organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o172-o173

N-(β-Carb­­oxy­eth­yl)-α-isoleucine

aFederal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany, and bSGS Institut Fresenius GmbH, Tegeler Weg 33, D-10589 Berlin, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 27 November 2012; accepted 20 December 2012; online 4 January 2013)

The title compound, {2-[(2-carbamoyleth­yl)amino]-3-methyl­penta­noic acid}, C9H18N2O3, is of inter­est with respect to its biological activity. It was formed during an addition reaction between acryl­amide and the amino acid isoleucine. The crystal structure is a three-dimensional network built up by inter­molecular N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For toxicological investigations on acryl­amide, see: Besaratinia & Pfeifer (2007[Besaratinia, A. & Pfeifer, G. P. (2007). Carcinogenesis, 28, 519-528.]); Parzefall (2008[Parzefall, W. (2008). Food Chem. Toxicol. 46, 1360-1364.]); Bowyer et al. (2009[Bowyer, J. F., Latendresse, J. R. & Delongchamp, R. R. (2009). Toxicol. Appl. Pharmacol. 240, 401-411.]); Wang et al. (2010[Wang, R.-S., McDaniel, L. P. & Manjanatha, M. (2010). Toxicol. Sci. 117, 72-80.]); Mei et al. (2010[Mei, N., McDaniel, L. P. & Dobrovolsky, V. N. (2010). Toxicol. Sci. 115, 412-421.]); Koyama et al. (2011[Koyama, N., Yasui, M. & &Kimura, A. (2011). Mutagenesis, 26, 545-549.]); Lee et al. (2012[Lee, T., Manjanatha, M. & Aidoo, A. (2012). J. Toxicol. Environ. Health, A75, 324-339.]); Nixon et al. (2012[Nixon, B., Stanger, S. J. & Nixon, B. (2012). Toxicol. Sci. 129, 135-145.]); Rice (2005[Rice, J. M. (2005). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 580, 3-20.]). For directives on monitoring acryl­amide in drinking water, see: EU (2000[EU (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy.]). For the determination of acryl­amide in different media, see: Zangrando et al. (2012[Zangrando, R., Gambaro, A. & De Pieri, S. (2012). Int. J. Environ. Anal. Chem. 92, 1150-1150.]); Marin et al. (2006[Marin, J. M., Pozo, O. J. & Sancho, J. V. (2006). J. Mass Spectrom. 41, 1041-1048.]); Lucentini et al. (2009[Lucentini, L., Ferretti, E. & Veschetti, E. (2009). J. AOAC Int. 92, 263-270.]); Keramat et al. (2011[Keramat, J., LeBail, A. & Prost, C. (2011). Food Bioprocess Technol. 4, 340-363.]); Tareke et al. (2002[Tareke, E., Rydberg, P. & Karlsson, P. (2002). J. Agric. Food Chem. 50, 4998-5006.]); Pittet et al. (2004[Pittet, A., Perisset, A. & Oberson, J. M. (2004). J. Chromatogr. A, 1035, 123-130.]); Castle & Eriksson (2005[Castle, L. & Eriksson, S. (2005). J. AOAC Int. 88, 274-284.]); Mizukami et al. (2006[Mizukami, Y., Kohate, K., Katsunori, Y. & Yamaguchi, Y. (2006). J. Agric. Food Chem. 54, 7370-7377.]); Dias Soares et al. (2009[Dias Soares, C. M. & Fernandes, J. O. (2009). Food Anal. Methods, 2, 197-203.]); Alpmann & Morlock (2008[Alpmann, A. & Morlock, G. (2008). J. Sep. Sci. 31, 71-77.]); Preston et al. (2009[Preston, A., Fodey, T. & Douglas, A. (2009). J. Immunol. Methods, 341, 19-29.]); Perez & Osterman-Golkar (2003[Perez, H. L. & Osterman-Golkar, S. (2003). Analyst, 128, 1033-1036.]).

[Scheme 1]

Experimental

Crystal data
  • C9H18N2O3

  • Mr = 202.25

  • Orthorhombic, P 21 21 21

  • a = 5.2989 (17) Å

  • b = 9.024 (3) Å

  • c = 23.268 (7) Å

  • V = 1112.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.64 × 0.06 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.944, Tmax = 0.994

  • 7386 measured reflections

  • 1516 independent reflections

  • 1124 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 0.95

  • 1516 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.17 2.982 (3) 159
N1—H1B⋯O1ii 0.86 2.33 3.097 (4) 149
O2—H21⋯N5iii 0.82 1.89 2.708 (2) 176
N5—H51⋯O3iv 0.98 1.91 2.783 (3) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acrylamide is a water-soluble unsaturated amide, a reactive monomer and an industrial chemical used in many technological applications.

It is also a contaminant in baked and fried starchy food as a result of Maillard reactions involving asparagine and reducing sugars that leads to disseminated human exposure. So people may be exposed to acrylamide in industry as well as in daily life via diet and drinking water. Furthermore, it was recently reported a novel method for the determination of acrylamide in particulare-phase outdoor aerosol (Zangrando et al., 2012).

It is known that acrylamide is a neurotoxin and putative human carcinogen. In the last years a lot of different toxicological investigations have been carried out (Besaratinia and Pfeifer, 2007: Parzefall, 2008; Bowyer et al., 2009;Wang et al., 2010; Mei et al., 2010; Koyama et al., 2011; Lee et al., 2012; Nixon et al., 2012). Therefore, acrylamide was included (with a limit value of 0.1µg/L) to the numerous substances to be monitored in drinking water according to EU Water Framework Directive (EU 2000). The best method for the determination of acrylamide in water is the liquid chromatography/ tandem mass spectrometry (LC—MS/MS) (Marin et al., 2006; Lucentini et al., 2009; Keramat et al., 2011). In the area of foods GC method with bromination of acrylamide as a derivatization reaction was used (Tareke et al., 2002; Pittet et al., 2004; Castle & Eriksson, 2005; Mizukami et al., 2006; Dias Soares et al., 2009). But also methods such as high-performance thin-layer chromatography (HPTLC) (Alpmann & Morlock, 2008) and a bioassay of dietary acrylamide exposure on the basis of monoclonal antibodies (Preston et al., 2009) were used.

In toxicological investigations it could be proven, that reactions between acrylamide and different amino acids take place (Rice, 2005). These reactions and the corresponding adducts can be used also for the analytical determination of acrylamide in drinking water (Perez & Osterman-Golkar, 2003). There the amino acid isoleucine served as a nucleophilic trapping agent. Our group examined the derivatization of acrylamide with isoleucine in the course of the drinking water analysis.

The molecular structure of the reaction product from acrylamide and isoleucine and the atom-labeling scheme is shown in Fig. 1. The absolute configuration has not been determined by anomalous-dispersion effects in diffraction measurements on the crystal, but assigned by reference to an unchanging chiral centre in the synthetic procedure. Each molecule forms six hydrogen bonds to six adjacent molecules leading to a three-dimensional-network structure. In the a-c plane adjacent molecules form strong hydrogen bonds between amino donor groups and oxygen acceptor atoms.Each molecule is further involved in N—H···O bonds parallel the crystallographic b direction. The hydrogen bond network is completed by a further hydrogen bond between a hydroxy donor group and a nitrogen acceptor atom parallel to the a direction. The resulting arrangement together with the hydrogen bonding system (dashed green lines) is shown in Fig. 2.

Related literature top

For toxicological investigations on acrylamide, see: Besaratinia & Pfeifer (2007); Parzefall (2008); Bowyer et al. (2009); Wang et al. (2010); Mei et al. (2010); Koyama et al. (2011); Lee et al. (2012); Nixon et al. (2012); Rice (2005). For directives on monitoring acrylamide in drinking water, see: EU (2000). For the determination of acrylamide in different media, see: Zangrando et al. (2012); Marin et al. (2006); Lucentini et al. (2009); Keramat et al. (2011), Tareke et al. (2002); Pittet et al. (2004); Castle & Eriksson (2005); Mizukami et al. (2006); Dias Soares et al. (2009); Alpmann & Morlock (2008); Preston et al. (2009); Perez & Osterman-Golkar (2003).

Experimental top

The derivatization of acrylamide (for synthesis, > 99%; Merck, Darmstadt, Germany) with L-isoleucine (Biochemica > 99%; Fluka, Deishofen, Germany) was achieved in a water bath at 39 °C. For the reaction 0.4233 g L-isoleucin (3.2 mol) were dissolved in water (19.8 g) and temperated to 30 °C. The pH was set to 10 with sodium hydroxide (2M) and 0.4562 g (6.4 mol) acrylamide was added. The flask was shaken for two minutes and placed in the water bath for 48 h. Crystallized solids were filtered out, washed with cold methanol, redissolved in small amounts of hot water and at 4 °C for one week to yield light yellow crystals with a melting point of 282 °C and a purity (DSC) of 99.9%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic C atoms, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso= 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms, and d(N—H) = 0.86 Å, Uiso=1.2Ueq (N). In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuration has not been determined by anomalous-dispersion effects in diffraction measurements of the crystal, but assigned as based on an unchanged chiral centre in the synthetic procedure.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the unit cell of the title compound along [010]. Hydrogen bonds are drawn as dashed green lines. For clarity, hydrogen atoms not involved in the hydrogen bonding are omitted.
2-[(2-Carbamoylethyl)amino]-3-methylpentanoic acid top
Crystal data top
C9H18N2O3F(000) = 440
Mr = 202.25Dx = 1.207 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1516 reflections
a = 5.2989 (17) Åθ = 1.8–27.5°
b = 9.024 (3) ŵ = 0.09 mm1
c = 23.268 (7) ÅT = 298 K
V = 1112.6 (6) Å3Needle, colourless
Z = 40.64 × 0.06 × 0.06 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1516 independent reflections
Radiation source: fine-focus sealed tube1124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω/2θ scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SHELXTL [SADABS?]; Sheldrick, 2008)
h = 66
Tmin = 0.944, Tmax = 0.994k = 1011
7386 measured reflectionsl = 3025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
1516 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H18N2O3V = 1112.6 (6) Å3
Mr = 202.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2989 (17) ŵ = 0.09 mm1
b = 9.024 (3) ÅT = 298 K
c = 23.268 (7) Å0.64 × 0.06 × 0.06 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1516 independent reflections
Absorption correction: multi-scan
(SHELXTL [SADABS?]; Sheldrick, 2008)
1124 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.994Rint = 0.074
7386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.95Δρmax = 0.42 e Å3
1516 reflectionsΔρmin = 0.27 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.7698 (9)0.2828 (6)0.55528 (14)0.1012 (15)
H1020.66330.24370.52560.152*
H1010.92390.22710.55680.152*
H1030.80730.38480.54720.152*
C90.6365 (7)0.2719 (4)0.61206 (12)0.0594 (8)
H9A0.65490.17180.62670.071*
H9B0.45790.28990.60620.071*
C110.6607 (8)0.5381 (3)0.64355 (12)0.0669 (10)
H11A0.72460.60320.67280.100*
H11B0.48000.54540.64220.100*
H11C0.72970.56610.60700.100*
C80.7355 (5)0.3811 (3)0.65718 (9)0.0416 (6)
H80.92020.37700.65550.050*
C60.6585 (4)0.3299 (3)0.71788 (9)0.0303 (5)
H610.71650.22100.72100.036*
C70.3729 (4)0.3374 (3)0.72786 (10)0.0325 (5)
O30.2475 (3)0.22453 (18)0.71760 (8)0.0472 (5)
O20.2878 (3)0.45814 (17)0.74539 (7)0.0461 (5)
H210.13610.44990.75160.069*
N50.7864 (3)0.42102 (19)0.76255 (7)0.0287 (4)
H510.70980.51950.76470.034*
C40.7693 (5)0.3514 (3)0.82032 (9)0.0387 (6)
H410.83590.25140.81840.046*
H420.59350.34520.83170.046*
C30.9138 (5)0.4382 (3)0.86474 (10)0.0437 (6)
H310.85410.53980.86530.052*
H321.09160.43920.85490.052*
C20.8789 (5)0.3691 (3)0.92360 (11)0.0441 (6)
O10.6669 (4)0.3386 (3)0.94118 (8)0.0640 (7)
N11.0852 (5)0.3443 (3)0.95370 (10)0.0571 (7)
H1A1.07480.30500.98730.069*
H1B1.23030.36740.93980.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.107 (4)0.145 (4)0.051 (2)0.017 (4)0.002 (2)0.022 (2)
C90.0570 (19)0.073 (2)0.0485 (16)0.0103 (17)0.0078 (16)0.0115 (14)
C110.087 (3)0.0601 (19)0.0532 (16)0.0004 (19)0.0045 (18)0.0146 (14)
C80.0266 (12)0.0569 (16)0.0414 (13)0.0032 (12)0.0010 (11)0.0006 (11)
C60.0201 (10)0.0329 (11)0.0379 (12)0.0000 (9)0.0006 (9)0.0035 (9)
C70.0210 (10)0.0351 (13)0.0414 (12)0.0018 (10)0.0020 (10)0.0028 (10)
O30.0258 (9)0.0366 (9)0.0792 (13)0.0046 (8)0.0105 (9)0.0016 (8)
O20.0176 (7)0.0442 (10)0.0765 (12)0.0006 (7)0.0048 (8)0.0150 (8)
N50.0205 (8)0.0306 (9)0.0351 (9)0.0005 (8)0.0001 (7)0.0010 (7)
C40.0326 (12)0.0442 (14)0.0391 (13)0.0061 (12)0.0010 (11)0.0080 (10)
C30.0359 (14)0.0528 (16)0.0423 (14)0.0086 (12)0.0040 (11)0.0059 (12)
C20.0343 (13)0.0568 (17)0.0412 (13)0.0005 (12)0.0004 (12)0.0029 (12)
O10.0384 (11)0.1044 (19)0.0493 (11)0.0072 (12)0.0022 (9)0.0191 (11)
N10.0412 (13)0.087 (2)0.0436 (12)0.0016 (13)0.0024 (11)0.0155 (12)
Geometric parameters (Å, º) top
C10—C91.501 (5)C7—O31.239 (3)
C10—H1020.9600C7—O21.248 (3)
C10—H1010.9600O2—H210.8200
C10—H1030.9600N5—C41.487 (3)
C9—C81.532 (4)N5—H510.9781
C9—H9A0.9700C4—C31.506 (3)
C9—H9B0.9700C4—H410.9700
C11—C81.506 (4)C4—H420.9700
C11—H11A0.9600C3—C21.516 (3)
C11—H11B0.9600C3—H310.9700
C11—H11C0.9600C3—H320.9700
C8—C61.541 (3)C2—O11.226 (3)
C8—H80.9800C2—N11.318 (3)
C6—N51.489 (3)N1—H1A0.8600
C6—C71.532 (3)N1—H1B0.8600
C6—H611.0319
C9—C10—H102109.5C7—C6—H61109.0
C9—C10—H101109.5C8—C6—H61105.7
H102—C10—H101109.5O3—C7—O2125.9 (2)
C9—C10—H103109.5O3—C7—C6117.7 (2)
H102—C10—H103109.5O2—C7—C6116.4 (2)
H101—C10—H103109.5C7—O2—H21109.5
C10—C9—C8113.5 (3)C4—N5—C6111.72 (17)
C10—C9—H9A108.9C4—N5—H51108.1
C8—C9—H9A108.9C6—N5—H51110.5
C10—C9—H9B108.9N5—C4—C3111.69 (19)
C8—C9—H9B108.9N5—C4—H41109.3
H9A—C9—H9B107.7C3—C4—H41109.3
C8—C11—H11A109.5N5—C4—H42109.3
C8—C11—H11B109.5C3—C4—H42109.3
H11A—C11—H11B109.5H41—C4—H42107.9
C8—C11—H11C109.5C4—C3—C2110.1 (2)
H11A—C11—H11C109.5C4—C3—H31109.6
H11B—C11—H11C109.5C2—C3—H31109.6
C11—C8—C9111.8 (2)C4—C3—H32109.6
C11—C8—C6113.9 (2)C2—C3—H32109.6
C9—C8—C6110.2 (2)H31—C3—H32108.2
C11—C8—H8106.9O1—C2—N1123.0 (2)
C9—C8—H8106.9O1—C2—C3120.3 (2)
C6—C8—H8106.9N1—C2—C3116.7 (2)
N5—C6—C7108.63 (18)C2—N1—H1A120.0
N5—C6—C8110.73 (18)C2—N1—H1B120.0
C7—C6—C8112.77 (19)H1A—N1—H1B120.0
N5—C6—H61110.0
C10—C9—C8—C1171.4 (4)N5—C6—C7—O235.8 (3)
C10—C9—C8—C6160.9 (3)C8—C6—C7—O287.3 (3)
C11—C8—C6—N562.4 (3)C7—C6—N5—C470.3 (2)
C9—C8—C6—N5171.1 (2)C8—C6—N5—C4165.35 (18)
C11—C8—C6—C759.6 (3)C6—N5—C4—C3176.1 (2)
C9—C8—C6—C766.9 (3)N5—C4—C3—C2176.6 (2)
N5—C6—C7—O3144.6 (2)C4—C3—C2—O149.4 (4)
C8—C6—C7—O392.2 (3)C4—C3—C2—N1130.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.172.982 (3)159
N1—H1B···O1ii0.862.333.097 (4)149
O2—H21···N5iii0.821.892.708 (2)176
N5—H51···O3iv0.981.912.783 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H18N2O3
Mr202.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.2989 (17), 9.024 (3), 23.268 (7)
V3)1112.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.06 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SHELXTL [SADABS?]; Sheldrick, 2008)
Tmin, Tmax0.944, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7386, 1516, 1124
Rint0.074
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 0.95
No. of reflections1516
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.172.982 (3)159
N1—H1B···O1ii0.862.333.097 (4)149
O2—H21···N5iii0.821.892.708 (2)176
N5—H51···O3iv0.981.912.783 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+3/2.
 

References

First citationAlpmann, A. & Morlock, G. (2008). J. Sep. Sci. 31, 71–77.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBesaratinia, A. & Pfeifer, G. P. (2007). Carcinogenesis, 28, 519–528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBowyer, J. F., Latendresse, J. R. & Delongchamp, R. R. (2009). Toxicol. Appl. Pharmacol. 240, 401–411.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCastle, L. & Eriksson, S. (2005). J. AOAC Int. 88, 274–284.  Web of Science PubMed CAS Google Scholar
First citationDias Soares, C. M. & Fernandes, J. O. (2009). Food Anal. Methods, 2, 197–203.  Google Scholar
First citationEU (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy.  Google Scholar
First citationKeramat, J., LeBail, A. & Prost, C. (2011). Food Bioprocess Technol. 4, 340–363.  Web of Science CrossRef CAS Google Scholar
First citationKoyama, N., Yasui, M. & &Kimura, A. (2011). Mutagenesis, 26, 545–549.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, T., Manjanatha, M. & Aidoo, A. (2012). J. Toxicol. Environ. Health, A75, 324–339.  Web of Science CrossRef Google Scholar
First citationLucentini, L., Ferretti, E. & Veschetti, E. (2009). J. AOAC Int. 92, 263–270.  Web of Science PubMed CAS Google Scholar
First citationMarin, J. M., Pozo, O. J. & Sancho, J. V. (2006). J. Mass Spectrom. 41, 1041–1048.  Web of Science PubMed CAS Google Scholar
First citationMei, N., McDaniel, L. P. & Dobrovolsky, V. N. (2010). Toxicol. Sci. 115, 412–421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMizukami, Y., Kohate, K., Katsunori, Y. & Yamaguchi, Y. (2006). J. Agric. Food Chem. 54, 7370–7377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNixon, B., Stanger, S. J. & Nixon, B. (2012). Toxicol. Sci. 129, 135–145.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParzefall, W. (2008). Food Chem. Toxicol. 46, 1360–1364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPerez, H. L. & Osterman-Golkar, S. (2003). Analyst, 128, 1033–1036.  Web of Science PubMed Google Scholar
First citationPittet, A., Perisset, A. & Oberson, J. M. (2004). J. Chromatogr. A, 1035, 123–130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPreston, A., Fodey, T. & Douglas, A. (2009). J. Immunol. Methods, 341, 19–29.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRice, J. M. (2005). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 580, 3–20.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTareke, E., Rydberg, P. & Karlsson, P. (2002). J. Agric. Food Chem. 50, 4998–5006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, R.-S., McDaniel, L. P. & Manjanatha, M. (2010). Toxicol. Sci. 117, 72–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZangrando, R., Gambaro, A. & De Pieri, S. (2012). Int. J. Environ. Anal. Chem. 92, 1150–1150.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o172-o173
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds