organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o509-o510

4′-Methyl-3-(4-nitro­phen­yl)-4-phenyl-4,5,1′,2′,3′,4′-hexa­hydro­spiro­[isoxazole-5,2′-naphthalen]-1′-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar El Mehraz, Fés, Morocco, bLaboratoire d'Activation Moléculaire, Faculté des Sciences, 60000 Oujda, Morocco, and cInstitut de Microtechnique, Université de Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: tbenhadda@yahoo.fr

(Received 20 November 2007; accepted 11 December 2007; online 23 January 2008)

The title compound, C25H20N2O4, is a new spiro-isoxazoline derivative. It contains a five-membered isoxazoline ring (A), a tetra­lone unit (E and D), a 4-nitro­phenyl substituent (B), and a phenyl ring (C). The isoxazoline ring (A) has an envelope conformation, while the cyclo­hexenone ring (D) has an inter­mediate sofa/half-chair conformation. The aromatic ring of the 4-nitro­phenyl substituent (B) is inclined at an angle of 78.97 (10)° to the phenyl ring (C). The rigid pharmacophore site, Osp2—C—C—Osp3, is characterized by an O⋯O distance of 3.113 (2) Å and an O—C—C—O torsion angle of 97.8 (2)°. In the crystal structure, mol­ecules are linked by C—H⋯O contacts.

Related literature

For the crystal structure of a very similar compound, 3-(4-chloro­phen­yl)-4-(4-phenyl-3′,4′-dihydro-1′H,4H-spiro­[isoxazole-5,2′-naphthalen]-1′-one, see: Subbiah Pandi et al. (2001[Subbiah Pandi, A., Banumathi, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Manikandan, S. (2001). Acta Cryst. C57, 819-820.]). For related literature, see: Anaflous et al. (2004[Anaflous, A., Benchat1, N., Mimouni, Abouricha, M. S., Ben-Hadda, T., El-Bali, B., hakkou, A. & Hacht, B. (2004). Lett. Drug. Des. Disc. 1, 35-44.]); Arnold et al. (1947[Arnold, T., Bruckley, J. S. & Richter, J. (1947). J. Am. Chem. Soc. 69, 2323-2325.]); Bakavoli et al. (2005[Bakavoli, M., Bagherzadeh, G. & Rahimizadeh, M. (2005). Mendeleev Commun. 4, 145-146.]); Chaouni-Benabdallah et al. (2001[Chaouni-Benabdallah, A., Galtier, C., Allouchi, H., Kherbeche, A., Debouzy, J. C., Teulade, J. C., Chavignon, O., Witvrouw, M., Pannecouque, C., Balzarini, J., De Clercq, E. & Enguehard, C. (2001). Arch. Pharm. (Weinheim), 334, 224-228.]); Chenera et al. (1993[Chenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem. 58, 5605-5606.]); Debaerdemaeker et al. (1977[Debaerdemaeker, T., Pohl, H. H. & Dimroth, K. (1977). Chem. Ber. Recl, 110, 1497-1503.]); Ellis (1997[Ellis, G. P. (1997). Chromenes, Chromanones and Chromones. New York: John Wiley and Sons, Inc.]); Howe & Shelton (1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]); Katritzky et al. (2003[Katritzky, A. R., Xu, Y. J. & Tu, H. B. (2003). J. Org. Chem. 68, 4935-4937.]); Kerbal et al. (1990[Kerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr. 127, 252-257.]); Kooijman et al. (1984[Kooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.]); Seifert et al. (1976[Seifert, W. J., Schaffer, O. & Dimroth, K. (1976). Angew. Chem. Int. Ed. Engl. 15, 238-239.]); Smietana et al. (1999[Smietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291-1294.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N2O4

  • Mr = 412.43

  • Monoclinic, P 21 /n

  • a = 10.6567 (15) Å

  • b = 15.7071 (16) Å

  • c = 12.7259 (15) Å

  • β = 106.258 (10)°

  • V = 2045.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.40 × 0.37 × 0.27 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: none

  • 20256 measured reflections

  • 3798 independent reflections

  • 2837 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.123

  • S = 1.01

  • 3798 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O4i 0.99 2.50 3.319 (3) 140
C20—H20⋯O1ii 0.95 2.58 3.365 (2) 140
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.25) and X-RED32 (Version 1.26). Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA (Version 1.25) and X-RED32 (Version 1.26). Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiroisoxazolines display interesting biological properties such as herbicidal, plant-growth regulatory and antitumour activities (Howe & Shelton, 1990; Smietana et al., 1999). Many 4-chromanone derivatives are versatile intermediates for the synthesis of natural products such as brazillin, hematoxylin, ripariochromene, clausenin, calonlide A and inophyllum B (Kooijman et al., 1984; Ellis et al., 1997; Chenera et al., 1993). Chromanone heterocycles have also attracted much attention owing to their important pharmacological properties (Chaouni-Benabdallah et al., 2001). As a extention of our pharmacological studies on the structure-antituburcular activity relationships in 3-armed imidazo[1,2-a]pyrimidines (Debaerdemaeker et al., 1977; Seifert et al., 1976; Anaflous et al., 2004), we synthesized 4'-methyl-4-(4-phenyl)-3-(4-nitrophenyl)-3',4'- dihydro-1'H,4H-spiro[isoxazole-5,2'-naphthalen]-1'-one (III). Some analogous structures have been reported previously (Katritzky et al., 2003; Bakavoli et al., 2005). The title compound, (III), was prepared by the action of para-nitro- benzaldoxime (II), on 4-methyl-2-[(E)-phenylmethylidene]-3,4- dihydro-1(2H)-naphthalenone (I).

The molecular structure of compound (III) is illustrated in Fig. 1. It is composed of a five-membered isoxazoline ring (A), a tetralone moiety (E & D), a 4-nitrophenyl substituent (B), and a phenyl ring (C). Ring A [C1,O2,N1,C12,C11] has an envelope conformation, with atom C1 at the flap and lieing out of the best least-squares plane through the other four atoms by 0.259 (2) Å. Ring D [C1—C4,C9,C10] has an intermediate sofa/half-chair conformation with atoms C1 and C2 out of the best least-squares plane through the other four atoms [planar to within 0.028 (2) Å] by -0.111 (2) and 0.538 (2) Å, respectively. The best least-squares plane through atoms O2,N1,C12,C11 [planar to within 0.008 (2) Å], of the isoxazoline ring A, is inclined to the best least-squares planes through phenyl ring E (C4—C9) by 86.95 (11)°, and to the best least-squares plane through rings B (C13—C18), and C (C19—C24) by 7.47 (11) and 83.47 (11) °, respectively. Ring C is inclined to rings B and E by 78.97 (10)° and 78.66 (11) °, respectively.

The rigid pharmacophore site, O(sp2)-C—C—O(sp3), is characterized by an O···O spatial distance of 3.113 (2) Å (O1···O2), with a torsion angle (O2—C1—C10—O1) of 97.8 (2) °. The bond distances and angles are very similar to those observed in 3-(4-chlorophenyl)-4-(4-phenyl-3',4'-dihydro- 1'H,4H-spiro[isoxazole-5,2'-naphthalen]-1'-one (Subbiah Pandi et al., 2001).

In the crystal structure of (III) symmetry related molecules are linked by intermolecular C—H···O contacts (Table 1 and Fig. 2).

Related literature top

For the crystal structure of a very similar compound, 3-(4-chlorophenyl)-4-(4-phenyl-3',4'-dihydro- 1'H,4H-spiro[isoxazole-5,2'-naphthalen]-1'-one, see: Subbiah Pandi et al. (2001). For related literature, see: Anaflous et al. (2004); Arnold et al. (1947); Bakavoli et al. (2005); Chaouni-Benabdallah, Galtier, Allouchi, Kherbeche, Debouzy, Teulade, Chavignon, Witvrouw, Pannecouque, Balzarini, De Clercq & Enguehard (2001); Chenera et al. (1993); Debaerdemaeker et al. (1977); Ellis (1997); Howe & Shelton (1990); Katritzky et al. (2003); Kerbal et al. (1990); Kooijman et al. (1984); Seifert et al. (1976); Smietana et al. (1999).

Experimental top

Compound (III) was synthesized by the action of para-nitro- benzaldoxime (II) on 4-methyl-2-[(E)-phenylmethylidene]-3,4-dihydro-1(2H)- naphthalenone (I). The latter was prepared according to the method described previously (Arnold et al., 1947). Its conformational analysis has also been reported (Kerbal et al., 1990).

In a 100 ml flask, 2 mmoles (0.5 g) of (I) and 0.4 g (2.4 mmoles) mmoles of (II) were dissolved in 20 ml of chloroform. The mixture was cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach at 18° was added in small doses without exceeding 5°C. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral. It was then dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue obtained dissolved in ethanol. The precipitated cycloadduct was then analysed by TLC, which indicated the limited formation of two of the 4 stereoisomers for (III) in a 9:1 ratio. The major stereoisomer, (III), was then crystallized in ethanol giving colourless block-like crystals (61% yield), M.p. = 150–153 °C.

Refinement top

The H atoms were included in calculated positons and treated as riding atoms with C—H = 0.95 - 1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the crystallographic atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis. The C—H···O contacts are shown as dashed lines. H atoms not involved in C—H···O contacts have been omitted for clarity.
[Figure 3] Fig. 3. The formation of the title compound.
4'-Methyl-3-(4-nitrophenyl)-4-phenyl-4,5,1',2',3',4'- hexahydrospiro[isoxazole-5,2'-naphthalen]-1'-one top
Crystal data top
C25H20N2O4F(000) = 864
Mr = 412.43Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11994 reflections
a = 10.6567 (15) Åθ = 1.7–29.4°
b = 15.7071 (16) ŵ = 0.09 mm1
c = 12.7259 (15) ÅT = 173 K
β = 106.258 (10)°Plate, colourless
V = 2045.0 (4) Å30.40 × 0.37 × 0.27 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
2837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ϕ and ω scansh = 1212
20256 measured reflectionsk = 1819
3798 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.2039P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3798 reflectionsΔρmax = 0.52 e Å3
283 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (14)
Crystal data top
C25H20N2O4V = 2045.0 (4) Å3
Mr = 412.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6567 (15) ŵ = 0.09 mm1
b = 15.7071 (16) ÅT = 173 K
c = 12.7259 (15) Å0.40 × 0.37 × 0.27 mm
β = 106.258 (10)°
Data collection top
Stoe IPDSII
diffractometer
2837 reflections with I > 2σ(I)
20256 measured reflectionsRint = 0.076
3798 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
3798 reflectionsΔρmin = 0.21 e Å3
283 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47898 (16)0.55329 (9)0.36239 (13)0.0422 (5)
O20.32596 (13)0.43601 (8)0.17246 (10)0.0297 (4)
O30.1326 (2)0.35498 (16)0.60945 (19)0.0861 (9)
O40.26968 (17)0.41232 (14)0.47131 (16)0.0632 (7)
N10.21389 (15)0.44017 (10)0.20955 (13)0.0281 (5)
N20.1598 (2)0.38712 (13)0.51976 (18)0.0490 (8)
C10.44094 (18)0.42092 (11)0.26695 (15)0.0248 (5)
C20.5302 (2)0.36112 (12)0.22914 (17)0.0338 (7)
C30.5692 (2)0.39637 (14)0.13022 (19)0.0415 (8)
C40.62172 (19)0.48610 (13)0.15022 (16)0.0333 (6)
C50.7052 (2)0.51874 (16)0.09383 (19)0.0464 (8)
C60.7473 (2)0.60217 (18)0.1075 (2)0.0556 (9)
C70.7069 (3)0.65532 (17)0.1772 (2)0.0541 (9)
C80.6247 (2)0.62468 (14)0.23505 (18)0.0414 (7)
C90.58332 (19)0.54037 (12)0.22298 (15)0.0295 (6)
C100.50110 (18)0.50975 (12)0.29134 (15)0.0273 (6)
C110.38311 (18)0.39083 (11)0.35863 (15)0.0239 (5)
C120.24282 (18)0.41746 (11)0.30968 (15)0.0243 (5)
C130.13979 (19)0.41296 (11)0.36551 (16)0.0268 (6)
C140.1696 (2)0.39216 (13)0.47532 (17)0.0348 (6)
C150.0720 (2)0.38411 (14)0.52679 (18)0.0395 (7)
C160.0553 (2)0.39756 (13)0.46671 (18)0.0352 (7)
C170.0876 (2)0.42136 (15)0.35887 (19)0.0424 (7)
C180.0101 (2)0.42881 (14)0.30805 (17)0.0379 (7)
C190.39453 (18)0.29696 (11)0.38701 (15)0.0247 (5)
C200.48296 (19)0.26972 (12)0.48285 (16)0.0299 (6)
C210.4922 (2)0.18425 (14)0.50951 (18)0.0388 (7)
C220.4143 (2)0.12540 (13)0.4410 (2)0.0396 (7)
C230.3264 (2)0.15185 (13)0.34565 (19)0.0395 (7)
C240.3160 (2)0.23724 (12)0.31901 (17)0.0337 (6)
C250.6582 (3)0.33530 (18)0.0947 (2)0.0652 (11)
H2A0.485600.305700.209300.0410*
H2B0.610000.351200.290100.0410*
H30.487100.399700.068500.0500*
H50.733900.483000.044900.0560*
H60.804800.623000.068300.0670*
H70.735300.712900.185500.0650*
H80.596300.661300.283300.0500*
H110.422000.425000.426300.0290*
H140.258100.383300.515800.0420*
H150.092400.369600.602200.0470*
H170.176000.432500.319800.0510*
H180.011100.444900.233200.0450*
H200.537400.309800.530400.0360*
H210.552700.165900.575600.0470*
H220.421500.066700.459700.0480*
H230.272700.111400.298100.0470*
H240.254500.255300.253400.0400*
H25A0.620100.278100.087500.0980*
H25B0.743700.334500.149500.0980*
H25C0.668800.353500.024100.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (10)0.0291 (7)0.0472 (9)0.0119 (7)0.0295 (8)0.0113 (7)
O20.0284 (7)0.0377 (7)0.0232 (7)0.0041 (6)0.0074 (6)0.0007 (5)
O30.0793 (15)0.1206 (19)0.0782 (15)0.0189 (13)0.0549 (13)0.0445 (14)
O40.0351 (10)0.0973 (14)0.0626 (12)0.0111 (9)0.0225 (9)0.0100 (10)
N10.0258 (9)0.0308 (8)0.0279 (9)0.0031 (6)0.0080 (7)0.0005 (7)
N20.0529 (14)0.0509 (12)0.0537 (13)0.0081 (10)0.0320 (11)0.0020 (10)
C10.0249 (9)0.0252 (9)0.0233 (9)0.0006 (7)0.0052 (8)0.0002 (7)
C20.0381 (12)0.0280 (10)0.0394 (12)0.0007 (8)0.0174 (10)0.0039 (9)
C30.0483 (14)0.0440 (12)0.0388 (13)0.0024 (10)0.0229 (11)0.0049 (9)
C40.0285 (10)0.0418 (11)0.0302 (10)0.0004 (8)0.0090 (9)0.0048 (9)
C50.0398 (13)0.0619 (15)0.0413 (13)0.0004 (11)0.0177 (10)0.0084 (11)
C60.0426 (14)0.0763 (18)0.0515 (15)0.0168 (12)0.0191 (12)0.0148 (13)
C70.0576 (16)0.0547 (15)0.0491 (15)0.0289 (12)0.0134 (12)0.0060 (12)
C80.0447 (13)0.0410 (12)0.0370 (12)0.0137 (10)0.0091 (10)0.0020 (9)
C90.0263 (10)0.0333 (10)0.0268 (10)0.0055 (8)0.0039 (8)0.0031 (8)
C100.0267 (10)0.0266 (9)0.0275 (10)0.0007 (7)0.0058 (8)0.0012 (8)
C110.0247 (9)0.0228 (9)0.0241 (9)0.0021 (7)0.0068 (8)0.0025 (7)
C120.0256 (10)0.0192 (8)0.0266 (10)0.0008 (7)0.0051 (8)0.0004 (7)
C130.0296 (10)0.0221 (9)0.0299 (10)0.0002 (7)0.0105 (8)0.0013 (7)
C140.0343 (11)0.0371 (11)0.0330 (11)0.0079 (9)0.0096 (9)0.0048 (9)
C150.0500 (14)0.0390 (11)0.0342 (12)0.0073 (10)0.0194 (10)0.0086 (9)
C160.0361 (12)0.0322 (10)0.0428 (12)0.0045 (8)0.0200 (10)0.0014 (9)
C170.0291 (11)0.0594 (14)0.0391 (12)0.0026 (10)0.0103 (9)0.0002 (10)
C180.0284 (11)0.0540 (13)0.0305 (11)0.0005 (9)0.0069 (9)0.0026 (9)
C190.0255 (9)0.0250 (9)0.0261 (9)0.0005 (7)0.0113 (8)0.0003 (7)
C200.0279 (10)0.0327 (10)0.0297 (11)0.0045 (8)0.0090 (8)0.0020 (8)
C210.0384 (12)0.0413 (12)0.0401 (12)0.0150 (10)0.0166 (10)0.0130 (10)
C220.0469 (13)0.0241 (10)0.0578 (14)0.0072 (9)0.0310 (12)0.0089 (10)
C230.0456 (13)0.0269 (10)0.0501 (14)0.0027 (9)0.0201 (11)0.0021 (9)
C240.0357 (11)0.0298 (11)0.0338 (11)0.0027 (8)0.0070 (9)0.0010 (8)
C250.080 (2)0.0611 (16)0.0703 (19)0.0055 (14)0.0470 (17)0.0079 (14)
Geometric parameters (Å, º) top
O1—C101.208 (2)C17—C181.376 (3)
O2—N11.403 (2)C19—C201.384 (3)
O2—C11.476 (2)C19—C241.387 (3)
O3—N21.207 (3)C20—C211.381 (3)
O4—N21.226 (3)C21—C221.378 (3)
N1—C121.275 (2)C22—C231.373 (3)
N2—C161.464 (3)C23—C241.380 (3)
C1—C21.508 (3)C2—H2A0.9900
C1—C101.531 (3)C2—H2B0.9900
C1—C111.539 (3)C3—H31.0000
C2—C31.535 (3)C5—H50.9500
C3—C41.512 (3)C6—H60.9500
C3—C251.505 (4)C7—H70.9500
C4—C51.388 (3)C8—H80.9500
C4—C91.401 (3)C11—H111.0000
C5—C61.380 (4)C14—H140.9500
C6—C71.372 (4)C15—H150.9500
C7—C81.379 (4)C17—H170.9500
C8—C91.391 (3)C18—H180.9500
C9—C101.477 (3)C20—H200.9500
C11—C121.509 (3)C21—H210.9500
C11—C191.515 (2)C22—H220.9500
C12—C131.467 (3)C23—H230.9500
C13—C141.383 (3)C24—H240.9500
C13—C181.393 (3)C25—H25A0.9800
C14—C151.381 (3)C25—H25B0.9800
C15—C161.374 (3)C25—H25C0.9800
C16—C171.370 (3)
N1—O2—C1108.91 (13)C20—C21—C22120.5 (2)
O2—N1—C12109.43 (15)C21—C22—C23119.8 (2)
O3—N2—O4123.6 (2)C22—C23—C24119.9 (2)
O3—N2—C16118.1 (2)C19—C24—C23120.73 (19)
O4—N2—C16118.3 (2)C1—C2—H2A109.00
O2—C1—C2107.10 (15)C1—C2—H2B109.00
O2—C1—C10102.94 (14)C3—C2—H2A109.00
O2—C1—C11104.46 (15)C3—C2—H2B109.00
C2—C1—C10111.51 (16)H2A—C2—H2B108.00
C2—C1—C11118.22 (15)C2—C3—H3107.00
C10—C1—C11111.11 (15)C4—C3—H3107.00
C1—C2—C3112.13 (16)C25—C3—H3106.00
C2—C3—C4111.76 (18)C4—C5—H5119.00
C2—C3—C25110.76 (19)C6—C5—H5119.00
C4—C3—C25114.2 (2)C5—C6—H6120.00
C3—C4—C5121.20 (19)C7—C6—H6120.00
C3—C4—C9121.04 (18)C6—C7—H7120.00
C5—C4—C9117.71 (19)C8—C7—H7120.00
C4—C5—C6121.2 (2)C7—C8—H8120.00
C5—C6—C7120.6 (2)C9—C8—H8120.00
C6—C7—C8119.6 (2)C1—C11—H11109.00
C7—C8—C9120.2 (2)C12—C11—H11109.00
C4—C9—C8120.67 (19)C19—C11—H11109.00
C4—C9—C10121.47 (17)C13—C14—H14120.00
C8—C9—C10117.84 (18)C15—C14—H14120.00
O1—C10—C1120.62 (18)C14—C15—H15121.00
O1—C10—C9121.90 (18)C16—C15—H15121.00
C1—C10—C9117.46 (16)C16—C17—H17121.00
C1—C11—C1299.37 (15)C18—C17—H17121.00
C1—C11—C19117.21 (15)C13—C18—H18120.00
C12—C11—C19111.87 (16)C17—C18—H18120.00
N1—C12—C11115.12 (17)C19—C20—H20120.00
N1—C12—C13119.54 (18)C21—C20—H20120.00
C11—C12—C13125.18 (16)C20—C21—H21120.00
C12—C13—C14120.63 (19)C22—C21—H21120.00
C12—C13—C18120.28 (18)C21—C22—H22120.00
C14—C13—C18119.09 (19)C23—C22—H22120.00
C13—C14—C15120.7 (2)C22—C23—H23120.00
C14—C15—C16118.6 (2)C24—C23—H23120.00
N2—C16—C15119.1 (2)C19—C24—H24120.00
N2—C16—C17118.8 (2)C23—C24—H24120.00
C15—C16—C17122.1 (2)C3—C25—H25A109.00
C16—C17—C18118.9 (2)C3—C25—H25B109.00
C13—C18—C17120.5 (2)C3—C25—H25C110.00
C11—C19—C20120.03 (16)H25A—C25—H25B109.00
C11—C19—C24121.02 (17)H25A—C25—H25C109.00
C20—C19—C24118.94 (17)H25B—C25—H25C109.00
C19—C20—C21120.07 (18)
C1—O2—N1—C129.41 (18)C5—C6—C7—C80.8 (4)
N1—O2—C1—C2142.07 (14)C6—C7—C8—C90.2 (4)
N1—O2—C1—C10100.27 (15)C7—C8—C9—C41.6 (3)
N1—O2—C1—C1115.89 (17)C7—C8—C9—C10176.8 (2)
O2—N1—C12—C111.6 (2)C4—C9—C10—O1172.0 (2)
O2—N1—C12—C13177.30 (15)C4—C9—C10—C19.7 (3)
O3—N2—C16—C1510.8 (3)C8—C9—C10—O16.3 (3)
O3—N2—C16—C17169.9 (2)C8—C9—C10—C1172.01 (18)
O4—N2—C16—C15168.4 (2)C1—C11—C12—N111.1 (2)
O4—N2—C16—C1710.9 (3)C1—C11—C12—C13173.53 (16)
O2—C1—C2—C356.9 (2)C19—C11—C12—N1113.37 (18)
C10—C1—C2—C355.0 (2)C19—C11—C12—C1362.0 (2)
C11—C1—C2—C3174.42 (17)C1—C11—C19—C20106.3 (2)
O2—C1—C10—O197.8 (2)C1—C11—C19—C2474.7 (2)
O2—C1—C10—C980.60 (19)C12—C11—C19—C20139.91 (19)
C2—C1—C10—O1147.73 (19)C12—C11—C19—C2439.1 (3)
C2—C1—C10—C933.9 (2)N1—C12—C13—C14177.13 (18)
C11—C1—C10—O113.5 (3)N1—C12—C13—C183.5 (3)
C11—C1—C10—C9168.10 (16)C11—C12—C13—C147.7 (3)
O2—C1—C11—C1215.17 (16)C11—C12—C13—C18171.68 (18)
O2—C1—C11—C19105.44 (17)C12—C13—C14—C15177.04 (18)
C2—C1—C11—C12134.05 (17)C18—C13—C14—C152.3 (3)
C2—C1—C11—C1913.4 (3)C12—C13—C18—C17177.39 (19)
C10—C1—C11—C1295.16 (17)C14—C13—C18—C172.0 (3)
C10—C1—C11—C19144.23 (17)C13—C14—C15—C160.3 (3)
C1—C2—C3—C451.4 (2)C14—C15—C16—N2178.49 (19)
C1—C2—C3—C25180.0 (2)C14—C15—C16—C172.2 (3)
C2—C3—C4—C5155.9 (2)N2—C16—C17—C18178.2 (2)
C2—C3—C4—C926.9 (3)C15—C16—C17—C182.6 (3)
C25—C3—C4—C529.1 (3)C16—C17—C18—C130.4 (3)
C25—C3—C4—C9153.6 (2)C11—C19—C20—C21179.13 (19)
C3—C4—C5—C6176.3 (2)C24—C19—C20—C210.1 (3)
C9—C4—C5—C61.1 (3)C11—C19—C24—C23179.6 (2)
C3—C4—C9—C8175.4 (2)C20—C19—C24—C230.6 (3)
C3—C4—C9—C106.3 (3)C19—C20—C21—C220.3 (3)
C5—C4—C9—C82.0 (3)C20—C21—C22—C230.3 (3)
C5—C4—C9—C10176.32 (19)C21—C22—C23—C240.3 (3)
C4—C5—C6—C70.3 (4)C22—C23—C24—C190.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.992.503.319 (3)140
C20—H20···O1ii0.952.583.365 (2)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H20N2O4
Mr412.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.6567 (15), 15.7071 (16), 12.7259 (15)
β (°) 106.258 (10)
V3)2045.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.37 × 0.27
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20256, 3798, 2837
Rint0.076
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.01
No. of reflections3798
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.21

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O4i0.992.503.319 (3)140
C20—H20···O1ii0.952.583.365 (2)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by grants from the Ministry of Education of the Kingdom of Morocco (PROTARS No. P1T2/27 and Projet Globale de Recherche of the Université Mohamed Premier PGR-UMP-BH-2005).

References

First citationAnaflous, A., Benchat1, N., Mimouni, Abouricha, M. S., Ben-Hadda, T., El-Bali, B., hakkou, A. & Hacht, B. (2004). Lett. Drug. Des. Disc. 1, 35–44.  Google Scholar
First citationArnold, T., Bruckley, J. S. & Richter, J. (1947). J. Am. Chem. Soc. 69, 2323–2325.  CrossRef Web of Science Google Scholar
First citationBakavoli, M., Bagherzadeh, G. & Rahimizadeh, M. (2005). Mendeleev Commun. 4, 145–146.  Web of Science CrossRef Google Scholar
First citationChaouni-Benabdallah, A., Galtier, C., Allouchi, H., Kherbeche, A., Debouzy, J. C., Teulade, J. C., Chavignon, O., Witvrouw, M., Pannecouque, C., Balzarini, J., De Clercq, E. & Enguehard, C. (2001). Arch. Pharm. (Weinheim), 334, 224–228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem. 58, 5605–5606.  CrossRef CAS Web of Science Google Scholar
First citationDebaerdemaeker, T., Pohl, H. H. & Dimroth, K. (1977). Chem. Ber. Recl, 110, 1497–1503.  CrossRef CAS Web of Science Google Scholar
First citationEllis, G. P. (1997). Chromenes, Chromanones and Chromones. New York: John Wiley and Sons, Inc.  Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKatritzky, A. R., Xu, Y. J. & Tu, H. B. (2003). J. Org. Chem. 68, 4935–4937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr. 127, 252–257.  Google Scholar
First citationKooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeifert, W. J., Schaffer, O. & Dimroth, K. (1976). Angew. Chem. Int. Ed. Engl. 15, 238–239.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSmietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291–1294.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA (Version 1.25) and X-RED32 (Version 1.26). Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSubbiah Pandi, A., Banumathi, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Manikandan, S. (2001). Acta Cryst. C57, 819–820.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o509-o510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds