organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1350-o1351

4-Benzyl-6-p-tolyl­pyridazin-3(2H)-one

aLaboratoire des Substances Naturelles et Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR–CNRS 8241, 205 Route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Physico-Chimie des Matériaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: mohamedazrour@yahoo.fr

(Received 28 April 2009; accepted 14 May 2009; online 20 May 2009)

The title compound, C18H16N2O, is a new dihydro­pyridazin-3(2H)-one derivative synthesized in one step by condensation of α-benzyl­idene-γ-tolyl­butenolide with hydrazine. The mol­ecule is not planar; the tolyl and pyridazine rings are twisted with respect to each other making a dihedral angle of 27.35 (9)° and the benzyl ring is nearly perpendicular to the pyridazine ring with a dihedral angle of 85.24 (5)°. In the crystal structure, inversion dimers arise, being linked by pairs of N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds and weak offset ππ stacking stabilize the packing. The ππ stacking occurs between the pyridazine rings of symmetry-related mol­ecules, with a centroid–centroid distance of 3.748 Å, an inter­planar distance of 3.605 Å and a slippage of 1.024 Å.

Related literature

For related compounds displaying biological activities, see: Sayed et al. (2002[Sayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767-776.]); Frolov et al. (2004[Frolov, E. B., Lakner, F. J., Khvat, A. V. & Ivachtchenko, A. V. (2004). Tetrahedron Lett. 45, 4693-4696.]); Piaz et al. (1994[Piaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669-671.]); Coelho et al. (2004[Coelho, A., Sotelo, E., Fraiz, N., Yanez, M., Laguna, R., Cano, E. & Ravina, E. (2004). Bioorg. Med. Chem. Lett. 14, 321-324.]); Malinka et al. (2004[Malinka, W., Redzicka, A. & Lozach, O. (2004). Il Farmaco, 59, 457-462.]); Ogretir et al. (2002[Ogretir, C., Yarligan, S. & Demirayak, S. (2002). J. Chem. Eng. Data, 47, 1396-1400.]); Okcelik et al. (2003[Okcelik, B., Unlu, S., Banoglu, E., Kupeli, E., Yesilada, E. & Sahin, M. F. (2003). Arch. Pharm. Med. Chem. 336, 406-412.]); Sotelo et al. (2003[Sotelo, E., Coelho, A. & Ravina, E. (2003). Chem. Pharm. Bull. 51, 427-430.]); Youssef et al. (2005[Youssef, A. S., Marzouk, M. I., Madkour, H. M. F., El-Soll, A. M. A. & El-Hashash, M. A. (2005). Can. J. Chem. 83, 251-259.]). For related structures, see: Cao et al. (2003[Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152-155.]); Daran et al. (2006[Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329-o331.]); Fihi et al. (1995[Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 55-62.]); Filler & Piasek (1973[Filler, R. & Piasek, E. J. (1973). Org. Synth. 5, 80-81.]); Roussel et al. (2000[Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471-476.], 2003[Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689-2698.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O

  • Mr = 276.33

  • Monoclinic, P 21 /n

  • a = 7.2487 (4) Å

  • b = 10.4469 (5) Å

  • c = 19.1869 (9) Å

  • β = 99.598 (5)°

  • V = 1432.62 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.50 × 0.48 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.965, Tmax = 0.993

  • 10925 measured reflections

  • 2914 independent reflections

  • 1622 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 0.94

  • 2914 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 1.89 2.7686 (19) 178
C34—H34⋯O1ii 0.95 2.57 3.512 (2) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years a number of 6-arylpyridazin-3(2H)-ones have been reported to possess antimicrobial (Sayed et al., 2002), anti-inflammatory (Frolov et al., 2004), herbicidal (Piaz et al.,1994), antiplatelet activities (Coelho et al., 2004), anticancer effects (Malinka et al., 2004), antifeedant (Cao et al., 2003), antihypertensive (Ogretir et al.,2002), potent analgesic (Okcelik et al., 2003) and other anticipated biological(Youssef et al., 2005) and pharmacological properties (Sotelo et al., 2003).

In previous papers treating the reactivity of lactones bearing an exocyclic carbon-carbon double bond with 1,3-dipoles (Fihi et al., 1995; Roussel et al., 2000, 2003; Daran et al., 2006), we reported that cycloaddition reactions lead to spiroheterocyclic compounds or evolutive products. In this paper, we describe the synthesis of a new dihydro-2 H– pyridazin-3-onederivative. The condensation ofα-benzylidene-γ-tolylbutenolide(1) and hydrazine (2) in reflux in toluene leads in one step to pyridazin-3-one(3). (Scheme).

Since the 1H and 13CNMR studies did not provide unambiguous information, a single-crystal of (3) was subjected to X-ray diffraction analysis to determine the structure of the product.

The molecule is not planar, the tolyl and the pyridazin rings are twisted to each other making a dihedral angle of 27.35 (9)° and the phenyl ring is nearly perpendicular to the pyridazin ring with a dihedral angle of 85.24 (5)° (Fig. 1).

The molecules are connected two by two through N—H···O hydrogen bonds with a R22(8) graph set motif (Bernstein et al., 1995) then building a pseudo dimer arranged around the inversion center (Fig. 1, Table 1). Weak C—H···O hydrogen bonds and weak offset π-π stacking stabilize the packing. The π-π stacking occurs between the pyridazin rings of symmetry related molecules with centroid-to-centroid distance of 3.748 Å and interplanar distance of 3.605Å and a slippage of 1.024 Å.

Related literature top

For general backgound, see: Sayed et al. (2002); Frolov et al. (2004); Piaz et al. (1994); Coelho et al. (2004); Malinka et al. (2004); Ogretir et al. (2002); Okcelik et al. (2003); Sotelo et al. (2003); Youssef et al. (2005). For related structures, see: Cao et al. (2003); Daran et al. (2006); Fihi et al. (1995); Filler & Piasek (1973); Roussel et al. (2000, 2003). For structural discussion, see: Bernstein et al. (1995).

Experimental top

α-benzylidene-γ-tolylbutenolide (1) was synthesized according to the literature procedure (Filler & Piasek, 1973). (0.036 g, 1.125 mmol) of hydrazine was added to a solution of (1) (0.2 g, 0.76 mmol) in toluene (25 ml) and the mixture was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was recrystallized from ethanol, and purified by chromatography on silica gel (eluant: ethyl acetate / hexane: 20 / 80). The pyridazinone was recrystallized from ethanol.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98Å (methyl) or 0.95 Å (aromatic) and N—H =0.88 Å with Uiso(H) = 1.2Ueq(C or N)or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and hydrogen bonds are shown as dashed lines.[symmetry codes: (i) -x + 1, -y, -z + 1].
[Figure 2] Fig. 2. The formation of the title compound.
4-Benzyl-6-p-tolylpyridazin-3(2H)-one top
Crystal data top
C18H16N2OF(000) = 584
Mr = 276.33Dx = 1.281 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3436 reflections
a = 7.2487 (4) Åθ = 2.8–32.0°
b = 10.4469 (5) ŵ = 0.08 mm1
c = 19.1869 (9) ÅT = 180 K
β = 99.598 (5)°Fragment, colourless
V = 1432.62 (12) Å30.50 × 0.48 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2914 independent reflections
Radiation source: fine-focus sealed tube1622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω and ϕ scansh = 79
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1213
Tmin = 0.965, Tmax = 0.993l = 2323
10925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.0125P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max = 0.008
190 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H16N2OV = 1432.62 (12) Å3
Mr = 276.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2487 (4) ŵ = 0.08 mm1
b = 10.4469 (5) ÅT = 180 K
c = 19.1869 (9) Å0.50 × 0.48 × 0.08 mm
β = 99.598 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1622 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.993Rint = 0.044
10925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.94Δρmax = 0.20 e Å3
2914 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Experimental. All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.98Å (methyl) and N—H = 0.86 Å with Uiso(H) = xUeq(C or N) where x=1.2 or 1.5(methyl).

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlis RED (Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.58992 (17)0.03563 (12)0.42289 (6)0.0387 (4)
N10.8190 (2)0.19591 (14)0.54067 (8)0.0336 (4)
N20.7005 (2)0.10629 (14)0.50803 (7)0.0335 (4)
H20.60670.08480.52940.040*
C10.9570 (3)0.22886 (16)0.50837 (9)0.0296 (4)
C20.7092 (3)0.04582 (17)0.44647 (9)0.0297 (4)
C30.8621 (2)0.08373 (17)0.41181 (9)0.0296 (4)
C40.9807 (2)0.17325 (17)0.44281 (9)0.0309 (4)
H41.08210.19990.42060.037*
C111.0846 (3)0.32907 (17)0.54285 (9)0.0314 (5)
C121.0234 (3)0.41994 (17)0.58693 (9)0.0360 (5)
H120.89830.41680.59560.043*
C131.1423 (3)0.51460 (18)0.61821 (10)0.0398 (5)
H131.09740.57570.64800.048*
C141.3252 (3)0.52198 (18)0.60691 (10)0.0392 (5)
C151.3863 (3)0.43020 (19)0.56396 (10)0.0414 (5)
H151.51220.43260.55610.050*
C161.2684 (3)0.33473 (18)0.53210 (9)0.0372 (5)
H161.31410.27310.50280.045*
C171.4555 (3)0.6246 (2)0.64031 (11)0.0547 (6)
H17A1.57800.61380.62590.082*0.50
H17B1.46910.61820.69190.082*0.50
H17C1.40440.70870.62500.082*0.50
H17D1.38970.68000.66930.082*0.50
H17E1.49860.67560.60330.082*0.50
H17F1.56330.58510.67020.082*0.50
C310.8735 (3)0.02039 (18)0.34214 (9)0.0359 (5)
H31A0.91690.06880.35130.043*
H31B0.74630.01700.31380.043*
C321.0013 (3)0.08604 (17)0.29952 (9)0.0292 (4)
C330.9342 (3)0.18115 (18)0.25246 (9)0.0376 (5)
H330.80630.20540.24730.045*
C341.0500 (3)0.2416 (2)0.21276 (10)0.0438 (5)
H341.00240.30740.18060.053*
C351.2341 (3)0.20623 (19)0.21994 (11)0.0467 (6)
H351.31420.24700.19230.056*
C361.3030 (3)0.11236 (19)0.26684 (11)0.0454 (6)
H361.43090.08810.27190.054*
C371.1874 (3)0.05337 (18)0.30651 (10)0.0358 (5)
H371.23630.01110.33940.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0398 (8)0.0418 (8)0.0372 (8)0.0120 (7)0.0141 (6)0.0062 (7)
N10.0369 (10)0.0355 (9)0.0299 (8)0.0082 (7)0.0094 (7)0.0015 (7)
N20.0344 (9)0.0379 (9)0.0311 (8)0.0100 (8)0.0139 (7)0.0040 (8)
C10.0326 (11)0.0290 (10)0.0281 (10)0.0032 (8)0.0076 (8)0.0052 (8)
C20.0331 (11)0.0289 (11)0.0278 (10)0.0029 (9)0.0071 (8)0.0012 (9)
C30.0306 (11)0.0313 (11)0.0285 (10)0.0012 (8)0.0093 (8)0.0027 (8)
C40.0315 (11)0.0336 (11)0.0293 (10)0.0036 (9)0.0100 (8)0.0014 (9)
C110.0364 (12)0.0327 (11)0.0254 (9)0.0034 (9)0.0064 (8)0.0064 (9)
C120.0373 (12)0.0382 (12)0.0336 (11)0.0028 (9)0.0088 (9)0.0027 (10)
C130.0497 (14)0.0344 (12)0.0340 (11)0.0034 (10)0.0034 (10)0.0020 (9)
C140.0464 (13)0.0354 (12)0.0326 (11)0.0070 (10)0.0028 (9)0.0077 (9)
C150.0336 (12)0.0472 (13)0.0420 (12)0.0084 (10)0.0019 (9)0.0116 (11)
C160.0395 (13)0.0390 (12)0.0341 (11)0.0023 (10)0.0087 (9)0.0041 (9)
C170.0584 (16)0.0471 (14)0.0534 (14)0.0177 (11)0.0058 (11)0.0017 (11)
C310.0388 (12)0.0403 (12)0.0307 (10)0.0067 (9)0.0119 (9)0.0046 (9)
C320.0354 (12)0.0307 (11)0.0227 (9)0.0041 (8)0.0085 (8)0.0046 (8)
C330.0390 (12)0.0408 (12)0.0328 (11)0.0043 (9)0.0056 (9)0.0016 (9)
C340.0649 (16)0.0374 (12)0.0303 (11)0.0026 (11)0.0111 (10)0.0051 (9)
C350.0588 (16)0.0452 (13)0.0422 (12)0.0158 (11)0.0257 (11)0.0073 (11)
C360.0353 (13)0.0461 (13)0.0575 (14)0.0009 (10)0.0162 (11)0.0041 (12)
C370.0368 (12)0.0366 (12)0.0349 (11)0.0014 (9)0.0087 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1—C21.243 (2)C16—H160.9500
N1—C11.308 (2)C17—H17A0.9800
N1—N21.3515 (19)C17—H17B0.9800
N2—C21.350 (2)C17—H17C0.9800
N2—H20.8800C17—H17D0.9800
C1—C41.422 (2)C17—H17E0.9800
C1—C111.478 (2)C17—H17F0.9800
C2—C31.440 (2)C31—C321.500 (2)
C3—C41.341 (2)C31—H31A0.9900
C3—C311.506 (2)C31—H31B0.9900
C4—H40.9500C32—C371.376 (3)
C11—C161.383 (3)C32—C331.376 (2)
C11—C121.392 (2)C33—C341.377 (3)
C12—C131.381 (2)C33—H330.9500
C12—H120.9500C34—C351.369 (3)
C13—C141.381 (3)C34—H340.9500
C13—H130.9500C35—C361.368 (3)
C14—C151.384 (3)C35—H350.9500
C14—C171.500 (3)C36—C371.369 (3)
C15—C161.387 (2)C36—H360.9500
C15—H150.9500C37—H370.9500
C1—N1—N2116.10 (15)C14—C17—H17D109.5
C2—N2—N1127.66 (15)H17A—C17—H17D141.1
C2—N2—H2116.2H17B—C17—H17D56.3
N1—N2—H2116.2H17C—C17—H17D56.3
N1—C1—C4121.77 (17)C14—C17—H17E109.5
N1—C1—C11116.46 (16)H17A—C17—H17E56.3
C4—C1—C11121.76 (16)H17B—C17—H17E141.1
O1—C2—N2120.52 (16)H17C—C17—H17E56.3
O1—C2—C3124.21 (16)H17D—C17—H17E109.5
N2—C2—C3115.27 (16)C14—C17—H17F109.5
C4—C3—C2118.24 (16)H17A—C17—H17F56.3
C4—C3—C31125.03 (17)H17B—C17—H17F56.3
C2—C3—C31116.72 (16)H17C—C17—H17F141.1
C3—C4—C1120.96 (17)H17D—C17—H17F109.5
C3—C4—H4119.5H17E—C17—H17F109.5
C1—C4—H4119.5C32—C31—C3114.42 (15)
C16—C11—C12118.29 (17)C32—C31—H31A108.7
C16—C11—C1120.67 (17)C3—C31—H31A108.7
C12—C11—C1121.03 (17)C32—C31—H31B108.7
C13—C12—C11120.87 (18)C3—C31—H31B108.7
C13—C12—H12119.6H31A—C31—H31B107.6
C11—C12—H12119.6C37—C32—C33118.48 (17)
C14—C13—C12121.16 (19)C37—C32—C31121.19 (17)
C14—C13—H13119.4C33—C32—C31120.33 (17)
C12—C13—H13119.4C32—C33—C34120.83 (18)
C13—C14—C15117.75 (18)C32—C33—H33119.6
C13—C14—C17121.70 (19)C34—C33—H33119.6
C15—C14—C17120.6 (2)C35—C34—C33119.65 (19)
C14—C15—C16121.71 (19)C35—C34—H34120.2
C14—C15—H15119.1C33—C34—H34120.2
C16—C15—H15119.1C36—C35—C34120.14 (19)
C11—C16—C15120.20 (18)C36—C35—H35119.9
C11—C16—H16119.9C34—C35—H35119.9
C15—C16—H16119.9C35—C36—C37119.89 (19)
C14—C17—H17A109.5C35—C36—H36120.1
C14—C17—H17B109.5C37—C36—H36120.1
H17A—C17—H17B109.5C36—C37—C32121.01 (19)
C14—C17—H17C109.5C36—C37—H37119.5
H17A—C17—H17C109.5C32—C37—H37119.5
H17B—C17—H17C109.5
C1—N1—N2—C20.8 (3)C12—C13—C14—C150.9 (3)
N2—N1—C1—C40.1 (2)C12—C13—C14—C17179.75 (17)
N2—N1—C1—C11178.59 (14)C13—C14—C15—C161.0 (3)
N1—N2—C2—O1179.62 (16)C17—C14—C15—C16179.62 (17)
N1—N2—C2—C30.9 (3)C12—C11—C16—C150.9 (3)
O1—C2—C3—C4179.72 (16)C1—C11—C16—C15179.14 (16)
N2—C2—C3—C40.3 (2)C14—C15—C16—C110.1 (3)
O1—C2—C3—C310.8 (3)C4—C3—C31—C3214.1 (3)
N2—C2—C3—C31178.64 (15)C2—C3—C31—C32164.73 (16)
C2—C3—C4—C10.3 (3)C3—C31—C32—C3790.5 (2)
C31—C3—C4—C1179.16 (17)C3—C31—C32—C3389.3 (2)
N1—C1—C4—C30.5 (3)C37—C32—C33—C340.6 (3)
C11—C1—C4—C3179.06 (16)C31—C32—C33—C34179.63 (17)
N1—C1—C11—C16153.12 (17)C32—C33—C34—C350.3 (3)
C4—C1—C11—C1628.2 (3)C33—C34—C35—C360.7 (3)
N1—C1—C11—C1226.8 (2)C34—C35—C36—C370.2 (3)
C4—C1—C11—C12151.86 (17)C35—C36—C37—C320.7 (3)
C16—C11—C12—C131.0 (2)C33—C32—C37—C361.1 (3)
C1—C11—C12—C13179.02 (16)C31—C32—C37—C36179.14 (17)
C11—C12—C13—C140.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.892.7686 (19)178
C34—H34···O1ii0.952.573.512 (2)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2O
Mr276.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)7.2487 (4), 10.4469 (5), 19.1869 (9)
β (°) 99.598 (5)
V3)1432.62 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.48 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.965, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10925, 2914, 1622
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 0.94
No. of reflections2914
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.892.7686 (19)178.3
C34—H34···O1ii0.952.573.512 (2)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationCao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoelho, A., Sotelo, E., Fraiz, N., Yanez, M., Laguna, R., Cano, E. & Ravina, E. (2004). Bioorg. Med. Chem. Lett. 14, 321–324.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329–o331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 55–62.  CrossRef CAS Google Scholar
First citationFiller, R. & Piasek, E. J. (1973). Org. Synth. 5, 80–81.  Google Scholar
First citationFrolov, E. B., Lakner, F. J., Khvat, A. V. & Ivachtchenko, A. V. (2004). Tetrahedron Lett. 45, 4693–4696.  Web of Science CrossRef CAS Google Scholar
First citationMalinka, W., Redzicka, A. & Lozach, O. (2004). Il Farmaco, 59, 457–462.  CrossRef PubMed CAS Google Scholar
First citationOgretir, C., Yarligan, S. & Demirayak, S. (2002). J. Chem. Eng. Data, 47, 1396–1400.  Web of Science CrossRef Google Scholar
First citationOkcelik, B., Unlu, S., Banoglu, E., Kupeli, E., Yesilada, E. & Sahin, M. F. (2003). Arch. Pharm. Med. Chem. 336, 406–412.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPiaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669–671.  CrossRef Google Scholar
First citationRoussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471–476.  Web of Science CrossRef CAS Google Scholar
First citationRoussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767–776.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSotelo, E., Coelho, A. & Ravina, E. (2003). Chem. Pharm. Bull. 51, 427–430.  CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoussef, A. S., Marzouk, M. I., Madkour, H. M. F., El-Soll, A. M. A. & El-Hashash, M. A. (2005). Can. J. Chem. 83, 251–259.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1350-o1351
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds