Download citation
Download citation
link to html
The title compound, [Co(C4H7N2O2)2Cl(C9H13N3O)]·0.5H2O, viz. trans-[Co(dmgH)2Cl(t-BuPzAM)]·0.5H2O, has two mol­ecules in the asymmetric unit with some differences in the conformation and positions of the H atoms with regard to the hydr­oxy groups of the glyoximate groups. The water molecule is disordered equally over two sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047903/bg2106sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047903/bg2106Isup2.hkl
Contains datablock I

CCDC reference: 667122

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • H-atom completeness 97%
  • Disorder in solvent or counterion
  • R factor = 0.039
  • wR factor = 0.121
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT430_ALERT_2_A Short Inter D...A Contact O11 .. O11' .. 2.20 Ang.
Author Response: They are parts of a disordered water molecule

Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.02 Ratio
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.26 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C31 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT431_ALERT_2_C Short Inter HL..A Contact Cl2 .. O11 .. 3.24 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C29 .. 2.92 Ang.
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C17 H28 Cl1 Co1 N7 O5.5 Atom count from the _atom_site data: C17 H27 Cl1 Co1 N7 O5.5 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C17 H28 Cl Co N7 O5.50 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 136.00 136.00 0.00 H 224.00 216.00 8.00 Cl 8.00 8.00 0.00 Co 8.00 8.00 0.00 N 56.00 56.00 0.00 O 44.00 44.00 0.00 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dimethylglyoximatocobalt(III) complexes, generally known as cobaloximes, have been studied extensively as model compounds for vitamin-B12 (Trommel, et al., 2001; Ohkubo & Fukuzumi, 2005). Most of the work on cobaloximes include electron-transfer reactions (Dayalan & Vijayaraghavan,2001) and catalytic activity (Razavelt, et al., 2005) in solution. There are few literature evidences (Gupta, et al., 2000; Gupta, et al., 2001; Gupta, et al., 2004) relating the structural aspects of cobaloximes. We report here the synthesis, physical characterization and the crystal structure of a typical cobaloxime viz., pyrazine-2-tert-butylcarboxamidochlorocobaloxime. Figure 1 shows the ORTEP representation of the two independent molecules in the asymmetric unit, with 50% anisotropic ellipsoids. Figure 2 presents a packing diagram of the structure depicting the hydrogen bonding interactions. The geometry around the metal atom is octahedral; the bonds to chlorines and pyrazine N atoms are almost perpendicular to the mean glyoximate planes. The difference Fourier clearly shows one O—H group in each one of the glyoximate moieties attached to Co2, while in those attached to Co1, both hydrogen atoms are bound to only one of the glyoximate moieties. The planar glyoximate groups subtend dihedral angles of 7.76 (13)° (Co1) and 0.95 (13)° (Co2). There are strong intra molecular O—H···O hydrogen bonds linking the glyoximate moieties (Figure 2). There is one crystal water molecule per asymmetric unit (disordered into two positions O11, O11') hydrogen bonded to the chlorine atoms Cl2, attached to Co2. The corresponding water H atoms could not be located in the difference map and were not included in the model.

Related literature top

For related literature, see: Dayalan & Vijayaraghavan (2001); Gupta et al. (2000, 2001, 2004); Ohkubo & Fukuzumi (2005); Phor et al. (1985); Razavelt et al. (2005); Trommel et al. (2001); Vijayaraghavanan & Dayalan (1992).

Experimental top

The green colored Trans-Hydrogen dichlorobis(dimethylgloximato) cobaltate(III), H[Co(dmgH)2Cl2] was prepared by the method reported in the literature (Phor, et al., 1985). Using this complex, as the starting material, the cobaloxime: pyrazine-2-tert-butylcarboxamidopyrazinechlorocobaloxime viz., [Co(dmgH)2(t-BuPzAM)Cl] was prepared by adopting the method reported earlier (Vijayaraghavanan & Dayalan, 1992). Hydrogen dichlorobis (dimethylglyoximato)cobaltate(III) (0.01 mole) and 0.01 mole of Pyrazine-2-tert-butylcarboxamide were taken in about 60 ml of absolute alcohol and stirred for 1 hr, with warming over hot water bath, until the green colour due to dichlorocobaloxime was discharged to get the required brown colored complex. The resulting complex was filtered, washed with alcohol and dried in a vacuum desiccator. Crystals of the complex were grown in ethanol by slow evaporation.

Refinement top

Even though the unit cell satisfies orthorhombic metric conditions within the limits of s.u., Rint pointed clearly to a monoclinic symmetry (Rint ortho=0.59, Rintmono=0.027). The structure was solved and refined in P21/c. All the H atoms were located in a difference Fourier map. H atoms linked to carbon and oxygen atoms were relocated at idealized positions and allowed to ride with C—H(aromatic): 0.93A%, and 1.2UeqC; C—H(tertiary): 0.96A%, and 1.5UeqC; O—H: 0.82A%, and 1.5UeqO. N—H hydrogen distances were restrained (N—H:0.83 (1)) and refined isotropically. Ther disordered crystal water molecule is split into two equally populated sites (O11 and O11', with 50% occupancy each).

Structure description top

Dimethylglyoximatocobalt(III) complexes, generally known as cobaloximes, have been studied extensively as model compounds for vitamin-B12 (Trommel, et al., 2001; Ohkubo & Fukuzumi, 2005). Most of the work on cobaloximes include electron-transfer reactions (Dayalan & Vijayaraghavan,2001) and catalytic activity (Razavelt, et al., 2005) in solution. There are few literature evidences (Gupta, et al., 2000; Gupta, et al., 2001; Gupta, et al., 2004) relating the structural aspects of cobaloximes. We report here the synthesis, physical characterization and the crystal structure of a typical cobaloxime viz., pyrazine-2-tert-butylcarboxamidochlorocobaloxime. Figure 1 shows the ORTEP representation of the two independent molecules in the asymmetric unit, with 50% anisotropic ellipsoids. Figure 2 presents a packing diagram of the structure depicting the hydrogen bonding interactions. The geometry around the metal atom is octahedral; the bonds to chlorines and pyrazine N atoms are almost perpendicular to the mean glyoximate planes. The difference Fourier clearly shows one O—H group in each one of the glyoximate moieties attached to Co2, while in those attached to Co1, both hydrogen atoms are bound to only one of the glyoximate moieties. The planar glyoximate groups subtend dihedral angles of 7.76 (13)° (Co1) and 0.95 (13)° (Co2). There are strong intra molecular O—H···O hydrogen bonds linking the glyoximate moieties (Figure 2). There is one crystal water molecule per asymmetric unit (disordered into two positions O11, O11') hydrogen bonded to the chlorine atoms Cl2, attached to Co2. The corresponding water H atoms could not be located in the difference map and were not included in the model.

For related literature, see: Dayalan & Vijayaraghavan (2001); Gupta et al. (2000, 2001, 2004); Ohkubo & Fukuzumi (2005); Phor et al. (1985); Razavelt et al. (2005); Trommel et al. (2001); Vijayaraghavanan & Dayalan (1992).

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: APEX2 and SAINT (Bruker–Nonius, 2004); data reduction: SAINT and XPREP (Bruker–Nonius, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of the asymmetric unit with 35% probability anisotropic ellipsoid. Hydrogen atoms and disordered crystal water molecule omitted, for clarity.
[Figure 2] Fig. 2. Packing diagram of the molecules in the unit cell. Hydrogen bonds shown in dotted lines.
(N-tert-Butylpyrazine-2-carboxamide- κN4)chloridobis(dimethylglyoximato-κ2N,N')cobalt(III) hemihydrate top
Crystal data top
[Co(C4H7N2O2)2Cl(C9H13N3O)]·0.5H2OF(000) = 2136
Mr = 521.84Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5042 reflections
a = 11.4320 (2) Åθ = 2.2–24.0°
b = 15.8134 (4) ŵ = 0.88 mm1
c = 26.2781 (6) ÅT = 293 K
β = 90.06 (2)°Plate, brown
V = 4750.52 (18) Å30.30 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
8366 independent reflections
Radiation source: fine-focus sealed tube7136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.779, Tmax = 0.844k = 1818
92600 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0498P)2 + 4.9702P]
where P = (Fo2 + 2Fc2)/3
8366 reflections(Δ/σ)max < 0.001
599 parametersΔρmax = 0.62 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C4H7N2O2)2Cl(C9H13N3O)]·0.5H2OV = 4750.52 (18) Å3
Mr = 521.84Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.4320 (2) ŵ = 0.88 mm1
b = 15.8134 (4) ÅT = 293 K
c = 26.2781 (6) Å0.30 × 0.30 × 0.20 mm
β = 90.06 (2)°
Data collection top
Bruker Kappa-APEXII CCD
diffractometer
8366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
7136 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.844Rint = 0.028
92600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.62 e Å3
8366 reflectionsΔρmin = 0.48 e Å3
599 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.19069 (3)0.40860 (3)0.881531 (15)0.04025 (12)
Co20.68130 (3)0.16125 (2)0.932065 (14)0.03599 (12)
Cl10.29360 (7)0.49466 (5)0.93160 (3)0.0526 (2)
Cl20.84549 (7)0.18912 (6)0.97384 (4)0.0594 (2)
O10.2782 (2)0.27258 (15)0.94263 (10)0.0616 (6)
H10.32430.27540.91880.092*
O20.0168 (2)0.50395 (15)0.89776 (9)0.0575 (6)
H20.01290.52490.87230.086*
O30.3940 (2)0.31032 (17)0.86636 (11)0.0678 (7)
O40.1109 (2)0.55231 (16)0.82713 (10)0.0636 (7)
O50.1258 (3)0.4237 (2)0.72781 (11)0.0833 (9)
O60.7355 (2)0.29998 (16)0.86563 (10)0.0632 (7)
H60.76630.25880.85220.095*
O70.5523 (2)0.16829 (17)1.02569 (8)0.0594 (6)
O80.8124 (2)0.15686 (18)0.84180 (10)0.0649 (7)
O90.6362 (2)0.02904 (16)1.00172 (9)0.0615 (6)
H9A0.60600.07101.01450.092*
O100.4877 (2)0.20804 (16)0.74627 (8)0.0578 (6)
O110.0668 (6)0.0909 (6)0.9244 (4)0.131 (3)0.50
O11'0.0274 (10)0.0106 (12)0.9790 (4)0.248 (9)0.50
N10.1903 (2)0.32829 (16)0.93528 (10)0.0439 (6)
N20.0507 (2)0.44081 (16)0.91462 (10)0.0422 (6)
N30.1944 (3)0.49340 (18)0.83087 (10)0.0513 (7)
N40.3315 (2)0.37604 (19)0.84952 (11)0.0532 (7)
N50.1012 (2)0.33275 (16)0.83651 (9)0.0419 (6)
N60.0132 (2)0.22650 (19)0.76889 (10)0.0529 (7)
N70.1513 (3)0.2913 (2)0.69531 (11)0.0591 (8)
N80.5929 (2)0.21253 (17)0.98524 (9)0.0436 (6)
N90.6790 (2)0.27532 (16)0.90817 (10)0.0436 (6)
N100.7705 (2)0.11158 (18)0.87964 (10)0.0476 (6)
N110.6847 (2)0.04996 (16)0.95777 (10)0.0455 (6)
N120.53778 (19)0.13526 (14)0.89466 (8)0.0318 (5)
N130.3360 (2)0.09520 (17)0.84150 (10)0.0446 (6)
N140.3224 (3)0.1300 (2)0.74051 (10)0.0519 (7)
C10.1072 (3)0.3342 (2)0.96801 (12)0.0441 (7)
C20.0209 (3)0.3986 (2)0.95452 (12)0.0438 (7)
C30.1040 (4)0.2855 (3)1.01639 (15)0.0698 (11)
H3A0.18200.26931.02570.105*
H3B0.05690.23581.01190.105*
H3C0.07090.32001.04280.105*
C40.0885 (3)0.4132 (2)0.98398 (15)0.0599 (9)
H4A0.12380.46540.97320.090*
H4B0.07030.41641.01960.090*
H4C0.14190.36740.97810.090*
C50.2836 (4)0.4923 (2)0.80097 (13)0.0609 (10)
C60.3647 (3)0.4230 (3)0.81171 (15)0.0628 (10)
C70.3023 (5)0.5578 (3)0.76089 (17)0.0937 (16)
H7A0.22830.58150.75110.141*
H7B0.33860.53230.73180.141*
H7C0.35190.60170.77400.141*
C80.4763 (4)0.4079 (3)0.7832 (2)0.0947 (17)
H8A0.52620.37140.80280.142*
H8B0.51510.46080.77740.142*
H8C0.45890.38170.75110.142*
C90.1165 (3)0.2493 (2)0.83801 (12)0.0484 (7)
H90.16710.22610.86190.058*
C100.0583 (3)0.1969 (2)0.80457 (13)0.0526 (8)
H100.06940.13880.80710.063*
C110.0292 (3)0.3095 (2)0.76843 (12)0.0476 (7)
C120.0257 (3)0.3632 (2)0.80229 (12)0.0488 (8)
H120.01010.42090.80130.059*
C130.1088 (3)0.3476 (3)0.72809 (13)0.0569 (9)
C140.2259 (3)0.3111 (2)0.65050 (13)0.0567 (9)
C150.1623 (4)0.3724 (3)0.61602 (15)0.0743 (12)
H15A0.14840.42430.63390.111*
H15B0.20920.38340.58640.111*
H15C0.08890.34820.60580.111*
C160.2478 (5)0.2279 (3)0.62361 (19)0.0955 (17)
H16A0.17430.20190.61530.143*
H16B0.29130.23790.59290.143*
H16C0.29160.19100.64550.143*
C170.3399 (4)0.3488 (3)0.66804 (18)0.0834 (13)
H17A0.32530.40180.68470.125*
H17B0.37720.31080.69140.125*
H17C0.39010.35780.63920.125*
C180.5706 (3)0.2921 (2)0.98100 (12)0.0470 (7)
C190.6235 (3)0.32953 (19)0.93559 (13)0.0474 (8)
C200.5008 (4)0.3412 (3)1.01852 (15)0.0691 (11)
H20A0.45740.30301.03970.104*
H20B0.44760.37791.00080.104*
H20C0.55240.37451.03930.104*
C210.6167 (4)0.4217 (2)0.92368 (18)0.0730 (12)
H21A0.64230.45370.95270.110*
H21B0.53740.43650.91560.110*
H21C0.66610.43410.89510.110*
C220.7898 (3)0.0309 (2)0.88436 (15)0.0578 (9)
C230.7377 (3)0.0052 (2)0.92970 (15)0.0570 (9)
C240.8640 (4)0.0181 (3)0.84738 (19)0.0903 (15)
H24A0.89340.01950.82170.136*
H24B0.81760.06150.83170.136*
H24C0.92840.04360.86520.136*
C250.7458 (5)0.0962 (3)0.9446 (2)0.0982 (17)
H25A0.75510.10050.98080.147*
H25B0.81190.12160.92800.147*
H25C0.67570.12510.93440.147*
C260.4487 (3)0.09584 (19)0.91725 (11)0.0417 (7)
H260.45410.08150.95150.050*
C270.3490 (3)0.0762 (2)0.89058 (12)0.0487 (8)
H270.28850.04850.90740.058*
C280.4248 (2)0.13517 (18)0.81967 (10)0.0353 (6)
C290.5259 (2)0.15585 (18)0.84576 (10)0.0361 (6)
H290.58590.18430.82910.043*
C300.4141 (3)0.1617 (2)0.76477 (11)0.0416 (7)
C310.2904 (3)0.1486 (3)0.68706 (12)0.0613 (10)
C320.1821 (5)0.0962 (4)0.67658 (17)0.115 (2)
H32A0.20000.03740.68100.173*
H32B0.15630.10590.64230.173*
H32C0.12120.11220.69980.173*
C330.2628 (5)0.2417 (3)0.68204 (19)0.0954 (16)
H33A0.33330.27400.68640.143*
H33B0.20720.25770.70760.143*
H33C0.23060.25260.64890.143*
C340.3904 (5)0.1230 (3)0.65208 (15)0.0874 (14)
H34A0.45610.15960.65780.131*
H34B0.36560.12750.61730.131*
H34C0.41270.06560.65910.131*
H70.133 (3)0.2419 (10)0.6996 (15)0.064 (13)*
H140.278 (3)0.101 (2)0.7576 (13)0.061 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0387 (2)0.0422 (2)0.0398 (2)0.00500 (17)0.00959 (16)0.00484 (17)
Co20.0374 (2)0.0339 (2)0.0367 (2)0.00246 (16)0.00596 (16)0.00130 (16)
Cl10.0478 (4)0.0535 (5)0.0566 (5)0.0013 (3)0.0129 (3)0.0159 (4)
Cl20.0508 (5)0.0577 (5)0.0696 (6)0.0058 (4)0.0235 (4)0.0023 (4)
O10.0552 (14)0.0551 (14)0.0744 (16)0.0222 (11)0.0217 (12)0.0014 (12)
O20.0526 (13)0.0568 (14)0.0630 (14)0.0199 (11)0.0130 (11)0.0055 (12)
O30.0477 (13)0.0603 (16)0.095 (2)0.0139 (12)0.0015 (13)0.0215 (14)
O40.0710 (16)0.0537 (14)0.0661 (16)0.0037 (13)0.0198 (13)0.0123 (12)
O50.111 (2)0.070 (2)0.0687 (18)0.0054 (17)0.0454 (17)0.0072 (15)
O60.0688 (16)0.0582 (15)0.0627 (15)0.0142 (12)0.0061 (12)0.0176 (12)
O70.0679 (15)0.0744 (17)0.0360 (12)0.0099 (13)0.0003 (11)0.0040 (11)
O80.0557 (14)0.0785 (18)0.0604 (15)0.0041 (13)0.0187 (12)0.0028 (13)
O90.0762 (17)0.0552 (15)0.0531 (14)0.0011 (12)0.0038 (12)0.0200 (12)
O100.0665 (15)0.0694 (16)0.0374 (11)0.0237 (13)0.0042 (10)0.0077 (11)
O110.066 (4)0.161 (8)0.166 (8)0.018 (5)0.012 (5)0.038 (7)
O11'0.166 (10)0.44 (2)0.134 (9)0.200 (13)0.060 (8)0.139 (12)
N10.0445 (14)0.0398 (14)0.0472 (15)0.0094 (11)0.0192 (12)0.0065 (11)
N20.0405 (13)0.0406 (14)0.0455 (14)0.0095 (11)0.0139 (11)0.0058 (12)
N30.0568 (16)0.0513 (16)0.0457 (15)0.0060 (13)0.0103 (13)0.0003 (13)
N40.0427 (15)0.0569 (17)0.0600 (18)0.0013 (13)0.0028 (13)0.0215 (14)
N50.0407 (13)0.0473 (15)0.0375 (13)0.0019 (11)0.0045 (10)0.0027 (11)
N60.0542 (16)0.0636 (19)0.0410 (14)0.0138 (14)0.0043 (12)0.0023 (13)
N70.0677 (19)0.063 (2)0.0460 (16)0.0100 (17)0.0225 (14)0.0035 (15)
N80.0456 (14)0.0493 (16)0.0359 (13)0.0056 (12)0.0085 (11)0.0029 (11)
N90.0436 (14)0.0422 (14)0.0450 (14)0.0098 (11)0.0097 (11)0.0080 (12)
N100.0363 (13)0.0548 (17)0.0518 (16)0.0003 (12)0.0005 (11)0.0042 (13)
N110.0458 (14)0.0397 (14)0.0510 (15)0.0024 (12)0.0124 (12)0.0074 (12)
N120.0373 (12)0.0282 (11)0.0300 (11)0.0003 (9)0.0012 (9)0.0014 (9)
N130.0433 (14)0.0490 (15)0.0416 (14)0.0100 (12)0.0047 (11)0.0013 (12)
N140.0562 (17)0.0667 (19)0.0327 (14)0.0186 (15)0.0074 (12)0.0015 (13)
C10.0478 (17)0.0433 (17)0.0412 (16)0.0025 (14)0.0136 (14)0.0022 (13)
C20.0418 (16)0.0423 (17)0.0473 (18)0.0019 (13)0.0070 (13)0.0116 (14)
C30.074 (3)0.072 (3)0.063 (2)0.008 (2)0.0149 (19)0.019 (2)
C40.051 (2)0.056 (2)0.072 (2)0.0057 (16)0.0080 (17)0.0145 (18)
C50.076 (2)0.063 (2)0.0438 (18)0.021 (2)0.0018 (18)0.0100 (17)
C60.063 (2)0.069 (2)0.057 (2)0.0193 (19)0.0118 (18)0.0249 (19)
C70.128 (4)0.092 (3)0.061 (3)0.040 (3)0.009 (3)0.007 (2)
C80.086 (3)0.094 (3)0.104 (4)0.027 (3)0.043 (3)0.038 (3)
C90.0442 (17)0.0531 (19)0.0479 (18)0.0004 (14)0.0064 (14)0.0025 (15)
C100.057 (2)0.0503 (19)0.0504 (19)0.0090 (16)0.0063 (15)0.0021 (15)
C110.0481 (17)0.059 (2)0.0356 (16)0.0074 (15)0.0034 (13)0.0009 (14)
C120.0498 (18)0.0533 (19)0.0431 (17)0.0009 (15)0.0093 (14)0.0014 (14)
C130.060 (2)0.069 (3)0.0424 (18)0.0054 (18)0.0146 (15)0.0027 (17)
C140.061 (2)0.066 (2)0.0433 (18)0.0154 (18)0.0194 (16)0.0015 (16)
C150.077 (3)0.096 (3)0.050 (2)0.018 (2)0.0136 (19)0.012 (2)
C160.129 (4)0.073 (3)0.084 (3)0.009 (3)0.062 (3)0.004 (2)
C170.063 (3)0.113 (4)0.074 (3)0.010 (2)0.013 (2)0.016 (3)
C180.0469 (17)0.0482 (19)0.0460 (17)0.0005 (14)0.0146 (14)0.0132 (14)
C190.0480 (18)0.0355 (16)0.059 (2)0.0018 (13)0.0195 (15)0.0050 (14)
C200.068 (2)0.071 (3)0.068 (2)0.008 (2)0.0103 (19)0.030 (2)
C210.077 (3)0.040 (2)0.102 (3)0.0010 (18)0.031 (2)0.003 (2)
C220.0475 (19)0.056 (2)0.070 (2)0.0124 (16)0.0085 (16)0.0154 (18)
C230.055 (2)0.0414 (18)0.074 (2)0.0075 (15)0.0159 (18)0.0001 (17)
C240.081 (3)0.092 (3)0.098 (3)0.033 (3)0.005 (3)0.028 (3)
C250.125 (4)0.046 (2)0.123 (4)0.022 (3)0.014 (3)0.009 (3)
C260.0469 (17)0.0436 (17)0.0345 (15)0.0086 (13)0.0014 (12)0.0052 (13)
C270.0462 (17)0.057 (2)0.0426 (17)0.0170 (15)0.0008 (13)0.0082 (15)
C280.0402 (15)0.0344 (14)0.0314 (14)0.0006 (12)0.0001 (11)0.0036 (11)
C290.0375 (14)0.0396 (15)0.0311 (14)0.0031 (12)0.0015 (11)0.0021 (12)
C300.0464 (17)0.0452 (17)0.0331 (15)0.0014 (14)0.0022 (13)0.0045 (13)
C310.068 (2)0.083 (3)0.0332 (16)0.020 (2)0.0126 (15)0.0017 (17)
C320.118 (4)0.170 (6)0.056 (3)0.081 (4)0.040 (3)0.016 (3)
C330.110 (4)0.100 (4)0.077 (3)0.010 (3)0.027 (3)0.029 (3)
C340.108 (4)0.115 (4)0.039 (2)0.018 (3)0.002 (2)0.012 (2)
Geometric parameters (Å, º) top
Co1—N41.888 (3)C7—H7A0.9600
Co1—N31.890 (3)C7—H7B0.9600
Co1—N21.892 (3)C7—H7C0.9600
Co1—N11.899 (3)C8—H8A0.9600
Co1—N51.970 (2)C8—H8B0.9600
Co1—Cl12.2282 (9)C8—H8C0.9600
Co2—N111.885 (3)C9—C101.379 (5)
Co2—N101.886 (3)C9—H90.9300
Co2—N81.906 (3)C10—H100.9300
Co2—N91.910 (3)C11—C121.380 (5)
Co2—N121.955 (2)C11—C131.521 (5)
Co2—Cl22.2177 (9)C12—H120.9300
O1—N11.350 (3)C14—C171.507 (6)
O1—H10.8200C14—C151.513 (5)
O2—N21.337 (3)C14—C161.515 (6)
O2—H20.8200C15—H15A0.9600
O3—N41.337 (4)C15—H15B0.9600
O4—N31.337 (4)C15—H15C0.9600
O5—C131.218 (5)C16—H16A0.9600
O6—N91.349 (3)C16—H16B0.9600
O6—H60.8200C16—H16C0.9600
O7—N81.355 (3)C17—H17A0.9600
O8—N101.316 (4)C17—H17B0.9600
O9—N111.323 (4)C17—H17C0.9600
O9—H9A0.8200C18—C191.463 (5)
O10—C301.218 (4)C18—C201.488 (5)
O11'—O11'i1.314 (19)C19—C211.493 (5)
N1—C11.286 (4)C20—H20A0.9600
N2—C21.288 (4)C20—H20B0.9600
N3—C51.288 (5)C20—H20C0.9600
N4—C61.298 (5)C21—H21A0.9600
N5—C91.331 (4)C21—H21B0.9600
N5—C121.335 (4)C21—H21C0.9600
N6—C111.326 (5)C22—C231.449 (6)
N6—C101.329 (4)C22—C241.505 (5)
N7—C131.330 (5)C23—C251.495 (5)
N7—C141.486 (4)C24—H24A0.9600
N7—H70.82 (3)C24—H24B0.9600
N8—C181.288 (4)C24—H24C0.9600
N9—C191.287 (4)C25—H25A0.9600
N10—C221.301 (5)C25—H25B0.9600
N11—C231.293 (5)C25—H25C0.9600
N12—C291.333 (3)C26—C271.372 (4)
N12—C261.334 (4)C26—H260.9300
N13—C281.327 (4)C27—H270.9300
N13—C271.333 (4)C28—C291.382 (4)
N14—C301.325 (4)C28—C301.507 (4)
N14—C311.480 (4)C29—H290.9300
N14—H140.82 (3)C31—C331.512 (6)
C1—C21.461 (4)C31—C321.514 (5)
C1—C31.487 (5)C31—C341.523 (6)
C2—C41.490 (5)C32—H32A0.9600
C3—H3A0.9600C32—H32B0.9600
C3—H3B0.9600C32—H32C0.9600
C3—H3C0.9600C33—H33A0.9600
C4—H4A0.9600C33—H33B0.9600
C4—H4B0.9600C33—H33C0.9600
C4—H4C0.9600C34—H34A0.9600
C5—C61.463 (6)C34—H34B0.9600
C5—C71.492 (6)C34—H34C0.9600
C6—C81.499 (6)
N4—Co1—N381.95 (14)N6—C10—C9122.2 (3)
N4—Co1—N2179.10 (12)N6—C10—H10118.9
N3—Co1—N298.75 (12)C9—C10—H10118.9
N4—Co1—N198.70 (13)N6—C11—C12122.7 (3)
N3—Co1—N1176.55 (11)N6—C11—C13118.8 (3)
N2—Co1—N180.55 (11)C12—C11—C13118.5 (3)
N4—Co1—N590.50 (11)N5—C12—C11120.4 (3)
N3—Co1—N591.20 (11)N5—C12—H12119.8
N2—Co1—N590.05 (10)C11—C12—H12119.8
N1—Co1—N592.18 (11)O5—C13—N7126.8 (3)
N4—Co1—Cl188.85 (8)O5—C13—C11119.4 (3)
N3—Co1—Cl188.31 (9)N7—C13—C11113.8 (3)
N2—Co1—Cl190.61 (8)N7—C14—C17109.7 (3)
N1—Co1—Cl188.33 (8)N7—C14—C15109.5 (3)
N5—Co1—Cl1179.23 (8)C17—C14—C15110.3 (4)
N11—Co2—N1082.07 (12)N7—C14—C16106.3 (3)
N11—Co2—N898.34 (12)C17—C14—C16110.1 (4)
N10—Co2—N8179.22 (12)C15—C14—C16110.9 (4)
N11—Co2—N9178.16 (11)C14—C15—H15A109.5
N10—Co2—N999.23 (12)C14—C15—H15B109.5
N8—Co2—N980.34 (11)H15A—C15—H15B109.5
N11—Co2—N1290.04 (10)C14—C15—H15C109.5
N10—Co2—N1289.95 (10)H15A—C15—H15C109.5
N8—Co2—N1290.72 (10)H15B—C15—H15C109.5
N9—Co2—N1291.27 (10)C14—C16—H16A109.5
N11—Co2—Cl289.49 (8)C14—C16—H16B109.5
N10—Co2—Cl289.23 (8)H16A—C16—H16B109.5
N8—Co2—Cl290.11 (8)C14—C16—H16C109.5
N9—Co2—Cl289.22 (8)H16A—C16—H16C109.5
N12—Co2—Cl2179.11 (7)H16B—C16—H16C109.5
N1—O1—H1109.5C14—C17—H17A109.5
N2—O2—H2109.5C14—C17—H17B109.5
N9—O6—H6109.5H17A—C17—H17B109.5
N11—O9—H9A109.5C14—C17—H17C109.5
C1—N1—O1120.1 (3)H17A—C17—H17C109.5
C1—N1—Co1116.8 (2)H17B—C17—H17C109.5
O1—N1—Co1122.7 (2)N8—C18—C19112.6 (3)
C2—N2—O2120.3 (3)N8—C18—C20123.9 (3)
C2—N2—Co1117.3 (2)C19—C18—C20123.5 (3)
O2—N2—Co1122.5 (2)N9—C19—C18113.0 (3)
C5—N3—O4122.0 (3)N9—C19—C21123.9 (4)
C5—N3—Co1116.0 (3)C18—C19—C21123.0 (3)
O4—N3—Co1122.0 (2)C18—C20—H20A109.5
C6—N4—O3122.8 (3)C18—C20—H20B109.5
C6—N4—Co1115.8 (3)H20A—C20—H20B109.5
O3—N4—Co1121.4 (2)C18—C20—H20C109.5
C9—N5—C12117.5 (3)H20A—C20—H20C109.5
C9—N5—Co1121.2 (2)H20B—C20—H20C109.5
C12—N5—Co1121.3 (2)C19—C21—H21A109.5
C11—N6—C10116.1 (3)C19—C21—H21B109.5
C13—N7—C14125.5 (3)H21A—C21—H21B109.5
C13—N7—H7117 (3)C19—C21—H21C109.5
C14—N7—H7117 (3)H21A—C21—H21C109.5
C18—N8—O7120.3 (3)H21B—C21—H21C109.5
C18—N8—Co2117.2 (2)N10—C22—C23113.2 (3)
O7—N8—Co2122.5 (2)N10—C22—C24122.6 (4)
C19—N9—O6120.5 (3)C23—C22—C24124.1 (4)
C19—N9—Co2116.8 (2)N11—C23—C22113.4 (3)
O6—N9—Co2122.6 (2)N11—C23—C25122.0 (4)
C22—N10—O8122.9 (3)C22—C23—C25124.6 (4)
C22—N10—Co2115.5 (3)C22—C24—H24A109.5
O8—N10—Co2121.5 (2)C22—C24—H24B109.5
C23—N11—O9121.7 (3)H24A—C24—H24B109.5
C23—N11—Co2115.7 (2)C22—C24—H24C109.5
O9—N11—Co2122.5 (2)H24A—C24—H24C109.5
C29—N12—C26117.8 (2)H24B—C24—H24C109.5
C29—N12—Co2121.22 (19)C23—C25—H25A109.5
C26—N12—Co2121.03 (19)C23—C25—H25B109.5
C28—N13—C27116.2 (3)H25A—C25—H25B109.5
C30—N14—C31125.2 (3)C23—C25—H25C109.5
C30—N14—H14116 (3)H25A—C25—H25C109.5
C31—N14—H14118 (3)H25B—C25—H25C109.5
N1—C1—C2112.8 (3)N12—C26—C27120.8 (3)
N1—C1—C3123.6 (3)N12—C26—H26119.6
C2—C1—C3123.5 (3)C27—C26—H26119.6
N2—C2—C1112.3 (3)N13—C27—C26122.3 (3)
N2—C2—C4124.4 (3)N13—C27—H27118.8
C1—C2—C4123.3 (3)C26—C27—H27118.8
C1—C3—H3A109.5N13—C28—C29122.5 (3)
C1—C3—H3B109.5N13—C28—C30119.0 (3)
H3A—C3—H3B109.5C29—C28—C30118.5 (3)
C1—C3—H3C109.5N12—C29—C28120.4 (3)
H3A—C3—H3C109.5N12—C29—H29119.8
H3B—C3—H3C109.5C28—C29—H29119.8
C2—C4—H4A109.5O10—C30—N14125.6 (3)
C2—C4—H4B109.5O10—C30—C28119.6 (3)
H4A—C4—H4B109.5N14—C30—C28114.8 (3)
C2—C4—H4C109.5N14—C31—C33109.1 (3)
H4A—C4—H4C109.5N14—C31—C32105.4 (3)
H4B—C4—H4C109.5C33—C31—C32110.3 (4)
N3—C5—C6113.3 (3)N14—C31—C34109.6 (3)
N3—C5—C7122.3 (4)C33—C31—C34111.3 (4)
C6—C5—C7124.4 (4)C32—C31—C34111.1 (4)
N4—C6—C5113.0 (3)C31—C32—H32A109.5
N4—C6—C8122.8 (4)C31—C32—H32B109.5
C5—C6—C8124.2 (4)H32A—C32—H32B109.5
C5—C7—H7A109.5C31—C32—H32C109.5
C5—C7—H7B109.5H32A—C32—H32C109.5
H7A—C7—H7B109.5H32B—C32—H32C109.5
C5—C7—H7C109.5C31—C33—H33A109.5
H7A—C7—H7C109.5C31—C33—H33B109.5
H7B—C7—H7C109.5H33A—C33—H33B109.5
C6—C8—H8A109.5C31—C33—H33C109.5
C6—C8—H8B109.5H33A—C33—H33C109.5
H8A—C8—H8B109.5H33B—C33—H33C109.5
C6—C8—H8C109.5C31—C34—H34A109.5
H8A—C8—H8C109.5C31—C34—H34B109.5
H8B—C8—H8C109.5H34A—C34—H34B109.5
N5—C9—C10120.9 (3)C31—C34—H34C109.5
N5—C9—H9119.5H34A—C34—H34C109.5
C10—C9—H9119.5H34B—C34—H34C109.5
N4—Co1—N1—C1176.3 (2)Co1—N1—C1—C3170.2 (3)
N2—Co1—N1—C13.2 (2)O2—N2—C2—C1178.1 (2)
N5—Co1—N1—C192.9 (2)Co1—N2—C2—C12.5 (3)
Cl1—Co1—N1—C187.7 (2)O2—N2—C2—C41.8 (4)
N4—Co1—N1—O12.8 (2)Co1—N2—C2—C4177.6 (2)
N2—Co1—N1—O1176.6 (2)N1—C1—C2—N25.0 (4)
N5—Co1—N1—O193.7 (2)C3—C1—C2—N2170.5 (3)
Cl1—Co1—N1—O185.7 (2)N1—C1—C2—C4175.1 (3)
N3—Co1—N2—C2176.5 (2)C3—C1—C2—C49.4 (5)
N1—Co1—N2—C20.1 (2)O4—N3—C5—C6179.6 (3)
N5—Co1—N2—C292.3 (2)Co1—N3—C5—C61.3 (4)
Cl1—Co1—N2—C288.1 (2)O4—N3—C5—C71.7 (5)
N3—Co1—N2—O24.2 (2)Co1—N3—C5—C7176.7 (3)
N1—Co1—N2—O2179.2 (2)O3—N4—C6—C5178.6 (3)
N5—Co1—N2—O287.0 (2)Co1—N4—C6—C50.9 (4)
Cl1—Co1—N2—O292.6 (2)O3—N4—C6—C80.2 (5)
N4—Co1—N3—C51.4 (2)Co1—N4—C6—C8177.9 (3)
N2—Co1—N3—C5178.0 (2)N3—C5—C6—N40.3 (4)
N5—Co1—N3—C591.7 (3)C7—C5—C6—N4177.6 (3)
Cl1—Co1—N3—C587.7 (2)N3—C5—C6—C8179.1 (4)
N4—Co1—N3—O4179.7 (2)C7—C5—C6—C81.1 (6)
N2—Co1—N3—O40.3 (2)C12—N5—C9—C101.4 (5)
N5—Co1—N3—O489.9 (2)Co1—N5—C9—C10176.5 (2)
Cl1—Co1—N3—O490.7 (2)C11—N6—C10—C92.5 (5)
N3—Co1—N4—C61.2 (2)N5—C9—C10—N61.5 (5)
N1—Co1—N4—C6175.3 (2)C10—N6—C11—C120.9 (5)
N5—Co1—N4—C692.4 (3)C10—N6—C11—C13179.2 (3)
Cl1—Co1—N4—C687.2 (2)C9—N5—C12—C113.0 (5)
N3—Co1—N4—O3179.0 (2)Co1—N5—C12—C11174.9 (2)
N1—Co1—N4—O32.4 (2)N6—C11—C12—N52.0 (5)
N5—Co1—N4—O389.9 (2)C13—C11—C12—N5176.4 (3)
Cl1—Co1—N4—O390.5 (2)C14—N7—C13—O52.0 (7)
N4—Co1—N5—C964.1 (3)C14—N7—C13—C11176.5 (3)
N3—Co1—N5—C9146.1 (3)N6—C11—C13—O5178.7 (4)
N2—Co1—N5—C9115.2 (3)C12—C11—C13—O52.9 (5)
N1—Co1—N5—C934.6 (3)N6—C11—C13—N72.6 (5)
N4—Co1—N5—C12113.8 (3)C12—C11—C13—N7175.8 (3)
N3—Co1—N5—C1231.8 (3)C13—N7—C14—C1763.4 (5)
N2—Co1—N5—C1267.0 (3)C13—N7—C14—C1557.7 (5)
N1—Co1—N5—C12147.5 (3)C13—N7—C14—C16177.6 (4)
N11—Co2—N8—C18179.6 (2)O7—N8—C18—C19178.8 (2)
N9—Co2—N8—C181.8 (2)Co2—N8—C18—C192.4 (3)
N12—Co2—N8—C1889.4 (2)O7—N8—C18—C200.2 (4)
Cl2—Co2—N8—C1890.9 (2)Co2—N8—C18—C20178.7 (2)
N11—Co2—N8—O70.7 (2)O6—N9—C19—C18178.2 (2)
N9—Co2—N8—O7179.4 (2)Co2—N9—C19—C180.4 (3)
N12—Co2—N8—O789.4 (2)O6—N9—C19—C210.3 (5)
Cl2—Co2—N8—O790.2 (2)Co2—N9—C19—C21177.6 (3)
N10—Co2—N9—C19180.0 (2)N8—C18—C19—N91.8 (4)
N8—Co2—N9—C190.7 (2)C20—C18—C19—N9179.3 (3)
N12—Co2—N9—C1989.8 (2)N8—C18—C19—C21176.2 (3)
Cl2—Co2—N9—C1990.9 (2)C20—C18—C19—C212.7 (5)
N10—Co2—N9—O62.2 (2)O8—N10—C22—C23178.4 (3)
N8—Co2—N9—O6177.1 (2)Co2—N10—C22—C230.2 (4)
N12—Co2—N9—O692.4 (2)O8—N10—C22—C241.1 (5)
Cl2—Co2—N9—O686.9 (2)Co2—N10—C22—C24177.1 (3)
N11—Co2—N10—C221.0 (2)O9—N11—C23—C22177.1 (3)
N9—Co2—N10—C22179.7 (2)Co2—N11—C23—C222.8 (4)
N12—Co2—N10—C2289.0 (2)O9—N11—C23—C251.1 (5)
Cl2—Co2—N10—C2290.6 (2)Co2—N11—C23—C25178.9 (3)
N11—Co2—N10—O8177.2 (2)N10—C22—C23—N112.0 (4)
N9—Co2—N10—O81.5 (2)C24—C22—C23—N11175.2 (4)
N12—Co2—N10—O892.8 (2)N10—C22—C23—C25179.9 (4)
Cl2—Co2—N10—O887.6 (2)C24—C22—C23—C252.9 (6)
N10—Co2—N11—C232.2 (2)C29—N12—C26—C271.0 (4)
N8—Co2—N11—C23178.5 (2)Co2—N12—C26—C27178.6 (2)
N12—Co2—N11—C2387.7 (2)C28—N13—C27—C260.5 (5)
Cl2—Co2—N11—C2391.5 (2)N12—C26—C27—N130.2 (5)
N10—Co2—N11—O9177.8 (2)C27—N13—C28—C290.3 (4)
N8—Co2—N11—O91.6 (2)C27—N13—C28—C30177.6 (3)
N12—Co2—N11—O992.3 (2)C26—N12—C29—C281.2 (4)
Cl2—Co2—N11—O988.5 (2)Co2—N12—C29—C28178.5 (2)
N11—Co2—N12—C29132.3 (2)N13—C28—C29—N120.5 (4)
N10—Co2—N12—C2950.2 (2)C30—C28—C29—N12178.5 (3)
N8—Co2—N12—C29129.4 (2)C31—N14—C30—O102.8 (6)
N9—Co2—N12—C2949.0 (2)C31—N14—C30—C28178.0 (3)
N11—Co2—N12—C2647.4 (2)N13—C28—C30—O10170.2 (3)
N10—Co2—N12—C26129.4 (2)C29—C28—C30—O107.9 (4)
N8—Co2—N12—C2651.0 (2)N13—C28—C30—N1410.6 (4)
N9—Co2—N12—C26131.3 (2)C29—C28—C30—N14171.4 (3)
O1—N1—C1—C2178.9 (2)C30—N14—C31—C3363.1 (5)
Co1—N1—C1—C25.3 (3)C30—N14—C31—C32178.6 (4)
O1—N1—C1—C33.4 (5)C30—N14—C31—C3459.0 (5)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.692.476 (4)161
O2—H2···O40.821.692.483 (4)162
O6—H6···O80.821.722.507 (4)161
O9—H9A···O70.821.682.483 (4)165

Experimental details

Crystal data
Chemical formula[Co(C4H7N2O2)2Cl(C9H13N3O)]·0.5H2O
Mr521.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4320 (2), 15.8134 (4), 26.2781 (6)
β (°) 90.06 (2)
V3)4750.52 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa-APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.779, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
92600, 8366, 7136
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 1.17
No. of reflections8366
No. of parameters599
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.48

Computer programs: APEX2 (Bruker–Nonius, 2004), APEX2 and SAINT (Bruker–Nonius, 2004), SAINT and XPREP (Bruker–Nonius, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-32 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.692.476 (4)161.3
O2—H2···O40.821.692.483 (4)162.1
O6—H6···O80.821.722.507 (4)160.9
O9—H9A···O70.821.682.483 (4)164.7
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds