Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Ni(C15H8O7S)(H2O)4]·C3H7NO·H2O, the NiII cation is chelated by a 7-hydroxy-5-oxidoflavone-6-sulfonate ligand through one oxide and one carbonyl O atom, and the sixfold coordination is completed by four aqua ligands. Individual mol­ecules are linked into hydrogen-bonded dimers by way of five pairs of O—H...O hydrogen bonds. These dimers, in turn, determine a three-dimensional supra­molecular arrangement through a variety of inter­dimeric inter­actions, such as O—H...O, C—H...O and π–π stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106034536/bg3016sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106034536/bg3016Isup2.hkl
Contains datablock I

CCDC reference: 625673

Comment top

Flavonoids (2-phenylbenzo-γ-pyrones) are a broad class of polyphenolic secondary metabolites abundant in vascular plants and in a variety of edible vegetables, such as apples, soy, onions and tea (Zheng et al., 2003). They possess a number of pharmacological properties, including anti-oxidant, anticancer, antiviral and anti-inflammatory (Bertrand & Oliver, 1999). Chrysin, a naturally occurring and widely distributed flavone, has been reported to have many different biological activities, such as anti-oxidant (Chan et al., 2000), antivirus (Zheng et al., 2003), antidiabetogenic (Sternsdorf et al., 1997) and anti-anxiolytic (Shin et al., 1999). Furthermore, chrysin has demonstrated anticancer activities (Liu et al., 1992; Hebtemariam, 1997). Owing to the particularities of its carbonyl and hydroxyl groups, chrysin or chrysinsulfonate is able to coordinate with some metal ions (Puse & Nikta, 1997, 2000; Puse et al., 2001, 2003; Zhang et al., 2004b). We report here the crystal structure of a nickel(II) complex of chrysin-6-sulfonate, namely tetraaqua(5,7-dihydroxyflavone-6-sulfonate-κ2O,O')nickel(II) dimethylformamide solvate monohydrate, (I).

The compound consists of an NiII center sixfold coordinated by a chelating 5-(hydroxy anion)-7-hydroxyflavone-6-sulfonate ligand plus four coordinated water molecules, and is stabilized by a solvent dimethylformamide molecule and a solvent water molecule (Fig. 1). The ligand possesses a flavone skeleton, and the bond lengths and bond angles are in agreement with those reported for flavone (Waller et al., 2003). The benzopyranone system consists of ring A (C1–C6) and ring C (O7/C5–C9), which are planar [the mean deviation from the least-squares planes is 0.050 (2) Å] and subtend a dihedral angle of 5.4 (1)°. The planes of ring B (C10–C15) and ring C, in turn, make an angle of 8.3 (1)°, which shows that the flavone skeleton deviates only slightly from planarity; the overall mean deviation from the least-squares planes is 0.098 (3) Å. The NiII cation is coordinated by six O atoms (O1–O6) from the carbonyl and hydroxy groups of the chelating 5-(hydroxy anion)-7-hydroxyflavone-6-sulfonate ligand and from four coordinated water molecules, defining a slightly distorted octahedron. The range of the Ni—O bond lengths is 1.9995 (17)–2.1149 (19) Å (Table 1), and can be considered as normal (Chen & Wen, 2004).

The S—O distances and angles in (I) have similar values, suggesting that the negative charge is delocalized over the three sulfonate O atoms, thus giving some shared double-bond character to the whole group (Zhang et al., 2004a). The S1—O9 bond is slightly longer than the S1—O10 and S1—O11 values, owing to the O8—H8A···O9 intramolecular hydrogen bond between the 7-hydroxy and sulfonate groups in the ligand (first entry in Table 2, and Fig. 1).

There are three hydrogen bonds linking the main molecule and the water and dimethylformamide solvent molecules into a group (entries 2–4 in Table 2, and Fig. 1); these groups, in turn, are connected into well defined hydrogen-bonded dimers by way of five pairs of (OH)aqua···O hydrogen bonds (entries 5–9 in Table 2, and Fig. 1).

Finally, a neat three-dimensional supramolecular structure arises from a variety of interdimeric interactions, the most relevant of which are the hydrogen bonds presented in Table 2 as entries 10–13, and a stacking contact between the AC ring system and ring B, with a centroid–centroid distance [CgAC···CgB(−x + 2, −y + 1, −z + 1); Fig. 2] of 3.708 (2) Å and a mean slippage angle of 15 (2)°.

In the process, some interesting hydrogen-bonded structures build up, such as the R55(10) synthon (Etter, 1990) determined by atoms O12, O5, O13, O4iv and O6iii and shown in Fig. 2, and the R22(12) motif defined by the 10t h and 11t h hydrogen bonds in Table 2 and shown in Fig. 3.

Experimental top

Chrysin (2.0 g) was added with stirring to a concentrated sulfuric acid solution (10 ml) at 353 K for 12 h. After cooling to room temperature, it was poured into an aqueous solution of saturated sodium chloride (100 ml) and a yellow precipitate began to appear. After 2 h, the yellow precipitate was filtered off and washed with a saturated sodium chloride solution until the pH of the filtrate was 7. It was then dissolved in a buffer solution of NH4Cl–NH3·H2O (pH = 10, 100 ml) and mixed with a saturated NiSO4 solution (10 ml), at which point a green precipitate appeared. This was filtrated and added to boiling water (50 ml) (some of the green precipitate could not be dissolved). The solution was filtrated and recrystallized in a 95% DMF (v/v) solution, from which (I) was obtained (yield 62.8%). Analysis calculated for C18H25NNiO13S: C 38.99, H 4.51, N 2.53%; found: C 38.76, H 4.54, N 2.45%. IR (KBr disk; cm−1): 3365 (br, v), 1638 (s), 1599 (s), 1546 (s), 1450 (s), 1379 (s), 1168 (br, v), 1150 (s), 1029 (s), 926, 774, 590.

Refinement top

All H atoms, except methyl H atoms, were found in difference maps. H atoms bonded to C atoms were placed in calculated positions (C—H = 0.93 and 0.96 Å) and refined as riding, allowing for free rotation of the rigid methyl groups; Uiso(H) values were constrained to be 1.2 or 1.5 times Ueq(C). The positions of O-bound H atoms were refined freely (hydroxy group) or with distance restraints (water molecules), with Uiso(H) set at 0.08 Å2. Please check changes to text.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. : Part of the crystal structure of (I), showing the numbering scheme, the hydrogen-bonded dimer and intermolecular iteractions. Displacement ellipsoids are drawn at the 30% probability level. For clarity, some H atoms have been omitted. Thin dashed lines indicate the hydrogen-bonding interactions. [Symmetry code (i), see Table 2.]
[Figure 2] Fig. 2. : A view of the packing of (I), showing some of the hydrogen bonds, the ππ stacking interactions and the R55(10) synthon. For clarity, H atoms have been omitted. Thin dashed lines indicate hydrogen-bonding and ππ stacking interactions. CgAC and CgB are the centroids of the C1–C9/O7 ring system and the C10–C15 ring, respectively. [Symmetry codes: (v) −x + 2, −y + 1, −z + 1; for (iii) and (iv), see Table 2.]
[Figure 3] Fig. 3. : A complementary packing view of (I), showing the remaining hydorgen bonds and the resulting supramolecular R22(12) synthon. Thin dashed lines indicate the hydrogen bonding. [Symmetry code (ii), see Table 2.]
Tetraaqua(5,7-dihydroxyflavone-6-sulfonate-κ2O4,O5)nickel(II) dimethylformamide solvate monohydrate top
Crystal data top
[Ni(C15H8O7S)(H2O)4]·C3H7NO·H2OF(000) = 1152
Mr = 554.16Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2739 reflections
a = 7.876 (2) Åθ = 2.6–25.3°
b = 15.594 (4) ŵ = 0.98 mm1
c = 19.136 (5) ÅT = 298 K
β = 93.214 (5)°Block, green
V = 2346.6 (10) Å30.36 × 0.26 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4182 independent reflections
Radiation source: fine-focus sealed tube3060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 98
Tmin = 0.717, Tmax = 0.898k = 1718
11820 measured reflectionsl = 1422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.04P]
where P = (Fo2 + 2Fc2)/3
4182 reflections(Δ/σ)max = 0.008
342 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C15H8O7S)(H2O)4]·C3H7NO·H2OV = 2346.6 (10) Å3
Mr = 554.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.876 (2) ŵ = 0.98 mm1
b = 15.594 (4) ÅT = 298 K
c = 19.136 (5) Å0.36 × 0.26 × 0.11 mm
β = 93.214 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3060 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.898Rint = 0.030
11820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03212 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
4182 reflectionsΔρmin = 0.31 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.84573 (4)0.890643 (19)0.435940 (15)0.03092 (11)
N10.3867 (3)0.67843 (16)0.32050 (13)0.0560 (7)
O10.8865 (2)0.76825 (10)0.41063 (8)0.0403 (4)
O20.9178 (2)0.86428 (10)0.53568 (8)0.0340 (4)
O30.7630 (3)0.92156 (12)0.33393 (9)0.0413 (5)
O40.8046 (2)1.01786 (11)0.45829 (9)0.0349 (4)
O50.5983 (3)0.86151 (16)0.45611 (11)0.0581 (6)
O61.0977 (2)0.92063 (11)0.41185 (10)0.0369 (4)
O70.7871 (2)0.56216 (10)0.53235 (9)0.0450 (5)
O80.8826 (3)0.70036 (12)0.74466 (10)0.0554 (6)
O90.9502 (2)0.85724 (11)0.76199 (8)0.0454 (5)
O101.1106 (2)0.91237 (11)0.66806 (9)0.0414 (4)
O110.8125 (2)0.94433 (11)0.67114 (9)0.0453 (5)
O120.3116 (3)0.80491 (14)0.36600 (12)0.0658 (6)
S10.94601 (8)0.88206 (4)0.68808 (3)0.03457 (17)
C10.8910 (3)0.79212 (15)0.56606 (12)0.0301 (6)
C20.8983 (3)0.78698 (15)0.64041 (12)0.0307 (6)
C30.8705 (3)0.70958 (16)0.67445 (13)0.0385 (6)
C40.8278 (4)0.63615 (16)0.63658 (13)0.0451 (7)
H40.80240.58550.65940.054*
C50.8237 (3)0.63962 (16)0.56502 (13)0.0374 (6)
C60.8563 (3)0.71392 (15)0.52708 (12)0.0319 (6)
C70.8609 (3)0.70703 (16)0.45245 (13)0.0357 (6)
C80.8342 (3)0.62331 (16)0.42304 (13)0.0420 (7)
H80.84530.61580.37530.050*
C90.7938 (3)0.55530 (16)0.46181 (14)0.0391 (6)
C100.7488 (3)0.46850 (17)0.43588 (14)0.0425 (7)
C110.6896 (5)0.40693 (19)0.48015 (18)0.0727 (11)
H110.67880.41980.52710.087*
C120.6460 (5)0.3261 (2)0.4552 (2)0.0887 (13)
H120.60450.28540.48530.106*
C130.6635 (5)0.3060 (2)0.3871 (2)0.0760 (11)
H130.63720.25100.37110.091*
C140.7201 (4)0.3665 (2)0.34159 (19)0.0721 (10)
H140.72950.35320.29460.086*
C150.7628 (4)0.44741 (19)0.36640 (16)0.0585 (8)
H150.80150.48830.33570.070*
C170.3538 (5)0.5866 (2)0.3149 (2)0.0934 (14)
H17A0.24320.57430.33100.140*
H17B0.43830.55590.34300.140*
H17C0.35830.56920.26690.140*
C180.5328 (4)0.7139 (3)0.28944 (19)0.0864 (12)
H18A0.52620.77530.29020.130*
H18B0.53580.69440.24190.130*
H18C0.63410.69550.31540.130*
C160.2868 (4)0.7282 (2)0.35455 (17)0.0595 (9)
H160.18940.70380.37140.071*
O130.5144 (3)0.90243 (18)0.58480 (13)0.0838 (8)
H4B0.818 (4)1.035 (2)0.4990 (10)0.080*
H6A1.152 (4)0.8775 (15)0.4018 (17)0.080*
H3A0.796 (4)0.9713 (14)0.3214 (16)0.080*
H6B1.113 (4)0.9634 (16)0.3844 (15)0.080*
H8A0.914 (4)0.742 (2)0.7618 (18)0.080*
H4A0.858 (4)1.0477 (19)0.4324 (15)0.080*
H3B0.801 (4)0.8835 (17)0.3079 (15)0.080*
H5B0.527 (3)0.856 (2)0.4244 (13)0.080*
H5A0.568 (4)0.881 (2)0.4942 (12)0.080*
H13B0.602 (3)0.9242 (19)0.6089 (16)0.080*
H13A0.442 (3)0.9443 (16)0.5947 (12)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0416 (2)0.02603 (19)0.02525 (18)0.00306 (14)0.00335 (14)0.00036 (13)
N10.0523 (15)0.0539 (17)0.0604 (17)0.0109 (13)0.0090 (13)0.0176 (13)
O10.0677 (12)0.0260 (10)0.0279 (10)0.0046 (9)0.0093 (9)0.0010 (7)
O20.0509 (10)0.0252 (9)0.0262 (9)0.0059 (8)0.0033 (8)0.0026 (7)
O30.0592 (12)0.0328 (11)0.0317 (11)0.0014 (9)0.0004 (9)0.0011 (8)
O40.0427 (10)0.0292 (10)0.0331 (10)0.0021 (8)0.0057 (9)0.0001 (8)
O50.0477 (13)0.0813 (16)0.0457 (13)0.0174 (11)0.0055 (10)0.0052 (12)
O60.0448 (11)0.0278 (10)0.0387 (11)0.0014 (8)0.0083 (9)0.0009 (8)
O70.0739 (13)0.0264 (10)0.0347 (11)0.0096 (9)0.0024 (10)0.0002 (8)
O80.1061 (17)0.0341 (11)0.0265 (11)0.0152 (12)0.0063 (11)0.0042 (8)
O90.0736 (13)0.0369 (11)0.0264 (10)0.0108 (9)0.0082 (9)0.0005 (8)
O100.0504 (11)0.0404 (11)0.0336 (10)0.0132 (8)0.0048 (9)0.0011 (8)
O110.0594 (12)0.0339 (11)0.0432 (11)0.0078 (9)0.0075 (9)0.0024 (8)
O120.0568 (13)0.0533 (15)0.0883 (17)0.0020 (11)0.0114 (12)0.0212 (12)
S10.0505 (4)0.0281 (4)0.0255 (3)0.0038 (3)0.0060 (3)0.0005 (3)
C10.0348 (13)0.0250 (13)0.0303 (14)0.0007 (11)0.0019 (11)0.0024 (10)
C20.0420 (15)0.0236 (13)0.0272 (14)0.0013 (11)0.0069 (11)0.0000 (10)
C30.0561 (17)0.0321 (15)0.0278 (15)0.0021 (13)0.0071 (13)0.0024 (11)
C40.075 (2)0.0268 (15)0.0341 (16)0.0070 (13)0.0047 (15)0.0064 (11)
C50.0514 (16)0.0250 (14)0.0355 (15)0.0032 (12)0.0009 (13)0.0020 (11)
C60.0424 (14)0.0245 (13)0.0290 (14)0.0023 (11)0.0036 (12)0.0015 (10)
C70.0455 (15)0.0294 (15)0.0325 (15)0.0015 (12)0.0048 (12)0.0022 (11)
C80.0646 (19)0.0309 (16)0.0310 (15)0.0041 (13)0.0074 (14)0.0046 (11)
C90.0487 (16)0.0325 (15)0.0360 (15)0.0009 (12)0.0003 (13)0.0035 (12)
C100.0514 (17)0.0304 (15)0.0451 (17)0.0020 (13)0.0030 (14)0.0038 (12)
C110.125 (3)0.0394 (19)0.053 (2)0.0240 (19)0.001 (2)0.0005 (15)
C120.149 (4)0.039 (2)0.075 (3)0.032 (2)0.020 (3)0.0056 (18)
C130.101 (3)0.038 (2)0.086 (3)0.0097 (19)0.016 (2)0.0207 (19)
C140.095 (3)0.053 (2)0.068 (2)0.0133 (19)0.006 (2)0.0289 (18)
C150.075 (2)0.0447 (19)0.056 (2)0.0066 (16)0.0093 (17)0.0131 (15)
C170.104 (3)0.056 (2)0.115 (3)0.014 (2)0.041 (3)0.027 (2)
C180.070 (2)0.108 (3)0.083 (3)0.026 (2)0.018 (2)0.004 (2)
C160.0463 (18)0.058 (2)0.074 (2)0.0032 (16)0.0012 (17)0.0095 (18)
O130.0574 (15)0.118 (2)0.0754 (18)0.0264 (15)0.0005 (13)0.0253 (15)
Geometric parameters (Å, º) top
Ni1—O11.9995 (17)C2—C31.395 (3)
Ni1—O22.0031 (16)C3—C41.386 (3)
Ni1—O42.0588 (19)C4—C51.369 (3)
Ni1—O52.059 (2)C4—H40.9300
Ni1—O32.0796 (19)C5—C61.399 (3)
Ni1—O62.1149 (19)C6—C71.435 (3)
N1—C161.306 (4)C7—C81.433 (3)
N1—C181.435 (4)C8—C91.343 (3)
N1—C171.458 (4)C8—H80.9300
O1—C71.269 (3)C9—C101.478 (3)
O2—C11.289 (3)C10—C111.379 (4)
O3—H3A0.856 (18)C10—C151.380 (4)
O3—H3B0.842 (18)C11—C121.384 (4)
O4—H4B0.826 (17)C11—H110.9300
O4—H4A0.815 (18)C12—C131.355 (5)
O5—H5B0.806 (17)C12—H120.9300
O5—H5A0.834 (18)C13—C141.376 (5)
O6—H6A0.824 (17)C13—H130.9300
O6—H6B0.862 (18)C14—C151.383 (4)
O7—C91.358 (3)C14—H140.9300
O7—C51.383 (3)C15—H150.9300
O8—C31.349 (3)C17—H17A0.9600
O8—H8A0.77 (3)C17—H17B0.9600
O9—S11.4649 (17)C17—H17C0.9600
O10—S11.4516 (18)C18—H18A0.9600
O11—S11.4541 (18)C18—H18B0.9600
O12—C161.230 (4)C18—H18C0.9600
S1—C21.770 (2)C16—H160.9300
C1—C21.423 (3)O13—H13B0.877 (17)
C1—C61.448 (3)O13—H13A0.892 (15)
O1—Ni1—O289.67 (7)C3—C4—H4120.6
O1—Ni1—O4177.94 (7)C4—C5—O7114.2 (2)
O2—Ni1—O492.25 (7)C4—C5—C6123.9 (2)
O1—Ni1—O590.07 (9)O7—C5—C6121.9 (2)
O2—Ni1—O589.81 (8)C5—C6—C7118.1 (2)
O4—Ni1—O590.69 (9)C5—C6—C1117.7 (2)
O1—Ni1—O392.29 (7)C7—C6—C1124.2 (2)
O2—Ni1—O3177.53 (7)O1—C7—C8117.6 (2)
O4—Ni1—O385.81 (7)O1—C7—C6125.8 (2)
O5—Ni1—O388.68 (8)C8—C7—C6116.6 (2)
O1—Ni1—O689.60 (7)C9—C8—C7122.5 (2)
O2—Ni1—O691.95 (7)C9—C8—H8118.8
O4—Ni1—O689.58 (7)C7—C8—H8118.8
O5—Ni1—O6178.21 (8)C8—C9—O7120.7 (2)
O3—Ni1—O689.58 (8)C8—C9—C10126.7 (2)
C16—N1—C18119.9 (3)O7—C9—C10112.6 (2)
C16—N1—C17120.7 (3)C11—C10—C15118.3 (3)
C18—N1—C17119.4 (3)C11—C10—C9121.0 (3)
C7—O1—Ni1122.15 (16)C15—C10—C9120.7 (3)
C1—O2—Ni1124.34 (15)C10—C11—C12120.5 (3)
Ni1—O3—H3A113 (2)C10—C11—H11119.7
Ni1—O3—H3B107 (2)C12—C11—H11119.7
H3A—O3—H3B110 (3)C13—C12—C11120.4 (3)
Ni1—O4—H4B120 (2)C13—C12—H12119.8
Ni1—O4—H4A109 (2)C11—C12—H12119.8
H4B—O4—H4A110 (3)C12—C13—C14120.2 (3)
Ni1—O5—H5B120 (2)C12—C13—H13119.9
Ni1—O5—H5A114 (2)C14—C13—H13119.9
H5B—O5—H5A119 (4)C13—C14—C15119.4 (3)
Ni1—O6—H6A112 (2)C13—C14—H14120.3
Ni1—O6—H6B118 (2)C15—C14—H14120.3
H6A—O6—H6B114 (3)C10—C15—C14121.2 (3)
C9—O7—C5119.95 (19)C10—C15—H15119.4
C3—O8—H8A110 (3)C14—C15—H15119.4
O10—S1—O11111.65 (11)N1—C17—H17A109.5
O10—S1—O9111.63 (11)N1—C17—H17B109.5
O11—S1—O9111.63 (11)H17A—C17—H17B109.5
O10—S1—C2107.68 (11)N1—C17—H17C109.5
O11—S1—C2108.33 (11)H17A—C17—H17C109.5
O9—S1—C2105.60 (11)H17B—C17—H17C109.5
O2—C1—C2120.1 (2)N1—C18—H18A109.5
O2—C1—C6122.3 (2)N1—C18—H18B109.5
C2—C1—C6117.6 (2)H18A—C18—H18B109.5
C3—C2—C1121.1 (2)N1—C18—H18C109.5
C3—C2—S1121.24 (18)H18A—C18—H18C109.5
C1—C2—S1117.62 (17)H18B—C18—H18C109.5
O8—C3—C4115.7 (2)O12—C16—N1124.9 (3)
O8—C3—C2123.6 (2)O12—C16—H16117.5
C4—C3—C2120.7 (2)N1—C16—H16117.5
C5—C4—C3118.8 (2)H13B—O13—H13A95.6 (19)
C5—C4—H4120.6
O2—Ni1—O1—C733.53 (19)C4—C5—C6—C12.0 (4)
O5—Ni1—O1—C756.3 (2)O7—C5—C6—C1179.1 (2)
O3—Ni1—O1—C7144.96 (19)O2—C1—C6—C5178.0 (2)
O6—Ni1—O1—C7125.48 (19)C2—C1—C6—C53.2 (3)
O1—Ni1—O2—C133.55 (18)O2—C1—C6—C75.0 (4)
O4—Ni1—O2—C1147.21 (18)C2—C1—C6—C7173.8 (2)
O5—Ni1—O2—C156.52 (19)Ni1—O1—C7—C8158.20 (18)
O6—Ni1—O2—C1123.13 (18)Ni1—O1—C7—C621.8 (3)
Ni1—O2—C1—C2160.82 (17)C5—C6—C7—O1179.0 (2)
Ni1—O2—C1—C620.4 (3)C1—C6—C7—O14.0 (4)
O2—C1—C2—C3179.7 (2)C5—C6—C7—C81.0 (4)
C6—C1—C2—C30.9 (4)C1—C6—C7—C8176.0 (2)
O2—C1—C2—S10.4 (3)O1—C7—C8—C9175.0 (2)
C6—C1—C2—S1178.46 (17)C6—C7—C8—C95.0 (4)
O10—S1—C2—C3120.5 (2)C7—C8—C9—O74.2 (4)
O11—S1—C2—C3118.6 (2)C7—C8—C9—C10174.1 (2)
O9—S1—C2—C31.1 (2)C5—O7—C9—C80.7 (4)
O10—S1—C2—C158.9 (2)C5—O7—C9—C10179.3 (2)
O11—S1—C2—C162.0 (2)C8—C9—C10—C11171.9 (3)
O9—S1—C2—C1178.25 (18)O7—C9—C10—C116.6 (4)
C1—C2—C3—O8177.2 (2)C8—C9—C10—C157.1 (5)
S1—C2—C3—O82.1 (4)O7—C9—C10—C15174.4 (3)
C1—C2—C3—C42.8 (4)C15—C10—C11—C120.2 (5)
S1—C2—C3—C4177.9 (2)C9—C10—C11—C12179.3 (3)
O8—C3—C4—C5176.0 (2)C10—C11—C12—C131.0 (6)
C2—C3—C4—C54.0 (4)C11—C12—C13—C141.9 (6)
C3—C4—C5—O7177.3 (2)C12—C13—C14—C151.6 (6)
C3—C4—C5—C61.6 (4)C11—C10—C15—C140.6 (5)
C9—O7—C5—C4174.3 (2)C9—C10—C15—C14179.6 (3)
C9—O7—C5—C64.7 (4)C13—C14—C15—C100.3 (5)
C4—C5—C6—C7175.2 (3)C18—N1—C16—O124.0 (5)
O7—C5—C6—C73.7 (4)C17—N1—C16—O12174.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O90.77 (3)1.81 (3)2.522 (2)153 (4)
O5—H5B···O120.81 (2)2.14 (2)2.900 (3)159 (3)
O5—H5A···O130.83 (2)1.84 (2)2.663 (3)169 (3)
O13—H13B···O110.88 (2)2.01 (2)2.870 (3)166 (3)
O3—H3A···O10i0.86 (2)1.96 (2)2.775 (3)158 (3)
O4—H4A···O10i0.82 (2)2.05 (2)2.767 (2)147 (3)
O4—H4A···O2i0.82 (2)2.29 (3)2.854 (2)127 (3)
O4—H4B···O6i0.83 (2)1.92 (2)2.734 (3)167 (3)
O6—H6B···O11i0.86 (2)1.90 (2)2.754 (3)170 (3)
O3—H3B···O8ii0.84 (2)1.92 (2)2.757 (3)177 (3)
C8—H8···O9ii0.932.403.277 (3)157
O6—H6A···O12iii0.82 (2)1.85 (2)2.652 (3)163 (3)
O13—H13A···O4iv0.89 (2)2.22 (2)2.882 (3)130 (2)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C15H8O7S)(H2O)4]·C3H7NO·H2O
Mr554.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.876 (2), 15.594 (4), 19.136 (5)
β (°) 93.214 (5)
V3)2346.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.36 × 0.26 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.717, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
11820, 4182, 3060
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections4182
No. of parameters342
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.31

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected bond lengths (Å) top
Ni1—O11.9995 (17)Ni1—O52.059 (2)
Ni1—O22.0031 (16)Ni1—O32.0796 (19)
Ni1—O42.0588 (19)Ni1—O62.1149 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O90.77 (3)1.81 (3)2.522 (2)153 (4)
O5—H5B···O120.806 (17)2.14 (2)2.900 (3)159 (3)
O5—H5A···O130.834 (18)1.839 (19)2.663 (3)169 (3)
O13—H13B···O110.877 (17)2.011 (18)2.870 (3)166 (3)
O3—H3A···O10i0.856 (18)1.96 (2)2.775 (3)158 (3)
O4—H4A···O10i0.815 (18)2.05 (2)2.767 (2)147 (3)
O4—H4A···O2i0.815 (18)2.29 (3)2.854 (2)127 (3)
O4—H4B···O6i0.826 (17)1.923 (19)2.734 (3)167 (3)
O6—H6B···O11i0.862 (18)1.902 (19)2.754 (3)170 (3)
O3—H3B···O8ii0.842 (18)1.916 (18)2.757 (3)177 (3)
C8—H8···O9ii0.932.403.277 (3)157.1
O6—H6A···O12iii0.824 (17)1.85 (2)2.652 (3)163 (3)
O13—H13A···O4iv0.892 (15)2.22 (2)2.882 (3)130 (2)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+1, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds