metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-[N-(4-pyridyl­meth­yl)pyridine-4-carboxamide-κ2N:N′]] nitrate monohydrate]

aOrdered Matter Science Research Center, Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 26 September 2007; accepted 6 October 2007; online 13 February 2008)

The title coordination polymer, {[Ag(C12H11N3O)]NO3·H2O}n, has a polycationic chain motif in which the Ag atom is bridged by the heterocyclic ligand; the Ag atom shows linear coordination. If the two long Ag⋯Onitrate inter­actions [2.794 (6) and 2.867 (5) Å] are regarded as bonds, the compound adopts a three-dimensional network structure. The water mol­ecule consolidates the network structure by forming hydrogen bonds, one to the polycationic chain and one to the nitrate anion.

Related literature

For the structure of the hydrated disilver oxalate adduct of the heterocyclic ligand, see Tong et al. (2002[Tong, M.-L., Wu, Y. M., Ru, J., Chen, X.-M., Chang, H.-C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846-4848.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H11N3O)]NO3·H2O

  • Mr = 401.13

  • Orthorhombic, P b c a

  • a = 12.912 (7) Å

  • b = 9.021 (5) Å

  • c = 24.52 (1) Å

  • V = 2856 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 295 (2) K

  • 0.6 × 0.4 × 0.2 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.50, Tmax = 0.75

  • 25888 measured reflections

  • 3249 independent reflections

  • 2433 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.06

  • 3249 reflections

  • 211 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N3i 2.162 (4)
Ag1—N1 2.170 (4)
Ag1—O2 2.803 (6)
Ag1—O3ii 2.874 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1W 0.86 (4) 2.04 (2) 2.827 (6) 154 (5)
O1W—H1W1⋯O1iii 0.85 (4) 2.05 (3) 2.831 (5) 154 (7)
O1W—H1W2⋯O4iv 0.85 (4) 2.09 (4) 2.888 (7) 157 (9)
Symmetry codes: (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Version 1.4.0. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear ; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The 4-C5H4N–CH2–NH–C(O)–4-C5H4N ligand is a spacer heterocycle that should function like 4,4'-bipyridine, which forms numerous coordination polymers, but should be flexible. There is, however, only one crystal structure report of an adduct, a hydrated disilver oxalate adduct (Tong et al., 2002). The title silver nitrate adduct has the metal in a linear enviroment, but the N–Ag–N skeleton that gives rise to a chain structure is distorted by the presence of two Ag···Onitrate interactions. If these are regarded as formal bonds, the compound adopts a three-dimensional network structure.

Related literature top

For the structure of the hydrated disilver oxalate adduct of the heterocyclic ligand, see Tong et al. (2002).

Experimental top

An aqueous solution (5 ml) of silver nitrate (1.0 mmol) was layed over a methanol (5 ml) solution of N-(4-pyridylmethyl)-4-pyridinecarboxamide (1.0 mmol) in a thin tube. The tube was placed vertically and kept away from light. Colorless crystals were obtained after two weeks. These were washed with methanol and collected in 50% yield. CH&N elemental analysis. Found: C 35.88, H 3.53, N 13.76%; calc. for C12H13AgN4O5: C 35.93, H 3.27, N 13.96%.

Refinement top

Carbon-bound H-atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å and U(H) set to 1.2Ueq(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = O—H = 0.85 (1) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A portion of the chain structure. Ellipsoids are drawn at the 50% probability level, and H atoms of spheres of arbitry radius. The red dashed lines denote the long Ag···O bonds and the dashed cyan line denotes the hydrogen bond. Symmetry codes (i) = 1/2 - x, 1 - y, z - 1/2; (ii) x - 1/2, 3/2 - y, -z.
catena-Poly[[silver(I)-µ-[N-(4-pyridylmethyl)pyridine-4- carboxamide-κ2N:N']] nitrate monohydrate] top
Crystal data top
[Ag(C12H11N3O)]NO3·H2OF(000) = 1600
Mr = 401.13Dx = 1.879 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5655 reflections
a = 12.912 (7) Åθ = 3.2–27.5°
b = 9.021 (5) ŵ = 1.45 mm1
c = 24.52 (1) ÅT = 295 K
V = 2856 (3) Å3Column, colourless
Z = 80.6 × 0.4 × 0.2 mm
Data collection top
Rigaku Mercury
diffractometer
3249 independent reflections
Radiation source: medium-focus sealed tube2433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1616
Tmin = 0.50, Tmax = 0.75k = 1111
25888 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0589P)2 + 5.5451P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.91 e Å3
3 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ag(C12H11N3O)]NO3·H2OV = 2856 (3) Å3
Mr = 401.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.912 (7) ŵ = 1.45 mm1
b = 9.021 (5) ÅT = 295 K
c = 24.52 (1) Å0.6 × 0.4 × 0.2 mm
Data collection top
Rigaku Mercury
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2433 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.75Rint = 0.047
25888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.91 e Å3
3249 reflectionsΔρmin = 0.75 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.16581 (3)0.61149 (5)0.002207 (15)0.05996 (18)
O10.1859 (3)0.1438 (4)0.23653 (13)0.0598 (9)
O20.3756 (4)0.6914 (6)0.00374 (16)0.0905 (14)
O30.5035 (4)0.7095 (7)0.0481 (2)0.1077 (17)
O40.3682 (5)0.8329 (7)0.0644 (2)0.118 (2)
O1W0.5539 (3)0.2042 (5)0.17401 (17)0.0660 (10)
H1W10.608 (3)0.189 (8)0.193 (2)0.10 (2)*
H1W20.562 (8)0.176 (10)0.1412 (13)0.15 (4)*
N10.1990 (3)0.4795 (4)0.07408 (14)0.0448 (8)
N20.3572 (3)0.1578 (4)0.22161 (14)0.0458 (9)
H2N0.408 (3)0.198 (5)0.2048 (19)0.061 (16)*
N30.3656 (3)0.2837 (4)0.42466 (15)0.0470 (9)
N40.4163 (3)0.7500 (4)0.03557 (16)0.0469 (9)
C10.1231 (4)0.4240 (6)0.1046 (2)0.0567 (12)
H10.05510.45060.09670.068*
C20.1412 (4)0.3281 (6)0.14763 (19)0.0528 (12)
H20.08590.28950.16740.063*
C30.2413 (3)0.2900 (4)0.16112 (14)0.0377 (9)
C40.3201 (4)0.3498 (6)0.1298 (2)0.0524 (12)
H40.38900.32790.13760.063*
C50.2952 (4)0.4425 (6)0.08692 (19)0.0513 (11)
H50.34890.48090.06590.062*
C60.2592 (4)0.1894 (5)0.20953 (15)0.0417 (9)
C70.3844 (4)0.0665 (5)0.26853 (17)0.0487 (11)
H7A0.45470.03070.26390.058*
H7B0.33900.01910.26940.058*
C80.3770 (3)0.1465 (4)0.32274 (16)0.0379 (9)
C90.3479 (4)0.2929 (5)0.32757 (19)0.0474 (11)
H9A0.33250.34860.29670.057*
C100.3418 (4)0.3559 (5)0.3786 (2)0.0515 (12)
H100.32010.45400.38120.062*
C110.3960 (4)0.1419 (5)0.41994 (18)0.0514 (11)
H110.41340.08950.45130.062*
C120.4021 (4)0.0715 (5)0.37027 (17)0.0482 (11)
H120.42330.02700.36860.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0659 (3)0.0671 (3)0.0469 (3)0.00106 (19)0.01097 (16)0.01944 (19)
O10.065 (2)0.074 (2)0.0410 (18)0.0126 (18)0.0093 (16)0.0097 (17)
O20.111 (4)0.103 (4)0.058 (3)0.013 (3)0.013 (2)0.026 (2)
O30.076 (3)0.171 (5)0.076 (3)0.009 (3)0.003 (2)0.016 (3)
O40.130 (4)0.135 (5)0.089 (4)0.049 (4)0.001 (3)0.050 (3)
O1W0.056 (2)0.087 (3)0.055 (2)0.005 (2)0.0059 (19)0.011 (2)
N10.052 (2)0.048 (2)0.0343 (18)0.0005 (18)0.0060 (16)0.0031 (16)
N20.058 (2)0.047 (2)0.0318 (18)0.0024 (19)0.0050 (17)0.0092 (16)
N30.053 (2)0.049 (2)0.0394 (19)0.0026 (18)0.0003 (17)0.0094 (17)
N40.053 (2)0.048 (2)0.041 (2)0.0017 (19)0.0040 (18)0.0014 (17)
C10.047 (3)0.071 (3)0.052 (3)0.001 (2)0.008 (2)0.014 (2)
C20.046 (2)0.071 (3)0.041 (2)0.011 (2)0.0001 (19)0.006 (2)
C30.049 (2)0.037 (2)0.0265 (17)0.0034 (19)0.0008 (17)0.0015 (15)
C40.043 (2)0.063 (3)0.051 (3)0.007 (2)0.005 (2)0.018 (2)
C50.045 (2)0.059 (3)0.049 (3)0.005 (2)0.007 (2)0.022 (2)
C60.056 (3)0.043 (2)0.0255 (18)0.004 (2)0.0057 (18)0.0009 (16)
C70.071 (3)0.043 (2)0.032 (2)0.008 (2)0.001 (2)0.0033 (18)
C80.043 (2)0.037 (2)0.0333 (19)0.0026 (18)0.0003 (17)0.0010 (16)
C90.057 (3)0.041 (2)0.044 (2)0.005 (2)0.009 (2)0.0001 (19)
C100.057 (3)0.043 (2)0.054 (3)0.006 (2)0.006 (2)0.009 (2)
C110.073 (3)0.046 (3)0.035 (2)0.001 (2)0.005 (2)0.0004 (19)
C120.069 (3)0.037 (2)0.039 (2)0.004 (2)0.002 (2)0.0023 (18)
Geometric parameters (Å, º) top
Ag1—N3i2.162 (4)C2—C31.377 (6)
Ag1—N12.170 (4)C2—H20.9300
Ag1—O22.803 (6)C3—C41.385 (6)
Ag1—O3ii2.874 (6)C3—C61.512 (5)
O1—C61.226 (5)C4—C51.381 (6)
O2—N41.219 (5)C4—H40.9300
O3—N41.223 (6)C5—H50.9300
O4—N41.202 (6)C7—C81.516 (6)
O1W—H1W10.85 (4)C7—H7A0.9700
O1W—H1W20.85 (4)C7—H7B0.9700
N1—C51.325 (6)C8—C91.378 (6)
N1—C11.331 (6)C8—C121.386 (6)
N2—C61.330 (6)C9—C101.377 (6)
N2—C71.458 (5)C9—H9A0.9300
N2—H2N0.86 (4)C10—H100.9300
N3—C101.340 (6)C11—C121.376 (6)
N3—C111.343 (6)C11—H110.9300
C1—C21.385 (7)C12—H120.9300
C1—H10.9300
N3i—Ag1—N1172.52 (14)C5—C4—H4120.4
N3i—Ag1—O294.61 (13)C3—C4—H4120.4
N1—Ag1—O286.53 (14)N1—C5—C4123.5 (4)
N3i—Ag1—O3ii87.80 (15)N1—C5—H5118.3
N1—Ag1—O3ii97.73 (15)C4—C5—H5118.3
O2—Ag1—O3ii123.69 (16)O1—C6—N2122.8 (4)
N4—O2—Ag1121.2 (4)O1—C6—C3120.5 (4)
H1W1—O1W—H1W2111 (8)N2—C6—C3116.7 (4)
C5—N1—C1117.5 (4)N2—C7—C8114.0 (4)
C5—N1—Ag1121.1 (3)N2—C7—H7A108.7
C1—N1—Ag1121.2 (3)C8—C7—H7A108.7
C6—N2—C7121.8 (4)N2—C7—H7B108.7
C6—N2—H2N122 (4)C8—C7—H7B108.7
C7—N2—H2N116 (4)H7A—C7—H7B107.6
C10—N3—C11117.2 (4)C9—C8—C12117.4 (4)
C10—N3—Ag1iii119.1 (3)C9—C8—C7123.3 (4)
C11—N3—Ag1iii123.2 (3)C12—C8—C7119.3 (4)
O4—N4—O2120.8 (5)C10—C9—C8119.3 (4)
O4—N4—O3120.9 (5)C10—C9—H9A120.4
O2—N4—O3117.8 (5)C8—C9—H9A120.4
N1—C1—C2122.6 (5)N3—C10—C9123.5 (4)
N1—C1—H1118.7N3—C10—H10118.2
C2—C1—H1118.7C9—C10—H10118.2
C3—C2—C1119.8 (4)N3—C11—C12122.2 (4)
C3—C2—H2120.1N3—C11—H11118.9
C1—C2—H2120.1C12—C11—H11118.9
C2—C3—C4117.4 (4)C11—C12—C8120.3 (4)
C2—C3—C6118.8 (4)C11—C12—H12119.8
C4—C3—C6123.8 (4)C8—C12—H12119.8
C5—C4—C3119.1 (4)
N3i—Ag1—O2—N47.1 (5)C7—N2—C6—O10.4 (7)
N1—Ag1—O2—N4165.5 (5)C7—N2—C6—C3177.7 (4)
O3ii—Ag1—O2—N497.5 (4)C2—C3—C6—O10.7 (6)
O2—Ag1—N1—C517.8 (4)C4—C3—C6—O1177.8 (4)
O3ii—Ag1—N1—C5141.4 (4)C2—C3—C6—N2178.8 (4)
O2—Ag1—N1—C1167.1 (4)C4—C3—C6—N20.3 (6)
O3ii—Ag1—N1—C143.5 (4)C6—N2—C7—C876.5 (6)
Ag1—O2—N4—O433.5 (7)N2—C7—C8—C90.5 (7)
Ag1—O2—N4—O3138.7 (4)N2—C7—C8—C12179.3 (4)
C5—N1—C1—C21.5 (8)C12—C8—C9—C102.1 (7)
Ag1—N1—C1—C2173.8 (4)C7—C8—C9—C10179.1 (4)
N1—C1—C2—C31.7 (8)C11—N3—C10—C90.6 (7)
C1—C2—C3—C40.7 (7)Ag1iii—N3—C10—C9172.5 (4)
C1—C2—C3—C6177.9 (4)C8—C9—C10—N31.9 (7)
C2—C3—C4—C50.5 (7)C10—N3—C11—C120.5 (7)
C6—C3—C4—C5179.0 (4)Ag1iii—N3—C11—C12171.1 (4)
C1—N1—C5—C40.2 (8)N3—C11—C12—C80.2 (8)
Ag1—N1—C5—C4175.1 (4)C9—C8—C12—C111.1 (7)
C3—C4—C5—N10.8 (8)C7—C8—C12—C11180.0 (5)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.86 (4)2.04 (2)2.827 (6)154 (5)
O1W—H1W1···O1iv0.85 (4)2.05 (3)2.831 (5)154 (7)
O1W—H1W2···O4v0.85 (4)2.09 (4)2.888 (7)157 (9)
Symmetry codes: (iv) x+1/2, y, z+1/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H11N3O)]NO3·H2O
Mr401.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)12.912 (7), 9.021 (5), 24.52 (1)
V3)2856 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.6 × 0.4 × 0.2
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.50, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
25888, 3249, 2433
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.06
No. of reflections3249
No. of parameters211
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.75

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Ag1—N3i2.162 (4)Ag1—O22.803 (6)
Ag1—N12.170 (4)Ag1—O3ii2.874 (6)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.86 (4)2.04 (2)2.827 (6)154 (5)
O1W—H1W1···O1iii0.85 (4)2.05 (3)2.831 (5)154 (7)
O1W—H1W2···O4iv0.85 (4)2.09 (4)2.888 (7)157 (9)
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank Southeast University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Version 1.4.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTong, M.-L., Wu, Y. M., Ru, J., Chen, X.-M., Chang, H.-C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds