Download citation
Download citation
link to html
The crystal structures of [1,3-bis­(diphenyl­phosphino)ethane-κ2P,P′](pyridine-2-sulfinato-κ2N,S)(pyridine-2-thiol­ato-κ2N,S)ruthenium(II), [Ru(C5H4NO2S)0.33(C5H4NS)1.67(C26H24P2)] or [Ru(pySO2)1−x(pyS)1+x(dppe)] (x = 0.67), (I), and [1,3-bis­(diphenyl­phosphino)propane-κ2P,P′](pyridine-2-sulfinato-κ2N,S)(pyridine-2-thiol­ato-κ2N,S)ruthenium(II), [Ru(C5H4NO2S)0.355(C5H4NS)1.645(C27H26P2)] or [Ru(pySO2)1−x(pyS)1+x(dppp)] (x = 0.645), (II), are composed of neutral distorted octa­hedral RuII complexes with chelating pyridine-2-thiol­ate, pyridine-2-sulfinate and biphosphine ligands. The S atoms are trans to each other, while pairs of P and N atoms are in cis positions. Partial double-bond character is observed for C—S. The crystal packing consists of monolayers stabilized by C—H...O and C—H...S inter­actions, and is affected by the alkyl-chain lengths.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106027491/bg3001sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106027491/bg3001Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106027491/bg3001IIsup3.hkl
Contains datablock II

CCDC references: 621264; 621265

Comment top

Nitric oxide (NO) is relevant for many physiological processes, such as cytotoxicity, neural transmission and blood pressure regulation, and its inbalance relates to diseases, for example cancer, epilepsy, diabetes and arthritis (Ignarro, 2000). S-Nitrosothiols (R-SNO) are believed to play an important role in storing, transporting and releasing NO in the human body (Ignarro, 2000). The ability of transition metal complexes both to scavenge and to release NO has generated new interest in such complexes as potential metallopharmaceuticals (Clarke, 2003). Ruthenium has a high affinity for NO, and some complexes of this metal with coordinated NO have therapeutic use in the treatment of sepsis and in the control of high blood pressure (Clarke, 2003). The ability of {Ru(NO)}6 complexes, following the Enemark & Feltham (1974) notation, to form octahedral complexes is well known (Richter-Addo & Legzdins, 1992). Considering the electrophilic character of coordinated NO in a wide range of complexes, biological reducing agents, such as thiols, are able to reduce the NO group, thus promoting its labilization (Bottomley, 1978). Against this background, it is of interest to study the reactions between nitrosyl complexes and ligands containing thiol residues, such as complexes with the general formula [Ru(SpymMe2,-N,-S)(SpymMe2,-S)(NO)(P—P)]+ (P—P is dppe Please define or c-dppen Please define and SpymMe2 is ? Please define), recently reported by some of us (Von Poelhsitz et al., 2005).

Extending our previous studies, in the present work complexes with the general formula fac-[RuCl3(NO)(P—P)] (P—P = dppe or dppp Please define) were chosen as probes to evaluate the interaction between coordinated NO and the 2-mercaptopyridine (pyS-) ligand. The products were identified by spectroscopic techniques (31P NMR, IR and UV–vis) and elemental analysis as the thiolate derivatives [Ru(pyS)2(P—P)], previously reported by Lobana et al. (1998) and Tiekink et al. (1991). In the present case, the products were obtained by the reaction shown in the scheme, while in the previously reported studies the compounds were obtained by the addition of pyS- to cis-[RuCl2(P—P)2] complexes. Finally, partial oxidation of the [Ru(pyS)2(P—P)] complexes by air produced the title compounds, (I) and (II), as expected from the well known sulfur-centred reactivity of transition metal thiolates with dioxygen to produce sulfur oxygenates (Dilworth et al., 1992; Grapperhaus & Darensbourg, 1998). In the present cases, occupancy refinement showed that one S atom of each molecule was partially oxidized: the occupancies of atoms O1 and O2 (bonded to S1) refined to 0.330 (5) in (I), to give the formula [Ru(pyS)1.67(pySO2)0.33(dppe)], and to 0.357 (6) in (II), to give the formula [Ru(pyS)1.64(pySO2)0.36(dppp)].

The molecular structures of the title ruthenium (II) complexes, (I) and (II) (Figs. 1 and 2), show the distorted octahedral coordination of the metal centres, with chelating pyS-, pySO2- and biphosphine ligands. The exocyclic S atoms occupy trans-positions, while pairs of P and N atoms are in cis-positions. The distortions from the ideal octahedral geometry arise from both small bite angles for pyS- and pySO2- [average N—Ru—S = 67.3 (3)°] and steric crowding of the bulky biphosphine ligand. The mean Ru—P [2.279 (2) Å], Ru—N [2.139 (7) Å] and Ru—S [2.41 (3) Å] distances are in good agreement with previously reported values for [Ru(pyS)2(P—P)] complexes (Lobana et al., 1998; Tiekink et al., 1991). The C—S bond distances of 1.758 (3) and 1.731 (3) Å for (I), and 1.767 (4) and 1.744 (4) Å for (II), suggest partial double-bond character for these bonds compared with characteristic single and double C—S bond distances (Pauling, 1960).

Two Ru/N/C/S four-membered rings are present in each complex. Ring A (Ru/N2/C26/S2) contains the non-oxidized S atom. Approximately one-third of rings B (Ru/N1/C12/S1) in the crystal of each complex contain oxidized S atoms. Geometric parameters inside rings A and B are approximately the same. Both rings are constructed by means of an RuII ion with S and N atoms from the same pyridine-2-thiolate ligand, tolerating considerable strain to achieve an octahedral coordination of Ru. As a result, the average values of the Ru—N—C [102.3 (8)°] and N—C—S [108.7(1.3)°] angles are distorted from the 120° expected for an sp2-hybridized atom. The observed Ru—S distances in the oxidized complexes (I) and (II) remain close to those observed in the non-oxidized ones.

The two S atoms are trans to each other, with S1—Ru1—S2 angles of 155.87 (3) and 153.87 (4) °, respectively, for (I) and (II). These angles are close to those observed in the series [Ru(pyS)2(P—P)], where P—P is dppe, dppb [Please define] or dppb [Same as previous ligand?], which have S—Ru—S angles in the range 153.9–155.6° (Lobana et al., 1998). The P2—Ru1—P1 bite angles of 84.45 (3)° for (I) and 90.78 (5)° for (II) are related to the lengths of the alkyl chains.

The crystal packing of both compounds consists of parallel layers of molecules. The layers are stabilized by C—H···O and C—H···S interactions (Tables 2 and 4). For compound (I), these layers are parallel to the (101) planes. The layers in compound (II) lie parallel to the (110) planes. Atom O1 is an acceptor of one hydrogen bond in each complex. Atom O2, on the other hand, is an acceptor of two C—H···O hydrogen bonds in (I), but not in (II).

It is interesting to compare these results with the previously reported structures of the non-oxidized compounds [Ru(pyS)2(dppe)] (Tiekink et al., 1991) and [Ru(pyS)2(dppp)] (Lobana et al., 1998). The O atoms in the oxidized compound, (II), fill spaces that are empty in the corresponding non-oxidized structure, in such a way that isomorphism is observed between the two species. Similar to (II), compound (I) has a monolayer structure stabilized by C—H···O and C—H···S interactions. [Ru(pyS)2(dppe)], on the other hand, presents a double-layer structure stabilized by C—H···S interactions. Finally, it is interesting to note that the length of the alkyl groups linking the two P(Ph)2 units plays an important role in the crystal packing of the compounds discussed here. The packing of the complexes containing the dppp ligand {space group P1 for (II) and [Ru(pyS)2(dppp)], isomorphous structures} is different from the packing of the crystal structures of the complexes containing the dppe ligand (space groups P21/c and P21/n for the crystals of the oxidized and non-oxidized species, respectively).

Experimental top

A suspension of the corresponding fac-[RuCl3(NO)(P—P)] precursors (P—P is dppe or dppp) (Batista et al., 1997; Zampieri et al., 2002) (100 mg) in deoxygenated methanol (25 ml) was mixed with a solution of 2-mercaptopyridine (0.48 mmol, 54.0 mg) in methanol (5 ml) containing triethylamine (0.60 mmol, 0.083 ml), previously bubbled with Ar for 10 min. The mixture was heated under reflux for 12 h. The resulting mixture, containing a yellow precipitate, was collected by filtration, washed with methanol and diethyl? ether, and dried under vacuum. The same results can be achieved without heating under reflux if the time of the reaction is increased to 24 h. The [Ru(pyS)2(P—P)] products were maintained in CH2Cl2 solutions and after a few days yellow [(I) is red below - please clarify] crystals of the title complexes, (I) and (II), [Ru(pyS)1 + x(pySO2)1 - x(P—P)], were grown.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C). [Please check added text]

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II). Cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997) for (I); CAD-4 EXPRESS for (II). Data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A structural representation of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and most H atoms have been omitted.
[Figure 2] Fig. 2. A structural representation of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and most H atoms have been omitted.
(I) [1,3-bis(diphenylphosphino)ethane-κ2P,P'](pyridine-2-sulfinato- κ2N,S)(pyridine-2-thiolato-κ2N,S)ruthenium(II) top
Crystal data top
[Ru(C5H4NO2S)0.33(C5H4NS)1.67(C26H24P2)]F(000) = 1493.1
Mr = 729.66Dx = 1.481 Mg m3
MonoclinicP21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P2ynCell parameters from 80885 reflections
a = 11.4520 (2) Åθ = 1.0–27.5°
b = 22.3900 (4) ŵ = 0.73 mm1
c = 12.8710 (2) ÅT = 293 K
β = 91.661 (1)°Prism, red
V = 3298.9 (1) Å30.14 × 0.10 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
7558 independent reflections
Radiation source: fine-focus sealed tube5481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.134
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 1.8°
Type of scansh = 1414
Absorption correction: multi-scan
from symmetry-related measurements (SORTAV; Blessing 1995)
k = 2929
Tmin = 0.850, Tmax = 0.961l = 1616
80383 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
7558 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Ru(C5H4NO2S)0.33(C5H4NS)1.67(C26H24P2)]V = 3298.9 (1) Å3
Mr = 729.66Z = 4
MonoclinicP21/nMo Kα radiation
a = 11.4520 (2) ŵ = 0.73 mm1
b = 22.3900 (4) ÅT = 293 K
c = 12.8710 (2) Å0.14 × 0.10 × 0.08 mm
β = 91.661 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7558 independent reflections
Absorption correction: multi-scan
from symmetry-related measurements (SORTAV; Blessing 1995)
5481 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.961Rint = 0.134
80383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
7558 reflectionsΔρmin = 0.83 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Occupancy parameters were refined for oxygen sites

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.266054 (18)0.123970 (9)0.259906 (16)0.03851 (9)
S10.35127 (7)0.15883 (4)0.10310 (6)0.0557 (2)
S20.11945 (7)0.11816 (3)0.39099 (6)0.0501 (2)
P10.42171 (7)0.10800 (4)0.37070 (6)0.04589 (19)
P20.28898 (6)0.02596 (3)0.21806 (5)0.04396 (18)
O10.3734 (6)0.2235 (3)0.1012 (5)0.063 (2)0.330 (5)
O20.4097 (6)0.1228 (3)0.0389 (6)0.065 (2)0.330 (5)
N10.1376 (2)0.14325 (11)0.14004 (18)0.0470 (5)
N20.22745 (19)0.20935 (10)0.32553 (17)0.0451 (5)
C10.4517 (3)0.02711 (14)0.3739 (2)0.0588 (8)
H1A0.53130.02010.39870.071*
H1B0.39930.00750.42090.071*
C20.4343 (3)0.00194 (15)0.2652 (2)0.0566 (8)
H2A0.43890.04130.26670.068*
H2B0.49390.01700.22010.068*
C120.2041 (3)0.16043 (14)0.0603 (2)0.0550 (8)
C130.1553 (3)0.17545 (19)0.0352 (3)0.0810 (11)
H130.20150.18750.08960.097*
C140.0353 (4)0.1720 (2)0.0475 (3)0.0970 (14)
H140.00020.18130.11140.116*
C150.0318 (3)0.1548 (2)0.0335 (3)0.0819 (11)
H150.11260.15260.02550.098*
C160.0225 (3)0.14095 (16)0.1266 (3)0.0595 (8)
H160.02280.12960.18210.071*
C220.2593 (3)0.26631 (14)0.3159 (2)0.0523 (7)
H220.31800.27580.27020.063*
C230.2086 (3)0.31134 (15)0.3710 (3)0.0623 (8)
H230.23320.35070.36390.075*
C240.1194 (3)0.29694 (17)0.4379 (3)0.0698 (9)
H240.08330.32680.47560.084*
C250.0850 (3)0.23878 (16)0.4479 (2)0.0624 (8)
H250.02460.22880.49140.075*
C260.1417 (2)0.19464 (14)0.3921 (2)0.0487 (7)
C310.4140 (3)0.12715 (13)0.5099 (2)0.0499 (7)
C320.4795 (3)0.17329 (17)0.5530 (3)0.0672 (9)
H320.52770.19580.51120.081*
C330.4737 (3)0.18621 (19)0.6588 (3)0.0796 (11)
H330.51860.21700.68740.096*
C340.4021 (3)0.1537 (2)0.7209 (3)0.0770 (11)
H340.39860.16230.79140.092*
C350.3361 (3)0.1088 (2)0.6792 (3)0.0735 (10)
H350.28760.08690.72150.088*
C360.3403 (3)0.09520 (17)0.5739 (2)0.0623 (8)
H360.29380.06470.54610.075*
C410.5651 (3)0.13984 (16)0.3395 (2)0.0528 (7)
C420.5726 (3)0.18750 (16)0.2722 (2)0.0622 (8)
H420.50480.20280.24100.075*
C430.6800 (3)0.21311 (19)0.2503 (3)0.0771 (11)
H430.68390.24540.20500.093*
C440.7801 (3)0.1902 (2)0.2960 (3)0.0826 (12)
H440.85210.20670.28090.099*
C450.7749 (3)0.1431 (2)0.3637 (3)0.0844 (12)
H450.84290.12810.39500.101*
C460.6680 (3)0.11811 (18)0.3852 (3)0.0712 (11)
H460.66490.08610.43120.085*
C510.1897 (3)0.02661 (13)0.2799 (2)0.0548 (8)
C520.0740 (3)0.01224 (18)0.2840 (3)0.0756 (10)
H520.04830.02460.25880.091*
C530.0065 (4)0.0521 (2)0.3254 (3)0.0989 (14)
H530.08480.04120.32660.119*
C540.0256 (5)0.1048 (2)0.3629 (3)0.1005 (16)
H540.02960.13110.38830.121*
C550.1440 (6)0.12025 (18)0.3635 (3)0.1013 (18)
H550.16800.15660.39180.122*
C560.2271 (4)0.08153 (17)0.3221 (3)0.0781 (11)
H560.30560.09210.32240.094*
C610.2791 (3)0.00075 (13)0.0836 (2)0.0477 (7)
C620.1816 (3)0.01342 (16)0.0235 (2)0.0674 (9)
H620.12260.03620.05190.081*
C630.1700 (4)0.0058 (2)0.0788 (3)0.0835 (11)
H630.10340.00410.11820.100*
C640.2557 (4)0.03916 (19)0.1217 (3)0.0846 (12)
H640.24870.05120.19080.101*
C650.3523 (4)0.05481 (16)0.0625 (3)0.0721 (10)
H650.40950.07890.09070.087*
C660.3649 (3)0.03513 (14)0.0381 (2)0.0583 (8)
H660.43210.04500.07660.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03591 (14)0.04269 (15)0.03704 (14)0.00066 (9)0.00303 (9)0.00176 (9)
S10.0505 (4)0.0678 (6)0.0489 (4)0.0067 (4)0.0050 (3)0.0091 (4)
S20.0463 (4)0.0571 (5)0.0476 (4)0.0038 (3)0.0104 (3)0.0026 (3)
P10.0405 (4)0.0549 (5)0.0421 (4)0.0016 (3)0.0021 (3)0.0005 (3)
P20.0477 (4)0.0440 (4)0.0402 (4)0.0010 (3)0.0019 (3)0.0004 (3)
O10.069 (5)0.050 (4)0.071 (5)0.004 (3)0.012 (3)0.015 (3)
O20.060 (4)0.063 (5)0.072 (5)0.004 (3)0.015 (4)0.007 (3)
N10.0436 (13)0.0512 (13)0.0464 (13)0.0012 (11)0.0028 (10)0.0036 (11)
N20.0401 (12)0.0474 (14)0.0477 (13)0.0024 (10)0.0013 (10)0.0017 (10)
C10.0604 (19)0.063 (2)0.0525 (18)0.0118 (16)0.0107 (14)0.0023 (15)
C20.0598 (19)0.0541 (18)0.0557 (18)0.0129 (15)0.0022 (14)0.0007 (15)
C120.0588 (18)0.057 (2)0.0495 (17)0.0027 (14)0.0062 (14)0.0109 (14)
C130.079 (3)0.105 (3)0.059 (2)0.006 (2)0.0014 (18)0.035 (2)
C140.084 (3)0.134 (4)0.072 (3)0.017 (3)0.020 (2)0.038 (3)
C150.052 (2)0.111 (3)0.082 (3)0.010 (2)0.0148 (18)0.017 (2)
C160.0471 (18)0.069 (2)0.062 (2)0.0045 (16)0.0005 (15)0.0066 (17)
C220.0486 (17)0.0538 (19)0.0543 (18)0.0017 (14)0.0012 (13)0.0021 (14)
C230.073 (2)0.0439 (18)0.069 (2)0.0007 (16)0.0063 (17)0.0058 (15)
C240.080 (2)0.062 (2)0.068 (2)0.0171 (18)0.0044 (18)0.0133 (17)
C250.0612 (19)0.069 (2)0.0583 (19)0.0076 (17)0.0132 (15)0.0089 (16)
C260.0465 (16)0.0565 (18)0.0431 (15)0.0046 (13)0.0009 (12)0.0009 (13)
C310.0436 (16)0.063 (2)0.0433 (16)0.0041 (13)0.0011 (13)0.0018 (13)
C320.067 (2)0.075 (2)0.060 (2)0.0070 (18)0.0046 (16)0.0110 (17)
C330.080 (3)0.093 (3)0.066 (2)0.001 (2)0.0024 (19)0.027 (2)
C340.072 (2)0.109 (3)0.050 (2)0.016 (2)0.0000 (18)0.017 (2)
C350.064 (2)0.103 (3)0.054 (2)0.008 (2)0.0110 (17)0.0072 (19)
C360.059 (2)0.075 (2)0.0525 (18)0.0037 (17)0.0022 (15)0.0031 (17)
C410.0416 (16)0.072 (2)0.0447 (16)0.0023 (14)0.0015 (13)0.0082 (15)
C420.0552 (19)0.073 (2)0.0584 (19)0.0122 (16)0.0023 (15)0.0077 (17)
C430.069 (2)0.095 (3)0.069 (2)0.027 (2)0.0117 (18)0.011 (2)
C440.049 (2)0.119 (4)0.081 (3)0.020 (2)0.0193 (19)0.031 (3)
C450.0412 (19)0.127 (4)0.085 (3)0.001 (2)0.0013 (18)0.023 (3)
C460.0456 (19)0.105 (3)0.063 (2)0.0037 (17)0.0034 (16)0.0048 (18)
C510.079 (2)0.0458 (17)0.0403 (16)0.0077 (15)0.0088 (15)0.0009 (13)
C520.069 (2)0.079 (3)0.079 (2)0.021 (2)0.0072 (19)0.0064 (19)
C530.094 (3)0.103 (4)0.101 (3)0.037 (3)0.022 (2)0.008 (3)
C540.139 (5)0.093 (3)0.071 (3)0.052 (3)0.037 (3)0.002 (2)
C550.181 (6)0.064 (3)0.060 (2)0.018 (3)0.027 (3)0.0127 (18)
C560.113 (3)0.066 (2)0.056 (2)0.001 (2)0.017 (2)0.0045 (17)
C610.0591 (18)0.0423 (15)0.0421 (15)0.0054 (13)0.0088 (13)0.0013 (12)
C620.069 (2)0.076 (2)0.0561 (19)0.0033 (18)0.0042 (16)0.0175 (17)
C630.096 (3)0.100 (3)0.054 (2)0.011 (2)0.012 (2)0.015 (2)
C640.124 (4)0.083 (3)0.047 (2)0.021 (3)0.014 (2)0.0149 (19)
C650.102 (3)0.058 (2)0.058 (2)0.003 (2)0.030 (2)0.0055 (16)
C660.073 (2)0.0524 (19)0.0502 (18)0.0013 (16)0.0179 (15)0.0002 (14)
Geometric parameters (Å, º) top
Ru—S12.3977 (8)C53—C541.322 (6)
Ru—S22.4179 (8)C54—C551.399 (7)
Ru—P12.2785 (8)C55—C561.404 (6)
Ru—P22.2765 (8)P2—C611.832 (3)
Ru—N12.144 (2)C61—C621.377 (4)
Ru—N22.141 (2)C61—C661.391 (4)
S1—O11.470 (6)C62—C631.388 (4)
S1—O21.346 (7)C63—C641.363 (5)
S1—C121.758 (3)C64—C651.370 (5)
P1—C11.844 (3)C65—C661.371 (4)
C1—C21.516 (4)C2—H2A0.9700
C2—P21.835 (3)C2—H2B0.9700
N1—C121.351 (4)C1—H1A0.9700
N1—C161.326 (4)C1—H1B0.9700
C12—C131.378 (4)C13—H130.9300
C13—C141.381 (5)C14—H140.9300
C14—C151.368 (5)C15—H150.9300
C15—C161.369 (4)C16—H160.9300
S2—C261.731 (3)C22—H220.9300
N2—C221.333 (4)C23—H230.9300
N2—C261.363 (3)C24—H240.9300
C22—C231.372 (4)C25—H250.9300
C23—C241.392 (5)C32—H320.9300
C24—C251.368 (5)C33—H330.9300
C25—C261.393 (4)C34—H340.9300
P1—C311.846 (3)C35—H350.9300
C31—C321.384 (4)C36—H360.9300
C31—C361.394 (4)C42—H420.9300
C32—C331.396 (4)C43—H430.9300
C33—C341.371 (5)C44—H440.9300
C34—C351.358 (6)C45—H450.9300
C35—C361.391 (4)C46—H460.9300
P1—C411.845 (3)C52—H520.9300
C41—C421.379 (5)C53—H530.9300
C41—C461.391 (5)C54—H540.9300
C42—C431.394 (4)C55—H550.9300
C43—C441.373 (5)C56—H560.9300
C44—C451.370 (6)C62—H620.9300
C45—C461.381 (5)C63—H630.9300
P2—C511.834 (3)C64—H640.9300
C51—C521.367 (5)C65—H650.9300
C51—C561.405 (5)C66—H660.9300
C52—C531.399 (5)
N2—Ru—N187.64 (9)C53—C54—C55118.8 (4)
N2—Ru—P2168.65 (6)C54—C55—C56120.8 (4)
N1—Ru—P296.04 (7)C55—C56—C51119.0 (4)
N2—Ru—P193.44 (6)C62—C61—C66117.5 (3)
N1—Ru—P1171.78 (6)C62—C61—P2118.8 (2)
P2—Ru—P184.45 (3)C66—C61—P2123.6 (2)
N2—Ru—S197.77 (6)C61—C62—C63121.0 (3)
N1—Ru—S167.44 (6)C64—C63—C62120.3 (4)
P2—Ru—S193.56 (3)C63—C64—C65119.6 (3)
P1—Ru—S1104.35 (3)C64—C65—C66120.3 (3)
N2—Ru—S267.50 (6)C65—C66—C61121.3 (3)
N1—Ru—S292.13 (6)C1—C2—H2A110.3
P2—Ru—S2101.56 (3)P2—C2—H2A110.3
P1—Ru—S295.81 (3)C1—C2—H2B110.3
S1—Ru—S2155.87 (3)P2—C2—H2B110.3
O2—S1—O1119.4 (4)H2A—C2—H2B108.6
O2—S1—C12108.0 (3)C2—C1—H1A109.9
O1—S1—C1298.0 (3)P1—C1—H1A109.9
O2—S1—Ru122.9 (3)C2—C1—H1B109.9
O1—S1—Ru114.2 (3)P1—C1—H1B109.9
C12—S1—Ru81.97 (10)H1A—C1—H1B108.3
C26—S2—Ru81.25 (9)C12—C13—H13121.1
C1—P1—C41102.59 (16)C14—C13—H13121.1
C1—P1—C31102.75 (14)C15—C14—H14119.8
C41—P1—C31100.91 (13)C13—C14—H14119.8
C1—P1—Ru108.06 (10)C14—C15—H15120.6
C41—P1—Ru119.22 (10)C16—C15—H15120.6
C31—P1—Ru120.81 (10)N1—C16—H16119.0
C61—P2—C51100.29 (13)C15—C16—H16119.0
C61—P2—C2104.32 (14)N2—C22—H22118.9
C51—P2—C2103.62 (15)C23—C22—H22118.9
C61—P2—Ru122.27 (10)C22—C23—H23120.7
C51—P2—Ru116.03 (10)C24—C23—H23120.7
C2—P2—Ru108.30 (11)C25—C24—H24120.1
C16—N1—C12119.5 (3)C23—C24—H24120.1
C16—N1—Ru138.2 (2)C24—C25—H25120.4
C12—N1—Ru102.33 (18)C26—C25—H25120.4
C22—N2—C26119.6 (2)C31—C32—H32119.8
C22—N2—Ru139.2 (2)C33—C32—H32119.8
C26—N2—Ru101.14 (18)C34—C33—H33119.8
P1—C1—C2109.0 (2)C32—C33—H33119.8
C1—C2—P2106.9 (2)C35—C34—H34120.1
N1—C12—C13121.6 (3)C33—C34—H34120.1
N1—C12—S1108.2 (2)C34—C35—H35119.6
N1—C16—C15122.0 (3)C36—C35—H35119.6
C13—C12—S1130.2 (3)C35—C36—H36119.9
C12—C13—C14117.8 (3)C31—C36—H36119.9
C14—C15—C16118.7 (3)C41—C42—H42119.4
C15—C14—C13120.4 (3)C43—C42—H42119.4
N2—C22—C23122.2 (3)C44—C43—H43120.3
N2—C26—C25120.5 (3)C42—C43—H43120.3
N2—C26—S2110.0 (2)C45—C44—H44119.7
C22—C23—C24118.6 (3)C43—C44—H44119.7
C23—C24—C25119.8 (3)C44—C45—H45120.2
C24—C25—C26119.2 (3)C46—C45—H45120.2
C25—C26—S2129.5 (2)C45—C46—H46119.4
C32—C31—C36118.5 (3)C41—C46—H46119.4
C32—C31—P1121.5 (2)C51—C52—H52119.5
C36—C31—P1120.1 (2)C53—C52—H52119.5
C31—C32—C33120.4 (3)C54—C53—H53119.0
C34—C33—C32120.3 (4)C52—C53—H53119.0
C35—C34—C33119.8 (3)C53—C54—H54120.6
C34—C35—C36120.9 (4)C55—C54—H54120.6
C35—C36—C31120.1 (3)C54—C55—H55119.6
C42—C41—C46118.0 (3)C56—C55—H55119.6
C42—C41—P1120.5 (2)C55—C56—H56120.5
C46—C41—P1121.5 (3)C51—C56—H56120.5
C41—C42—C43121.2 (3)C61—C62—H62119.5
C44—C43—C42119.3 (4)C63—C62—H62119.5
C45—C44—C43120.6 (3)C64—C63—H63119.8
C44—C45—C46119.6 (4)C62—C63—H63119.8
C45—C46—C41121.3 (4)C63—C64—H64120.2
C52—C51—C56118.4 (3)C65—C64—H64120.2
C52—C51—P2118.6 (3)C64—C65—H65119.9
C56—C51—P2122.9 (3)C66—C65—H65119.9
C51—C52—C53121.0 (4)C65—C66—H66119.4
C54—C53—C52122.0 (5)C61—C66—H66119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.932.453.297 (8)152
C25—H25···O1i0.932.513.280 (7)141
C65—H65···O2ii0.932.373.130 (8)139
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z.
(II) [1,3-bis(diphenylphosphino)propane-κ2P,P'](pyridine-2-sulfinato- κ2N,S)(pyridine-2-thiolato-κ2N,S)ruthenium(II) top
Crystal data top
[Ru(C5H4NO2S)0.355(C5H4NS)1.645(C26H24P2)]Z = 2
Mr = 745.31F(000) = 763.4
TriclinicP1Dx = 1.476 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.818 (5) ÅCell parameters from 25 reflections
b = 10.245 (4) Åθ = 33–18°
c = 20.136 (3) ŵ = 6.05 mm1
α = 83.16 (2)°T = 293 K
β = 81.36 (3)°Prism, yellow
γ = 70.12 (4)°0.20 × 0.12 × 0.09 mm
V = 1686.7 (12) Å3
Data collection top
Enraf–Nonius CAD4
diffractometer
4907 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 67.0°, θmin = 2.2°
non–profiled ω/2θ scansh = 1010
Absorption correction: analytical
(PLATON; Spek, 2003)
k = 1212
Tmin = 0.42, Tmax = 0.64l = 024
6012 measured reflections1 standard reflections every 30 min
5837 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5047P]
where P = (Fo2 + 2Fc2)/3
5837 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ru(C5H4NO2S)0.355(C5H4NS)1.645(C26H24P2)]γ = 70.12 (4)°
Mr = 745.31V = 1686.7 (12) Å3
TriclinicP1Z = 2
a = 8.818 (5) ÅCu Kα radiation
b = 10.245 (4) ŵ = 6.05 mm1
c = 20.136 (3) ÅT = 293 K
α = 83.16 (2)°0.20 × 0.12 × 0.09 mm
β = 81.36 (3)°
Data collection top
Enraf–Nonius CAD4
diffractometer
4907 reflections with I > 2σ(I)
Absorption correction: analytical
(PLATON; Spek, 2003)
Rint = 0.017
Tmin = 0.42, Tmax = 0.641 standard reflections every 30 min
6012 measured reflections intensity decay: 2%
5837 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
5837 reflectionsΔρmin = 0.65 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Occupancy parameters were refined for oxygen sites.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.17357 (3)0.34834 (2)0.263041 (11)0.03791 (8)
S10.14651 (11)0.13425 (9)0.24268 (5)0.0569 (2)
S20.31785 (10)0.49163 (9)0.29680 (4)0.0502 (2)
P10.08754 (9)0.44768 (8)0.30981 (4)0.04195 (18)
P20.10366 (10)0.43780 (8)0.15862 (4)0.04307 (18)
O10.0606 (10)0.1320 (8)0.1920 (5)0.080 (3)0.357 (6)
O20.1432 (11)0.0402 (8)0.3034 (4)0.079 (3)0.357 (6)
N10.3980 (3)0.2037 (3)0.22261 (13)0.0475 (6)
N20.2627 (3)0.2782 (3)0.35801 (13)0.0465 (6)
C10.2303 (4)0.4216 (4)0.25979 (18)0.0529 (8)
H1A0.20020.32310.25370.064*
H1B0.33820.45060.28440.064*
C20.2349 (4)0.5020 (4)0.19070 (18)0.0589 (9)
H2A0.33520.51050.17350.071*
H2B0.23550.59510.19590.071*
C30.0921 (4)0.4336 (4)0.13916 (17)0.0558 (8)
H3A0.11250.48090.09510.067*
H3B0.08500.33760.13720.067*
C120.3560 (4)0.0929 (3)0.21455 (17)0.0517 (8)
C130.4691 (5)0.0274 (4)0.1888 (2)0.0668 (10)
H130.43820.10300.18290.080*
C140.6273 (5)0.0312 (5)0.1726 (2)0.0763 (12)
H140.70510.11030.15530.092*
C150.6711 (5)0.0816 (5)0.1817 (2)0.0737 (11)
H150.77830.07940.17140.088*
C160.5527 (4)0.1979 (4)0.20636 (19)0.0580 (9)
H160.58130.27500.21190.070*
C220.2611 (4)0.1758 (4)0.40609 (18)0.0576 (9)
H220.20710.11440.40100.069*
C230.3375 (5)0.1597 (5)0.4624 (2)0.0732 (12)
H230.33430.08890.49550.088*
C240.4185 (5)0.2491 (5)0.4695 (2)0.0777 (13)
H240.47060.23890.50760.093*
C250.4232 (4)0.3531 (5)0.4209 (2)0.0668 (10)
H250.47920.41340.42510.080*
C260.3418 (4)0.3667 (4)0.36479 (17)0.0491 (7)
C310.1849 (4)0.6324 (3)0.32752 (16)0.0480 (7)
C320.3525 (5)0.6964 (4)0.33382 (19)0.0623 (9)
H320.41910.64480.33000.075*
C330.4212 (5)0.8354 (4)0.3457 (2)0.0725 (12)
H330.53350.87640.34930.087*
C340.3270 (6)0.9138 (4)0.3521 (2)0.0748 (12)
H340.37441.00750.36000.090*
C350.1622 (6)0.8528 (4)0.3469 (2)0.0741 (12)
H350.09670.90540.35080.089*
C360.0915 (5)0.7113 (4)0.33574 (19)0.0608 (9)
H360.02060.67010.33380.073*
C410.1289 (4)0.3595 (4)0.39198 (17)0.0500 (8)
C420.1404 (5)0.2268 (4)0.3955 (2)0.0632 (9)
H420.13840.18700.35600.076*
C430.1549 (5)0.1533 (5)0.4571 (2)0.0765 (12)
H430.16250.06460.45880.092*
C440.1580 (6)0.2103 (5)0.5156 (2)0.0818 (13)
H440.16750.16050.55690.098*
C450.1469 (6)0.3418 (5)0.5131 (2)0.0797 (13)
H450.14920.38100.55280.096*
C460.1323 (5)0.4161 (4)0.45131 (19)0.0645 (10)
H460.12480.50480.45000.077*
C510.0884 (4)0.6187 (3)0.13165 (17)0.0503 (8)
C520.1032 (5)0.7050 (4)0.1757 (2)0.0633 (9)
H520.11690.67210.22020.076*
C530.0981 (5)0.8401 (4)0.1550 (3)0.0755 (12)
H530.10660.89710.18590.091*
C540.0813 (6)0.8895 (4)0.0912 (3)0.0818 (13)
H540.08050.97960.07730.098*
C550.0652 (7)0.8061 (5)0.0462 (3)0.0959 (16)
H550.05220.84060.00180.115*
C560.0679 (6)0.6718 (4)0.0658 (2)0.0762 (12)
H560.05590.61670.03470.091*
C610.2468 (4)0.3491 (3)0.08892 (16)0.0501 (8)
C620.2251 (5)0.2472 (4)0.0569 (2)0.0719 (11)
H620.13230.22220.06980.086*
C630.3390 (7)0.1802 (6)0.0056 (3)0.0949 (16)
H630.32190.11130.01550.114*
C640.4737 (7)0.2149 (6)0.0134 (2)0.1006 (18)
H640.54860.17180.04850.121*
C650.5009 (7)0.3143 (6)0.0189 (3)0.1032 (18)
H650.59570.33640.00660.124*
C660.3869 (6)0.3819 (5)0.0699 (2)0.0791 (13)
H660.40540.44970.09130.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03239 (13)0.03682 (13)0.04540 (14)0.01097 (10)0.00205 (9)0.01083 (9)
S10.0509 (5)0.0456 (5)0.0764 (6)0.0171 (4)0.0005 (4)0.0174 (4)
S20.0425 (4)0.0502 (5)0.0623 (5)0.0183 (4)0.0071 (4)0.0110 (4)
P10.0328 (4)0.0427 (4)0.0502 (4)0.0110 (3)0.0011 (3)0.0116 (3)
P20.0431 (4)0.0428 (4)0.0451 (4)0.0141 (4)0.0044 (3)0.0111 (3)
O10.072 (5)0.061 (5)0.120 (7)0.024 (4)0.030 (5)0.029 (5)
O20.089 (6)0.052 (5)0.099 (6)0.032 (4)0.007 (5)0.008 (4)
N20.0349 (13)0.0492 (15)0.0521 (15)0.0089 (12)0.0035 (11)0.0084 (12)
N10.0412 (15)0.0449 (15)0.0533 (15)0.0090 (12)0.0032 (12)0.0099 (12)
C10.0383 (17)0.060 (2)0.065 (2)0.0191 (16)0.0040 (15)0.0159 (17)
C20.0413 (18)0.071 (2)0.068 (2)0.0156 (17)0.0158 (16)0.0141 (18)
C30.053 (2)0.068 (2)0.0546 (19)0.0248 (18)0.0104 (16)0.0147 (17)
C120.0498 (19)0.0468 (18)0.0543 (19)0.0078 (15)0.0035 (15)0.0147 (15)
C130.072 (3)0.047 (2)0.074 (2)0.0049 (19)0.007 (2)0.0203 (18)
C140.065 (3)0.064 (3)0.077 (3)0.009 (2)0.004 (2)0.020 (2)
C150.044 (2)0.077 (3)0.082 (3)0.001 (2)0.0072 (19)0.015 (2)
C160.0410 (19)0.059 (2)0.069 (2)0.0097 (17)0.0005 (16)0.0115 (18)
C220.0446 (19)0.059 (2)0.061 (2)0.0099 (17)0.0039 (16)0.0040 (17)
C230.055 (2)0.085 (3)0.063 (2)0.007 (2)0.0055 (19)0.013 (2)
C240.058 (2)0.111 (4)0.052 (2)0.009 (2)0.0138 (18)0.005 (2)
C250.047 (2)0.090 (3)0.065 (2)0.017 (2)0.0131 (17)0.021 (2)
C260.0338 (16)0.056 (2)0.0546 (18)0.0083 (15)0.0027 (14)0.0149 (15)
C310.0472 (18)0.0450 (17)0.0457 (16)0.0077 (15)0.0003 (14)0.0092 (14)
C320.051 (2)0.061 (2)0.064 (2)0.0052 (18)0.0024 (17)0.0078 (18)
C330.061 (2)0.066 (3)0.063 (2)0.013 (2)0.0010 (19)0.0067 (19)
C340.091 (3)0.049 (2)0.062 (2)0.003 (2)0.004 (2)0.0133 (18)
C350.086 (3)0.056 (2)0.079 (3)0.020 (2)0.001 (2)0.024 (2)
C360.055 (2)0.055 (2)0.068 (2)0.0106 (18)0.0001 (18)0.0201 (18)
C410.0324 (16)0.0519 (19)0.060 (2)0.0092 (14)0.0039 (14)0.0073 (15)
C420.057 (2)0.058 (2)0.074 (2)0.0223 (19)0.0041 (18)0.0088 (18)
C430.068 (3)0.067 (3)0.091 (3)0.028 (2)0.004 (2)0.006 (2)
C440.073 (3)0.075 (3)0.079 (3)0.013 (2)0.008 (2)0.012 (2)
C450.090 (3)0.077 (3)0.055 (2)0.008 (3)0.002 (2)0.008 (2)
C460.070 (3)0.054 (2)0.062 (2)0.0127 (19)0.0021 (19)0.0044 (17)
C510.0456 (18)0.0440 (17)0.0583 (19)0.0103 (15)0.0068 (15)0.0051 (15)
C520.071 (3)0.0468 (19)0.071 (2)0.0156 (18)0.011 (2)0.0098 (17)
C530.078 (3)0.043 (2)0.105 (3)0.015 (2)0.019 (3)0.011 (2)
C540.075 (3)0.046 (2)0.119 (4)0.016 (2)0.012 (3)0.007 (2)
C550.119 (4)0.070 (3)0.094 (3)0.026 (3)0.033 (3)0.027 (3)
C560.099 (3)0.061 (2)0.071 (3)0.024 (2)0.029 (2)0.004 (2)
C610.054 (2)0.0475 (18)0.0450 (17)0.0121 (16)0.0012 (14)0.0074 (14)
C620.073 (3)0.072 (3)0.071 (3)0.022 (2)0.005 (2)0.031 (2)
C630.100 (4)0.097 (4)0.084 (3)0.023 (3)0.012 (3)0.050 (3)
C640.115 (5)0.092 (4)0.072 (3)0.013 (3)0.026 (3)0.026 (3)
C650.090 (4)0.098 (4)0.110 (4)0.033 (3)0.038 (3)0.017 (3)
C660.076 (3)0.076 (3)0.083 (3)0.030 (2)0.023 (2)0.023 (2)
Geometric parameters (Å, º) top
Ru—S12.3739 (12)C55—C541.369 (7)
Ru—S22.4502 (12)C54—C531.335 (6)
Ru—P12.2819 (16)C53—C521.385 (5)
Ru—P22.2775 (10)P2—C611.838 (3)
Ru—N12.141 (3)C61—C621.370 (5)
Ru—N22.129 (3)C61—C661.376 (5)
S1—O11.365 (8)C62—C631.392 (6)
S1—O21.468 (8)C63—C641.343 (7)
S1—C121.767 (4)C64—C651.374 (7)
P1—C11.829 (3)C65—C661.389 (6)
C2—C11.529 (5)C3—H3A0.9700
C3—C21.528 (5)C3—H3B0.9700
P2—C31.842 (3)C2—H2A0.9700
N1—C121.341 (4)C2—H2B0.9700
N1—C161.337 (4)C1—H1A0.9700
C16—C151.377 (5)C1—H1B0.9700
C15—C141.377 (6)C56—H560.9300
C14—C131.372 (6)C55—H550.9300
C13—C121.393 (5)C54—H540.9300
S2—C261.744 (4)C53—H530.9300
N2—C221.342 (4)C52—H520.9300
N2—C261.348 (4)C62—H620.9300
C22—C231.370 (5)C63—H630.9300
C23—C241.369 (6)C64—H640.9300
C24—C251.365 (6)C65—H650.9300
C25—C261.397 (5)C66—H660.9300
P1—C311.846 (3)C36—H360.9300
C31—C321.391 (5)C35—H350.9300
C31—C361.372 (5)C34—H340.9300
C36—C351.401 (5)C33—H330.9300
C35—C341.366 (6)C32—H320.9300
C34—C331.365 (6)C46—H460.9300
C33—C321.380 (5)C45—H450.9300
P1—C411.837 (3)C44—H440.9300
C41—C421.390 (5)C43—H430.9300
C41—C461.381 (5)C42—H420.9300
C46—C451.392 (5)C22—H220.9300
C45—C441.378 (6)C23—H230.9300
C44—C431.369 (6)C24—H240.9300
C43—C421.386 (6)C25—H250.9300
P2—C511.834 (3)C16—H160.9300
C51—C521.372 (5)C15—H150.9300
C51—C561.386 (5)C14—H140.9300
C56—C551.379 (6)C13—H130.9300
N2—Ru—N185.12 (11)C62—C61—C66118.1 (4)
N2—Ru—P2172.37 (7)C62—C61—P2123.3 (3)
N1—Ru—P292.43 (8)C66—C61—P2118.5 (3)
N2—Ru—P193.59 (8)C61—C62—C63121.3 (4)
N1—Ru—P1163.70 (8)C64—C63—C62120.0 (5)
P2—Ru—P190.78 (5)C63—C64—C65120.0 (5)
N2—Ru—S195.72 (8)C64—C65—C66120.1 (5)
N1—Ru—S167.45 (8)C61—C66—C65120.5 (4)
P2—Ru—S189.98 (4)C2—C3—H3A108.9
P1—Ru—S196.60 (5)P2—C3—H3A108.9
N2—Ru—S266.89 (8)C2—C3—H3B108.9
N1—Ru—S290.88 (8)P2—C3—H3B108.9
P2—Ru—S2105.99 (4)H3A—C3—H3B107.7
P1—Ru—S2103.57 (5)C3—C2—H2A108.8
S1—Ru—S2153.87 (4)C1—C2—H2A108.8
O1—S1—O2119.1 (5)C3—C2—H2B108.8
O1—S1—C12111.5 (4)C1—C2—H2B108.8
O2—S1—C12103.2 (4)H2A—C2—H2B107.7
O1—S1—Ru118.9 (3)C2—C1—P1113.1 (2)
O2—S1—Ru113.8 (3)C2—C1—H1A109.0
C12—S1—Ru82.50 (12)P1—C1—H1A109.0
C26—S2—Ru80.46 (11)C2—C1—H1B109.0
C1—P1—C41102.86 (16)P1—C1—H1B109.0
C1—P1—C31101.85 (16)H1A—C1—H1B107.8
C41—P1—C31101.50 (15)C55—C56—H56120.0
C1—P1—Ru110.61 (12)C51—C56—H56120.0
C41—P1—Ru111.48 (11)C54—C55—H55119.5
C31—P1—Ru125.89 (12)C56—C55—H55119.5
C51—P2—C6199.91 (16)C53—C54—H54120.3
C51—P2—C3101.19 (17)C55—C54—H54120.3
C61—P2—C3102.56 (16)C54—C53—H53119.6
C51—P2—Ru119.60 (11)C52—C53—H53119.6
C61—P2—Ru114.40 (12)C51—C52—H52119.4
C3—P2—Ru116.46 (12)C53—C52—H52119.4
C16—N1—C12119.1 (3)C61—C62—H62119.3
C16—N1—Ru138.0 (2)C63—C62—H62119.3
C12—N1—Ru102.9 (2)C64—C63—H63120.0
C22—N2—C26119.6 (3)C62—C63—H63120.0
C22—N2—Ru137.5 (2)C63—C64—H64120.0
C26—N2—Ru102.9 (2)C65—C64—H64120.0
C2—C1—P1113.1 (2)C64—C65—H65120.0
C3—C2—C1113.6 (3)C66—C65—H65120.0
C2—C3—P2113.3 (2)C61—C66—H66119.8
N1—C12—C13121.7 (3)C65—C66—H66119.8
N1—C12—S1107.2 (2)C31—C36—H36119.5
C13—C12—S1131.2 (3)C35—C36—H36119.5
C14—C13—C12118.2 (4)C34—C35—H35119.9
C13—C14—C15120.2 (4)C36—C35—H35119.9
C14—C15—C16118.5 (4)C33—C34—H34120.4
N1—C16—C15122.2 (4)C35—C34—H34120.4
N2—C22—C23121.3 (4)C34—C33—H33119.5
C24—C23—C22119.3 (4)C32—C33—H33119.5
C25—C24—C23120.4 (4)C33—C32—H32119.6
C24—C25—C26118.3 (4)C31—C32—H32119.6
N2—C26—C25121.0 (3)C41—C46—H46119.7
N2—C26—S2109.6 (2)C45—C46—H46119.7
C25—C26—S2129.3 (3)C44—C45—H45120.0
C36—C31—C32117.6 (3)C46—C45—H45120.0
C36—C31—P1120.1 (3)C43—C44—H44120.2
C32—C31—P1122.3 (3)C45—C44—H44120.2
C33—C32—C31120.8 (4)C44—C43—H43119.8
C34—C33—C32121.1 (4)C42—C43—H43119.8
C33—C34—C35119.2 (4)C43—C42—H42119.7
C34—C35—C36120.2 (4)C41—C42—H42119.7
C31—C36—C35121.1 (4)N2—C22—H22119.3
C46—C41—C42118.5 (3)C23—C22—H22119.3
C46—C41—P1121.2 (3)C24—C23—H23120.3
C42—C41—P1120.0 (3)C22—C23—H23120.3
C43—C42—C41120.6 (4)C25—C24—H24119.8
C44—C43—C42120.5 (4)C23—C24—H24119.8
C43—C44—C45119.7 (4)C24—C25—H25120.8
C44—C45—C46120.1 (4)C26—C25—H25120.8
C41—C46—C45120.7 (4)N1—C16—H16118.9
C52—C51—C56117.6 (3)C15—C16—H16118.9
C52—C51—P2120.8 (3)C14—C15—H15120.7
C56—C51—P2121.5 (3)C16—C15—H15120.7
C51—C52—C53121.2 (4)C13—C14—H14119.9
C54—C53—C52120.8 (4)C15—C14—H14119.9
C53—C54—C55119.3 (4)C14—C13—H13120.9
C54—C55—C56121.0 (5)C12—C13—H13120.9
C55—C56—C51120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O1i0.932.323.065 (8)137
Symmetry code: (i) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ru(C5H4NO2S)0.33(C5H4NS)1.67(C26H24P2)][Ru(C5H4NO2S)0.355(C5H4NS)1.645(C26H24P2)]
Mr729.66745.31
Crystal system, space groupMonoclinicP21/nTriclinicP1
Temperature (K)293293
a, b, c (Å)11.4520 (2), 22.3900 (4), 12.8710 (2)8.818 (5), 10.245 (4), 20.136 (3)
α, β, γ (°)90, 91.661 (1), 9083.16 (2), 81.36 (3), 70.12 (4)
V3)3298.9 (1)1686.7 (12)
Z42
Radiation typeMo KαCu Kα
µ (mm1)0.736.05
Crystal size (mm)0.14 × 0.10 × 0.080.20 × 0.12 × 0.09
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Enraf–Nonius CAD4
diffractometer
Absorption correctionMulti-scan
from symmetry-related measurements (SORTAV; Blessing 1995)
Analytical
(PLATON; Spek, 2003)
Tmin, Tmax0.850, 0.9610.42, 0.64
No. of measured, independent and
observed [I > 2σ(I)] reflections
80383, 7558, 5481 6012, 5837, 4907
Rint0.1340.017
(sin θ/λ)max1)0.6490.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.03 0.031, 0.091, 1.01
No. of reflections75585837
No. of parameters407416
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.830.53, 0.65

Computer programs: COLLECT (Nonius, 1999), CAD-4 EXPRESS (Enraf–Nonius, 1994), HKL SCALEPACK (Otwinowski & Minor 1997), CAD-4 EXPRESS, HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) for (I) top
Ru—S12.3977 (8)S1—C121.758 (3)
Ru—S22.4179 (8)P1—C11.844 (3)
Ru—P12.2785 (8)C1—C21.516 (4)
Ru—P22.2765 (8)C2—P21.835 (3)
Ru—N12.144 (2)N1—C121.351 (4)
Ru—N22.141 (2)S2—C261.731 (3)
S1—O11.470 (6)N2—C261.363 (3)
S1—O21.346 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.932.453.297 (8)152.0
C25—H25···O1i0.932.513.280 (7)140.9
C65—H65···O2ii0.932.373.130 (8)138.6
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z.
Selected bond lengths (Å) for (II) top
Ru—S12.3739 (12)S1—C121.767 (4)
Ru—S22.4502 (12)P1—C11.829 (3)
Ru—P12.2819 (16)C2—C11.529 (5)
Ru—P22.2775 (10)C3—C21.528 (5)
Ru—N12.141 (3)P2—C31.842 (3)
Ru—N22.129 (3)N1—C121.341 (4)
S1—O11.365 (8)S2—C261.744 (4)
S1—O21.468 (8)N2—C261.348 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C53—H53···O1i0.932.323.065 (8)137.3
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds