metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-dipyrazin-2-ylamine] perchlorate monohydrate]

aFaculty of Environmental Science and Engineering, Guang Dong University of Technology, Guangzhou 510006, People's Republic of China, and bDeparment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: weifengsong@263.net

(Received 26 June 2009; accepted 16 September 2009; online 10 October 2009)

In the title complex, {[Ag(C8H7N5)]ClO4·H2O}n, the multidentate dipyrazin-2-ylamine acts as a μ2-bridging link with an antisyn configuration, assembling the AgI ions into a zigzag chain structure. The AgI ion is linearly coordinated by two dipyrazin-2-ylamine ligands through two pyrazine N atoms. (ClO4)⋯π(pyrazine) [O⋯centroid distances of 3.612 (3) and 3.664 (1) Å] and ππ inter­actions [centroid–centroid distance = 3.518 (2) Å] as well as O—H⋯O and N—H⋯O hydrogen-bonds assemble the chains into a three-dimensional supra­molecular aggregation.

Related literature

For oligo-α-pyridylamino metal-organic frameworks, see: Clérac et al. (2000[Clérac, R., Cotton, F. A., Daniels, L. M., Dunbar, K. R., Kirschbaum, K., Murillo, C. A., Pinkerton, A. A., Schutz, A. J. & Wang, X. (2000). J. Am. Chem. Soc. 122, 6226-6236.]); Chem et al. (2006[Chem, Y.-H., Lee, C.-C., Wang, C.-C., Lee, G.-H., Fang, J.-M., Song, Y. & Peng, S.-M. (2006). Dalton Trans. pp. 3249-3256.]). For other dipyrazin-2-ylamine (Hdpza)–metal complexes, see: Ismayilov et al. (2007[Ismayilov, R. H., Wang, W.-Z., Lee, G.-H., Wang, R.-R., Liu, I. P.-Ch., Yeh, C.-Y. & Peng, S.-M. (2007). Dalton Trans. pp. 2898-2907.]). For supra­molecular assemblies related to N-rich heterocycles, see: Egli & Sarkhel (2007[Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]); Mooibroek et al. (2008[Mooibroek, T. J., Gamez, P. & Reedijk, P. J. (2008). CrystEngComm, 10, 1501-1510.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H7N5)]ClO4·H2O

  • Mr = 398.52

  • Orthorhombic, P b c a

  • a = 9.035 (4) Å

  • b = 15.188 (6) Å

  • c = 18.556 (7) Å

  • V = 2546.4 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 293 K

  • 0.51 × 0.41 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.36, Tmax = 0.58

  • 16026 measured reflections

  • 3144 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.222

  • S = 1.01

  • 3144 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.68 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O1W 0.82 2.12 2.911 (1) 162
O1W—H1WB⋯O3i 0.89 2.21 3.036 (9) 154
O1W—H1WA⋯O2ii 0.89 2.45 3.306 (14) 161
O1W—H1WA⋯O1ii 0.89 2.51 3.063 (11) 121
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The oligo-α-pyridylamino ligands are widely employed in the construction of diverse interesting metal-organic frameworks (Clérac et al., 2000, Chem et al., 2006). By using one or both nitrogen ligation sites in each heteroaromatic ring attached to the rotatable CN(amine) bond, dipyrazin-2-ylamine (Hdpza) has led to several Cu(II), Co(II), Ni(II) and Cr(II) complexes (Ismayilov et al., 2007). Notably, π–acidic aromatic rings such as these N-rich heterocycles have been demonstrated to play an important role in supramolecular assemblies through anion–π interaction, which is of current interest (Egli et al., 2007, Mooibroek et al., 2008).

The asymmetric unit in the title silver(I) complex ([Ag(Hdpza)]+.ClO4-.H2O) consists of an [Ag(Hdpza)]+ cationic group, accompanied by one perchlorate anion and one water solvate (Fig.1). Each AgI center is surrounded by two Hdpza with two 4-pyrazinyl N atoms [N1 and N3i, (i): –x + 3/2, -y + 1, z – 1/2] bonding to the metal, while the ligand exhibits as a µ2-bridging mode with the two 4-pyrazinyl N atoms as bonding sites to link the AgI ions into an infinite chain structure along the c axis (Fig.2). Cationic chains are stacked along the a axis and interconnect through ππ interactions (Fig. 2). In addition, a O(perchl)···π(pyrazine) interaction combines with O-H···O and N-H···O hydrogen-bonds (Table 1) to assemble the infinite chain motifs into a three-dimensional supramolecular structure .

Lattice water molecules and perchlorate anions are embedded within the interstices through OH(water)···O(perchl) and NH(amine)···O(water) H-bonding. The ClO4- anion simultaneously links three neighbouring chains through weak C—H···O(perchl) (C···O span: 3.446 (1) Å - 3.499 (2) Å ) and O(perchl) ···π interactions (O2···Cg: 3.612 (3) Å; O3···Cg: 3.664 (1) Å; Cg:the pyrazinyl ring centroid)

Related literature top

For oligo-α-pyridylamino metal-organic frameworks, see: Clérac et al. (2000); Chem et al. (2006). For other dipyrazin-2-ylamine (Hdpza)–metal complexes, see: Ismayilov et al. (2007). For supramolecular assemblies related to N-rich heterocycles, see: Egli et al. (2007); Mooibroek et al. (2008).

Experimental top

Hdpza was synthesized following literature procedures (Ismayilov et al., 2007). A mixture of Hdpza (100 mg, 0.58 mmol) and AgClO4.xH2O (172 mg) in methanol (40 ml) was stirred for five hours at room temperature. The resulting clear solution was filtered and then left to stand in air for about 7 days. Brown crystals suitable for X-ray diffraction (97.1 mg, 42% yield, on the basis of Hdpza) were obtained.

Refinement top

Hydrogen atoms attached to C were placed in idealized positions and allowed to ride on the corresponding carbon atoms, with C— H = 0.93 Å and Uiso(H) = 1.2Ueq(C). O-H's and N-H's were obtained from Fourier-difference maps, idealized with a O—H: 0.89 Å , N-H= 0.82 Å and allowed to ride with Uĩso~(H) = 1.5Ueq(O).

Structure description top

The oligo-α-pyridylamino ligands are widely employed in the construction of diverse interesting metal-organic frameworks (Clérac et al., 2000, Chem et al., 2006). By using one or both nitrogen ligation sites in each heteroaromatic ring attached to the rotatable CN(amine) bond, dipyrazin-2-ylamine (Hdpza) has led to several Cu(II), Co(II), Ni(II) and Cr(II) complexes (Ismayilov et al., 2007). Notably, π–acidic aromatic rings such as these N-rich heterocycles have been demonstrated to play an important role in supramolecular assemblies through anion–π interaction, which is of current interest (Egli et al., 2007, Mooibroek et al., 2008).

The asymmetric unit in the title silver(I) complex ([Ag(Hdpza)]+.ClO4-.H2O) consists of an [Ag(Hdpza)]+ cationic group, accompanied by one perchlorate anion and one water solvate (Fig.1). Each AgI center is surrounded by two Hdpza with two 4-pyrazinyl N atoms [N1 and N3i, (i): –x + 3/2, -y + 1, z – 1/2] bonding to the metal, while the ligand exhibits as a µ2-bridging mode with the two 4-pyrazinyl N atoms as bonding sites to link the AgI ions into an infinite chain structure along the c axis (Fig.2). Cationic chains are stacked along the a axis and interconnect through ππ interactions (Fig. 2). In addition, a O(perchl)···π(pyrazine) interaction combines with O-H···O and N-H···O hydrogen-bonds (Table 1) to assemble the infinite chain motifs into a three-dimensional supramolecular structure .

Lattice water molecules and perchlorate anions are embedded within the interstices through OH(water)···O(perchl) and NH(amine)···O(water) H-bonding. The ClO4- anion simultaneously links three neighbouring chains through weak C—H···O(perchl) (C···O span: 3.446 (1) Å - 3.499 (2) Å ) and O(perchl) ···π interactions (O2···Cg: 3.612 (3) Å; O3···Cg: 3.664 (1) Å; Cg:the pyrazinyl ring centroid)

For oligo-α-pyridylamino metal-organic frameworks, see: Clérac et al. (2000); Chem et al. (2006). For other dipyrazin-2-ylamine (Hdpza)–metal complexes, see: Ismayilov et al. (2007). For supramolecular assemblies related to N-rich heterocycles, see: Egli et al. (2007); Mooibroek et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (at the 50% probability level) and atomic numbering scheme of the title complex. [Symmetry code: (i) –x + 3/2, –y + 1, z – 1/2]
[Figure 2] Fig. 2. The cationic layer formed by one-dimensional chains linked through ππ interactions. All hydrogen atoms are omitted for clarity. The red dashed lines indicate the ππ interactions.
catena-Poly[[silver(I)-µ-dipyrazin-2-ylamine] perchlorate monohydrate] top
Crystal data top
[Ag(C8H7N5)]ClO4·H2OF(000) = 1568
Mr = 398.52Dx = 2.079 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 834 reflections
a = 9.035 (4) Åθ = 3.0–28.1°
b = 15.188 (6) ŵ = 1.82 mm1
c = 18.556 (7) ÅT = 293 K
V = 2546.4 (17) Å3Block, brown
Z = 80.51 × 0.41 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3144 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
area detector ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1211
Tmin = 0.36, Tmax = 0.58k = 1120
16026 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1002P)2 + 6.7959P]
where P = (Fo2 + 2Fc2)/3
3144 reflections(Δ/σ)max = 0.006
181 parametersΔρmax = 1.68 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Ag(C8H7N5)]ClO4·H2OV = 2546.4 (17) Å3
Mr = 398.52Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.035 (4) ŵ = 1.82 mm1
b = 15.188 (6) ÅT = 293 K
c = 18.556 (7) Å0.51 × 0.41 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3144 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1786 reflections with I > 2σ(I)
Tmin = 0.36, Tmax = 0.58Rint = 0.088
16026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.01Δρmax = 1.68 e Å3
3144 reflectionsΔρmin = 1.19 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.60110 (7)0.60171 (5)0.51698 (3)0.0574 (3)
N10.5177 (6)0.6250 (4)0.6240 (3)0.0412 (13)
N20.4261 (7)0.6635 (4)0.7632 (3)0.0506 (15)
N30.8334 (7)0.4221 (4)0.9068 (3)0.0454 (14)
N40.7495 (6)0.4621 (4)0.7658 (3)0.0408 (12)
N50.5746 (7)0.5612 (5)0.8128 (3)0.0473 (15)
H50.53300.57100.85100.0541*
C10.4145 (8)0.6856 (5)0.6372 (4)0.0516 (18)
H10.37210.71580.59880.062*
C20.3696 (9)0.7046 (6)0.7056 (5)0.059 (2)
H20.29740.74740.71250.071*
C30.5257 (7)0.6012 (4)0.7511 (4)0.0402 (14)
C40.5741 (7)0.5822 (5)0.6807 (4)0.0398 (15)
H40.64620.53940.67350.048*
C50.6845 (7)0.4989 (5)0.8220 (3)0.0396 (14)
C60.7255 (7)0.4780 (5)0.8932 (3)0.0442 (16)
H60.67530.50420.93140.053*
C70.9000 (7)0.3833 (5)0.8487 (4)0.0442 (16)
H70.97520.34240.85610.053*
C80.8579 (8)0.4036 (5)0.7806 (4)0.0477 (17)
H80.90560.37600.74240.057*
Cl10.1976 (2)0.65255 (13)0.43336 (10)0.0500 (5)
O10.1650 (12)0.7083 (6)0.4943 (4)0.110 (3)
O20.0655 (9)0.6109 (6)0.4123 (6)0.115 (3)
O30.2520 (7)0.7041 (4)0.3752 (3)0.0724 (17)
O40.3014 (9)0.5867 (5)0.4522 (5)0.102 (3)
O1W0.3945 (6)0.6282 (5)0.9308 (3)0.0656 (16)
H1WB0.37150.67320.90230.098*
H1WA0.42490.63350.97620.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0662 (5)0.0630 (5)0.0431 (4)0.0062 (3)0.0078 (3)0.0003 (3)
N10.041 (3)0.036 (3)0.047 (3)0.003 (2)0.000 (2)0.002 (2)
N20.052 (4)0.046 (4)0.054 (4)0.015 (3)0.004 (3)0.005 (3)
N30.048 (3)0.045 (4)0.043 (3)0.003 (3)0.004 (3)0.003 (3)
N40.048 (3)0.033 (3)0.042 (3)0.006 (2)0.003 (2)0.001 (2)
N50.049 (3)0.054 (4)0.039 (3)0.018 (3)0.002 (3)0.002 (3)
C10.050 (4)0.047 (5)0.058 (4)0.005 (3)0.003 (3)0.013 (4)
C20.064 (5)0.045 (5)0.069 (5)0.021 (4)0.007 (4)0.006 (4)
C30.041 (4)0.035 (4)0.044 (3)0.001 (3)0.003 (3)0.003 (3)
C40.034 (3)0.040 (4)0.046 (4)0.004 (3)0.001 (3)0.007 (3)
C50.038 (3)0.039 (4)0.042 (3)0.001 (3)0.004 (3)0.001 (3)
C60.046 (4)0.050 (4)0.037 (3)0.001 (3)0.004 (3)0.007 (3)
C70.042 (4)0.038 (4)0.052 (4)0.001 (3)0.002 (3)0.005 (3)
C80.048 (4)0.046 (4)0.049 (4)0.005 (3)0.005 (3)0.008 (3)
Cl10.0486 (9)0.0443 (10)0.0570 (10)0.0022 (8)0.0001 (8)0.0074 (8)
O10.163 (8)0.095 (7)0.072 (4)0.002 (6)0.036 (5)0.012 (4)
O20.074 (5)0.111 (7)0.161 (9)0.039 (5)0.023 (5)0.010 (6)
O30.089 (4)0.059 (4)0.070 (4)0.001 (3)0.022 (3)0.013 (3)
O40.095 (5)0.080 (5)0.131 (7)0.034 (4)0.014 (5)0.053 (5)
O1W0.069 (4)0.070 (4)0.058 (3)0.016 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Ag1—N12.153 (6)C1—H10.9300
Ag1—N3i2.160 (6)C2—H20.9300
N1—C11.334 (9)C3—C41.407 (10)
N1—C41.337 (9)C4—H40.9300
N2—C31.325 (9)C5—C61.408 (9)
N2—C21.338 (10)C6—H60.9300
N3—C61.317 (9)C7—C81.355 (11)
N3—C71.368 (10)C7—H70.9300
N3—Ag1ii2.160 (6)C8—H80.9300
N4—C51.321 (8)Cl1—O21.406 (8)
N4—C81.350 (9)Cl1—O41.415 (7)
N5—C31.370 (9)Cl1—O31.420 (6)
N5—C51.382 (9)Cl1—O11.444 (8)
N5—H50.8200O1W—H1WB0.8900
C1—C21.364 (12)O1W—H1WA0.8900
N1—Ag1—N3i175.4 (2)N1—C4—H4119.6
C1—N1—C4117.2 (6)C3—C4—H4119.6
C1—N1—Ag1121.8 (5)N4—C5—N5120.8 (6)
C4—N1—Ag1120.8 (4)N4—C5—C6121.9 (6)
C3—N2—C2117.1 (7)N5—C5—C6117.3 (6)
C6—N3—C7117.0 (6)N3—C6—C5121.2 (6)
C6—N3—Ag1ii119.5 (5)N3—C6—H6119.4
C7—N3—Ag1ii123.5 (5)C5—C6—H6119.4
C5—N4—C8116.1 (6)C8—C7—N3120.8 (7)
C3—N5—C5129.7 (6)C8—C7—H7119.6
C3—N5—H5120.0N3—C7—H7119.6
C5—N5—H5110.1N4—C8—C7122.9 (7)
N1—C1—C2121.6 (7)N4—C8—H8118.5
N1—C1—H1119.2C7—C8—H8118.5
C2—C1—H1119.2O2—Cl1—O4108.2 (6)
N2—C2—C1122.1 (7)O2—Cl1—O3109.3 (5)
N2—C2—H2119.0O4—Cl1—O3110.3 (4)
C1—C2—H2118.9O2—Cl1—O1108.0 (6)
N2—C3—N5113.2 (6)O4—Cl1—O1110.9 (6)
N2—C3—C4121.0 (7)O3—Cl1—O1110.0 (5)
N5—C3—C4125.8 (6)H1WB—O1W—H1WA124.5
N1—C4—C3120.8 (6)
C4—N1—C1—C21.0 (11)C8—N4—C5—N5178.5 (7)
Ag1—N1—C1—C2175.2 (6)C8—N4—C5—C60.3 (10)
C3—N2—C2—C11.8 (13)C3—N5—C5—N47.3 (12)
N1—C1—C2—N20.0 (13)C3—N5—C5—C6171.5 (7)
C2—N2—C3—N5178.4 (7)C7—N3—C6—C52.2 (10)
C2—N2—C3—C42.7 (11)Ag1ii—N3—C6—C5176.6 (5)
C5—N5—C3—N2174.7 (7)N4—C5—C6—N31.7 (11)
C5—N5—C3—C44.1 (13)N5—C5—C6—N3177.1 (7)
C1—N1—C4—C30.1 (10)C6—N3—C7—C81.4 (10)
Ag1—N1—C4—C3176.2 (5)Ag1ii—N3—C7—C8177.3 (5)
N2—C3—C4—N11.8 (10)C5—N4—C8—C70.4 (11)
N5—C3—C4—N1179.4 (7)N3—C7—C8—N40.1 (12)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O1W0.822.122.911 (1)162
O1W—H1WB···O3iii0.892.213.036 (9)154
O1W—H1WA···O2iv0.892.453.306 (14)161
O1W—H1WA···O1iv0.892.513.063 (11)121
Symmetry codes: (iii) x, y+3/2, z+1/2; (iv) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(C8H7N5)]ClO4·H2O
Mr398.52
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.035 (4), 15.188 (6), 18.556 (7)
V3)2546.4 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.51 × 0.41 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.36, 0.58
No. of measured, independent and
observed [I > 2σ(I)] reflections
16026, 3144, 1786
Rint0.088
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.222, 1.01
No. of reflections3144
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.68, 1.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O1W0.822.1202.911 (1)162
O1W—H1WB···O3i0.892.2123.036 (9)154
O1W—H1WA···O2ii0.892.4513.306 (14)161
O1W—H1WA···O1ii0.892.5093.063 (11)121
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology Program of Guangdong Province (2006B36701002).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChem, Y.-H., Lee, C.-C., Wang, C.-C., Lee, G.-H., Fang, J.-M., Song, Y. & Peng, S.-M. (2006). Dalton Trans. pp. 3249–3256.  Google Scholar
First citationClérac, R., Cotton, F. A., Daniels, L. M., Dunbar, K. R., Kirschbaum, K., Murillo, C. A., Pinkerton, A. A., Schutz, A. J. & Wang, X. (2000). J. Am. Chem. Soc. 122, 6226–6236.  Google Scholar
First citationEgli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsmayilov, R. H., Wang, W.-Z., Lee, G.-H., Wang, R.-R., Liu, I. P.-Ch., Yeh, C.-Y. & Peng, S.-M. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef Google Scholar
First citationMooibroek, T. J., Gamez, P. & Reedijk, P. J. (2008). CrystEngComm, 10, 1501–1510.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds