0.0503 (15)0.0061 (12)0.0061 (11)0.0093 (13)
O70.0423 (14)0.087 (2)0.0501 (15)0.0012 (14)0.0084 (12)0.0188 (14)
O80.0570 (16)0.0524 (16)0.0625 (17)0.0091 (13)0.0192 (13)0.0016 (13)
C10.047 (2)0.049 (2)0.055 (2)0.0019 (16)0.0061 (17)0.0164 (17)
C20.076 (3)0.074 (3)0.112 (4)0.008 (3)0.025 (3)0.053 (3)
C30.135 (6)0.124 (6)0.200 (8)0.064 (5)0.048 (6)0.104 (6)
C40.0433 (18)0.0422 (18)0.0420 (18)0.0084 (14)0.0111 (15)0.0040 (14)
C50.0381 (17)0.051 (2)0.0435 (18)0.0020 (15)0.0102 (14)0.0080 (15)
C60.0447 (19)0.050 (2)0.0420 (19)0.0056 (16)0.0026 (15)0.0001 (15)
C70.056 (2)0.0371 (18)0.055 (2)0.0005 (16)0.0110 (18)0.0037 (16)
C80.0485 (19)0.0392 (18)0.049 (2)0.0057 (15)0.0067 (16)0.0045 (15)
C90.054 (2)0.073 (3)0.067 (3)0.015 (2)0.000 (2)0.015 (2)
C100.045 (2)0.048 (2)0.059 (2)0.0083 (16)0.0147 (18)0.0043 (18)
C110.083 (3)0.052 (3)0.091 (4)0.024 (2)0.007 (3)0.005 (2)
C120.126 (5)0.076 (4)0.144 (6)0.040 (4)0.030 (5)0.028 (4)
C130.0406 (19)0.044 (2)0.065 (2)0.0019 (15)0.0188 (18)0.0081 (17)
C140.048 (2)0.075 (3)0.084 (3)0.004 (2)0.023 (2)0.019 (2)
C150.100 (5)0.117 (5)0.256 (10)0.037 (4)0.082 (6)0.120 (6)
C160.0398 (17)0.0473 (19)0.0393 (17)0.0104 (14)0.0061 (14)0.0056 (15)
C170.0385 (17)0.0489 (19)0.0416 (18)0.0053 (14)0.0079 (14)0.0077 (15)
C180.0431 (19)0.063 (2)0.0422 (19)0.0082 (17)0.0011 (15)0.0153 (17)
C190.050 (2)0.051 (2)0.062 (2)0.0174 (17)0.0112 (18)0.0176 (18)
C200.0477 (19)0.0430 (19)0.049 (2)0.0069 (15)0.0131 (16)0.0061 (15)
C210.070 (3)0.058 (2)0.046 (2)0.014 (2)0.0010 (19)0.0050 (18)
Geometric parameters (Å, º) top
Cu1—O11.954 (2)C5—C91.513 (5)
Cu1—O1i1.954 (2)C6—C71.360 (5)
Cu1—N1i2.003 (3)C6—H60.9300
Cu1—N12.003 (3)C7—C81.366 (5)
Cu1—O82.502 (3)C7—H70.9300
Cu2—O5ii1.958 (3)C8—H80.9300
Cu2—O41.960 (3)C9—H9A0.9700
Cu2—O7ii1.963 (3)C9—H9B0.9700
Cu2—O61.964 (3)C10—O51.241 (5)
Cu2—N22.176 (3)C10—C111.503 (5)
Cu2—Cu2ii2.6367 (12)C11—C121.424 (7)
N1—C81.332 (4)C11—H11A0.9700
N1—C41.343 (5)C11—H11B0.9700
N2—C201.328 (4)C12—H12A0.9600
N2—C161.333 (4)C12—H12B0.9600
O1—C11.234 (5)C12—H12C0.9600
O2—C11.229 (5)C13—O71.255 (5)
O3—C91.390 (5)C13—C141.508 (5)
O3—H3O0.8200C14—C151.420 (7)
O4—C101.257 (5)C14—H14A0.9700
O5—Cu2ii1.958 (3)C14—H14B0.9700
O6—C131.243 (5)C15—H15A0.9600
O7—Cu2ii1.963 (3)C15—H15B0.9600
O8—C211.393 (5)C15—H15C0.9600
O8—H8O0.8200C16—C171.375 (5)
C1—C21.518 (6)C16—H160.9300
C2—C31.430 (8)C17—C181.377 (5)
C2—H2A0.9700C17—C211.513 (5)
C2—H2B0.9700C18—C191.368 (6)
C3—H3A0.9600C18—H180.9300
C3—H3B0.9600C19—C201.355 (5)
C3—H3C0.9600C19—H190.9300
C4—C51.358 (5)C20—H200.9300
C4—H40.9300C21—H21A0.9700
C5—C61.383 (5)C21—H21B0.9700
O1—Cu1—O1i180.00 (12)C5—C6—H6120.5
O1—Cu1—N1i91.13 (11)C6—C7—C8120.2 (3)
O1i—Cu1—N1i88.87 (11)C6—C7—H7119.9
O1—Cu1—N188.87 (11)C8—C7—H7119.9
O1i—Cu1—N191.13 (11)N1—C8—C7121.5 (3)
N1i—Cu1—N1180.00 (13)N1—C8—H8119.2
O1—Cu1—O893.37 (11)C7—C8—H8119.2
O1i—Cu1—O886.63 (11)O3—C9—C5114.2 (3)
N1i—Cu1—O892.18 (11)O3—C9—H9A108.7
N1—Cu1—O887.82 (11)C5—C9—H9A108.7
O1—Cu1—O8iii161.26 (8)O3—C9—H9B108.7
O1i—Cu1—O8iii18.74 (8)C5—C9—H9B108.7
N1i—Cu1—O8iii107.04 (9)H9A—C9—H9B107.6
N1—Cu1—O8iii72.96 (9)O5—C10—O4125.8 (4)
O8—Cu1—O8iii81.66 (8)O5—C10—C11116.8 (4)
O5ii—Cu2—O4167.87 (12)O4—C10—C11117.4 (4)
O5ii—Cu2—O7ii89.98 (14)C12—C11—C10118.5 (5)
O4—Cu2—O7ii89.51 (13)C12—C11—H11A107.7
O5ii—Cu2—O689.31 (13)C10—C11—H11A107.7
O4—Cu2—O688.64 (13)C12—C11—H11B107.7
O7ii—Cu2—O6167.83 (11)C10—C11—H11B107.7
O5ii—Cu2—N296.61 (12)H11A—C11—H11B107.1
O4—Cu2—N295.44 (11)C11—C12—H12A109.5
O7ii—Cu2—N298.49 (11)C11—C12—H12B109.5
O6—Cu2—N293.67 (11)H12A—C12—H12B109.5
O5ii—Cu2—Cu2ii83.81 (9)C11—C12—H12C109.5
O4—Cu2—Cu2ii84.09 (9)H12A—C12—H12C109.5
O7ii—Cu2—Cu2ii84.36 (9)H12B—C12—H12C109.5
O6—Cu2—Cu2ii83.48 (8)O6—C13—O7125.5 (3)
N2—Cu2—Cu2ii177.12 (8)O6—C13—C14118.0 (4)
C8—N1—C4117.9 (3)O7—C13—C14116.5 (4)
C8—N1—Cu1121.0 (2)C15—C14—C13115.7 (4)
C4—N1—Cu1121.1 (2)C15—C14—H14A108.4
C20—N2—C16117.2 (3)C13—C14—H14A108.4
C20—N2—Cu2121.5 (2)C15—C14—H14B108.4
C16—N2—Cu2120.9 (2)C13—C14—H14B108.4
C1—O1—Cu1129.6 (3)H14A—C14—H14B107.4
C9—O3—H3O109.5C14—C15—H15A109.5
C10—O4—Cu2122.7 (2)C14—C15—H15B109.5
C13—O6—Cu2124.0 (2)H15A—C15—H15B109.5
C21—O8—Cu1143.7 (3)C14—C15—H15C109.5
C21—O8—H8O109.5H15A—C15—H15C109.5
Cu1—O8—H8O85.2H15B—C15—H15C109.5
O2—C1—O1125.2 (4)N2—C16—C17123.6 (3)
O2—C1—C2118.0 (4)N2—C16—H16118.2
O1—C1—C2116.8 (4)C17—C16—H16118.2
C3—C2—C1116.2 (5)C16—C17—C18117.6 (3)
C3—C2—H2A108.2C16—C17—C21121.7 (3)
C1—C2—H2A108.2C18—C17—C21120.7 (3)
C3—C2—H2B108.2C19—C18—C17119.2 (3)
C1—C2—H2B108.2C19—C18—H18120.4
H2A—C2—H2B107.4C17—C18—H18120.4
C2—C3—H3A109.5C20—C19—C18119.2 (4)
C2—C3—H3B109.5C20—C19—H19120.4
H3A—C3—H3B109.5C18—C19—H19120.4
C2—C3—H3C109.5N2—C20—C19123.3 (3)
H3A—C3—H3C109.5N2—C20—H20118.3
H3B—C3—H3C109.5C19—C20—H20118.4
N1—C4—C5123.6 (3)O8—C21—C17113.0 (3)
N1—C4—H4118.2O8—C21—H21A109.0
C5—C4—H4118.2C17—C21—H21A109.0
C4—C5—C6117.8 (3)O8—C21—H21B109.0
C4—C5—C9121.2 (3)C17—C21—H21B109.0
C6—C5—C9121.0 (3)H21A—C21—H21B107.8
C7—C6—C5118.9 (3)C13—O7—Cu2ii122.7 (3)
C7—C6—H6120.5C10—O5—Cu2ii123.6 (3)
O1—Cu1—N1—C8134.3 (3)Cu1—O1—C1—C2177.7 (3)
O1i—Cu1—N1—C845.7 (3)O2—C1—C2—C3169.1 (6)
N1i—Cu1—N1—C828 (87)O1—C1—C2—C311.6 (8)
O8—Cu1—N1—C840.9 (3)C8—N1—C4—C51.9 (5)
O8iii—Cu1—N1—C841.1 (3)Cu1—N1—C4—C5178.6 (3)
O1—Cu1—N1—C445.2 (3)N1—C4—C5—C62.0 (6)
O1i—Cu1—N1—C4134.8 (3)N1—C4—C5—C9178.6 (4)
N1i—Cu1—N1—C4153 (87)C4—C5—C6—C70.0 (6)
O8—Cu1—N1—C4138.6 (3)C9—C5—C6—C7179.5 (4)
O8iii—Cu1—N1—C4139.4 (3)C5—C6—C7—C81.9 (6)
O5ii—Cu2—N2—C208.4 (3)C4—N1—C8—C70.1 (5)
O4—Cu2—N2—C20170.3 (3)Cu1—N1—C8—C7179.4 (3)
O7ii—Cu2—N2—C2099.4 (3)C6—C7—C8—N12.0 (6)
O6—Cu2—N2—C2081.3 (3)C4—C5—C9—O30.4 (6)
Cu2ii—Cu2—N2—C2089.8 (16)C6—C5—C9—O3179.0 (4)
O5ii—Cu2—N2—C16179.3 (3)Cu2—O4—C10—O50.2 (6)
O4—Cu2—N2—C162.0 (3)Cu2—O4—C10—C11177.9 (3)
O7ii—Cu2—N2—C1688.3 (3)O5—C10—C11—C12163.7 (6)
O6—Cu2—N2—C1691.0 (3)O4—C10—C11—C1218.1 (8)
Cu2ii—Cu2—N2—C1682.5 (16)Cu2—O6—C13—O71.2 (6)
O1i—Cu1—O1—C116 (41)Cu2—O6—C13—C14179.4 (3)
N1i—Cu1—O1—C183.2 (3)O6—C13—C14—C15120.5 (6)
N1—Cu1—O1—C196.8 (3)O7—C13—C14—C1561.1 (7)
O8—Cu1—O1—C19.1 (3)C20—N2—C16—C170.3 (5)
O8iii—Cu1—O1—C182.9 (4)Cu2—N2—C16—C17172.3 (3)
O5ii—Cu2—O4—C103.9 (8)N2—C16—C17—C180.7 (6)
O7ii—Cu2—O4—C1083.7 (3)N2—C16—C17—C21179.8 (4)
O6—Cu2—O4—C1084.3 (3)C16—C17—C18—C191.1 (6)
N2—Cu2—O4—C10177.8 (3)C21—C17—C18—C19179.8 (4)
Cu2ii—Cu2—O4—C100.7 (3)C17—C18—C19—C200.5 (6)
O5ii—Cu2—O6—C1383.9 (3)C16—N2—C20—C191.0 (6)
O4—Cu2—O6—C1384.2 (3)Cu2—N2—C20—C19171.6 (3)
O7ii—Cu2—O6—C132.8 (8)C18—C19—C20—N20.6 (6)
N2—Cu2—O6—C13179.6 (3)Cu1—O8—C21—C17131.5 (3)
Cu2ii—Cu2—O6—C130.0 (3)C16—C17—C21—O816.0 (6)
O1—Cu1—O8—C21137.6 (4)C18—C17—C21—O8164.9 (4)
O1i—Cu1—O8—C2142.4 (4)O6—C13—O7—Cu2ii2.0 (6)
N1i—Cu1—O8—C2146.4 (4)C14—C13—O7—Cu2ii179.7 (3)
N1—Cu1—O8—C21133.6 (4)O4—C10—O5—Cu2ii0.8 (6)
O8iii—Cu1—O8—C2160.5 (4)C11—C10—O5—Cu2ii178.9 (3)
Cu1—O1—C1—O23.1 (6)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2iv0.821.952.768 (5)174
O8—H8O···O20.821.842.625 (5)160
Symmetry code: (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3(C6H7NO)4(C3H5O2)6]
Mr1065.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.194 (2), 9.959 (2), 15.358 (3)
α, β, γ (°)104.27 (3), 103.99 (3), 91.10 (3)
V3)1174.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerSyntex P21
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.576, 0.654
No. of measured, independent and
observed [I > 2σ(I)] reflections
5808, 5428, 3645
Rint0.035
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.01
No. of reflections5428
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.70

Computer programs: P21 Software (Syntex, 1973), P21 Software, XP21 (Pavelčík, 1993), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 1998), enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Cu1—O11.954 (2)Cu2—O7i1.963 (3)
Cu1—N12.003 (3)Cu2—O61.964 (3)
Cu1—O82.502 (3)Cu2—N22.176 (3)
Cu2—O5i1.958 (3)Cu2—Cu2i2.6367 (12)
Cu2—O41.960 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2ii0.821.952.768 (5)174
O8—H8O···O20.821.842.625 (5)160
Symmetry code: (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds