Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new bis­(pyrid­yl) compound, C18H14N4, was prepared by the reaction of phthalaldehyde and 2-amino­pyridine in toluene. In the crystal structure, π–π stacking inter­actions exist between two adjacent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044984/bg2102sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044984/bg2102Isup2.hkl
Contains datablock I

CCDC reference: 663803

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.115
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, N-heterocyclic complexes have attracted much attention in the area of coordination and supramolecular chemistry. Infinite metal-organic frameworks are assembled through the metal coordination of pyridone- or pyridine-based bridging complexes. Accordingly, we have designed and synthesized a new bis(pyridyl) complex, viz. (E)—N-(2-(pyridin-2-yl)isoindolin-1-ylidene)pyridin-2-amine, (I). Two already reported complexes (Akkurt et al., 2006; Takahashi et al., 2005), respectively with 5-methyl-4,5-dihydroisoxazol-3-ylamine and aniline instead of 2-aminopyridine, have a similar structure. In comparison with the typical linear bis(pyridyl) disposition such as in 4,4-bipyridyl, the two pyridyl functions in (I) are more separated and form an acute angle, which may provide novel coordination modes in metal-organic structures.

The molecule structure of (I) is shown in Fig. 1. Each of the individual rings is essentially planar. The benzene ring A (C7—C12) and five-membered B (N3/C6/C7/C12/C13) lie almost on the same plane, subtending a dihedral angle of 2.1 (2) °. The pyridyl rings C (N1/C1—C5) and D (N4/C14—C18) make a dihedral angle of 102.1 (2) ° with each other. The dihedral angles between rings A/C and B/C are 102.2 (2) and 100.1 (2) °, respectively. The dihedral angles between rings A/D and B/D are both 7.9 (2) °. In the crystal structure, π-π stacking interactions exist between adjacent molecules (Table 1) defining a three-dimensional structure.

Related literature top

Two corresponding complexes with 5-methyl-4,5-dihydroisoxazol-3-ylamine (Akkurt et al., 2006) and aniline (Takahashi et al., 2005) instead of 2-aminopyridine have similar structures.

Experimental top

To a solution of phthalaldehyde in toluene was added a solution of 2-aminopyridine in toluene. The mixture was refluxed for 10 h, and a yellow precipitate was obtained. Colorless crystals were obtained by recrystallization of the material from methanol with a yield of 60%. Analysis calculated for C18H14N4: C 75.51, H 4.93, N 19.57%. Found: C 75.56, H 4.90, N 19.55%.

Refinement top

C-bound H atoms were placed at calculated positions, with phenyl C—H = 0.95 Å and methylene C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), and included in the refinement in the riding-model approximation.

Structure description top

In recent years, N-heterocyclic complexes have attracted much attention in the area of coordination and supramolecular chemistry. Infinite metal-organic frameworks are assembled through the metal coordination of pyridone- or pyridine-based bridging complexes. Accordingly, we have designed and synthesized a new bis(pyridyl) complex, viz. (E)—N-(2-(pyridin-2-yl)isoindolin-1-ylidene)pyridin-2-amine, (I). Two already reported complexes (Akkurt et al., 2006; Takahashi et al., 2005), respectively with 5-methyl-4,5-dihydroisoxazol-3-ylamine and aniline instead of 2-aminopyridine, have a similar structure. In comparison with the typical linear bis(pyridyl) disposition such as in 4,4-bipyridyl, the two pyridyl functions in (I) are more separated and form an acute angle, which may provide novel coordination modes in metal-organic structures.

The molecule structure of (I) is shown in Fig. 1. Each of the individual rings is essentially planar. The benzene ring A (C7—C12) and five-membered B (N3/C6/C7/C12/C13) lie almost on the same plane, subtending a dihedral angle of 2.1 (2) °. The pyridyl rings C (N1/C1—C5) and D (N4/C14—C18) make a dihedral angle of 102.1 (2) ° with each other. The dihedral angles between rings A/C and B/C are 102.2 (2) and 100.1 (2) °, respectively. The dihedral angles between rings A/D and B/D are both 7.9 (2) °. In the crystal structure, π-π stacking interactions exist between adjacent molecules (Table 1) defining a three-dimensional structure.

Two corresponding complexes with 5-methyl-4,5-dihydroisoxazol-3-ylamine (Akkurt et al., 2006) and aniline (Takahashi et al., 2005) instead of 2-aminopyridine have similar structures.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP plot (Johnson, 1976) of title complex, with displacement ellipsoids drawn at 30% probability level.
(E)—N-[2-(Pyridin-2-yl)isoindolin-1-ylidene]pyridin-2-amine top
Crystal data top
C18H14N4Z = 2
Mr = 286.33F(000) = 300
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2571 (17) ÅCell parameters from 5618 reflections
b = 8.2797 (17) Åθ = 3.0–27.4°
c = 12.521 (3) ŵ = 0.08 mm1
α = 105.97 (3)°T = 295 K
β = 92.13 (3)°Prism, colorless
γ = 118.51 (3)°0.36 × 0.25 × 0.21 mm
V = 708.7 (4) Å3
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3208 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 1010
Tmin = 0.969, Tmax = 0.980l = 1416
6990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.054P)2 + 0.0939P]
where P = (Fo2 + 2Fc2)/3
3208 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H14N4γ = 118.51 (3)°
Mr = 286.33V = 708.7 (4) Å3
Triclinic, P1Z = 2
a = 8.2571 (17) ÅMo Kα radiation
b = 8.2797 (17) ŵ = 0.08 mm1
c = 12.521 (3) ÅT = 295 K
α = 105.97 (3)°0.36 × 0.25 × 0.21 mm
β = 92.13 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3208 independent reflections
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
2492 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.015
6990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.13Δρmax = 0.18 e Å3
3208 reflectionsΔρmin = 0.21 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09225 (17)0.76516 (17)0.87717 (10)0.0466 (3)
N20.11473 (15)0.63183 (17)0.68229 (9)0.0435 (3)
N30.08028 (14)0.75228 (15)0.55829 (8)0.0379 (3)
N40.03406 (16)0.81571 (18)0.39661 (9)0.0465 (3)
C10.13993 (17)0.60736 (19)0.78836 (11)0.0388 (3)
C20.2270 (2)0.4209 (2)0.79558 (12)0.0492 (3)
H20.25950.31330.73200.059*
C30.2642 (3)0.3984 (2)0.89801 (13)0.0597 (4)
H30.32080.27510.90500.072*
C40.2171 (3)0.5599 (2)0.99041 (13)0.0598 (4)
H40.24280.54801.06040.072*
C50.1313 (2)0.7384 (2)0.97623 (12)0.0528 (4)
H50.09810.84761.03880.063*
C60.04936 (17)0.71127 (17)0.65899 (10)0.0356 (3)
C70.23566 (17)0.76891 (17)0.72090 (11)0.0371 (3)
C80.2882 (2)0.7566 (2)0.82419 (12)0.0469 (3)
H80.20060.71140.86900.056*
C90.4738 (2)0.8131 (2)0.85819 (13)0.0531 (4)
H90.51140.80660.92710.064*
C100.6052 (2)0.8793 (2)0.79186 (13)0.0506 (3)
H100.72920.91570.81640.061*
C110.55360 (19)0.8919 (2)0.68939 (12)0.0447 (3)
H110.64150.93670.64470.054*
C120.36805 (18)0.83610 (18)0.65505 (11)0.0377 (3)
C130.27804 (17)0.83251 (19)0.54836 (11)0.0399 (3)
H130.33120.96260.54380.048*
H140.29210.74960.48220.048*
C140.04689 (17)0.73947 (17)0.47444 (10)0.0358 (3)
C150.24000 (19)0.6558 (2)0.47075 (12)0.0456 (3)
H150.29380.60350.52590.055*
C160.3486 (2)0.6527 (2)0.38339 (12)0.0495 (3)
H160.47800.59590.37840.059*
C170.2669 (2)0.7331 (2)0.30345 (12)0.0511 (4)
H170.33830.73370.24450.061*
C180.0762 (2)0.8124 (2)0.31402 (12)0.0543 (4)
H180.01980.86740.26030.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0504 (7)0.0451 (6)0.0436 (6)0.0217 (5)0.0095 (5)0.0187 (5)
N20.0378 (6)0.0553 (7)0.0393 (6)0.0200 (5)0.0125 (5)0.0248 (5)
N30.0355 (5)0.0429 (6)0.0355 (6)0.0172 (5)0.0113 (4)0.0179 (5)
N40.0425 (6)0.0589 (7)0.0364 (6)0.0209 (5)0.0124 (5)0.0220 (5)
C10.0331 (6)0.0476 (7)0.0390 (7)0.0198 (5)0.0102 (5)0.0200 (6)
C20.0617 (9)0.0436 (8)0.0409 (7)0.0244 (7)0.0166 (6)0.0157 (6)
C30.0843 (11)0.0460 (8)0.0501 (9)0.0282 (8)0.0240 (8)0.0259 (7)
C40.0844 (12)0.0613 (10)0.0399 (8)0.0360 (9)0.0236 (7)0.0260 (7)
C50.0688 (10)0.0514 (8)0.0391 (7)0.0315 (8)0.0112 (7)0.0144 (6)
C60.0385 (6)0.0340 (6)0.0350 (6)0.0174 (5)0.0109 (5)0.0142 (5)
C70.0376 (7)0.0349 (6)0.0402 (7)0.0175 (5)0.0102 (5)0.0159 (5)
C80.0445 (7)0.0557 (8)0.0479 (8)0.0250 (6)0.0138 (6)0.0280 (7)
C90.0488 (8)0.0617 (9)0.0538 (9)0.0262 (7)0.0057 (6)0.0302 (7)
C100.0381 (7)0.0512 (8)0.0626 (9)0.0202 (6)0.0061 (6)0.0247 (7)
C110.0370 (7)0.0435 (7)0.0531 (8)0.0181 (6)0.0127 (6)0.0193 (6)
C120.0384 (6)0.0343 (6)0.0400 (7)0.0173 (5)0.0108 (5)0.0135 (5)
C130.0358 (6)0.0455 (7)0.0389 (7)0.0187 (5)0.0137 (5)0.0175 (6)
C140.0401 (7)0.0334 (6)0.0322 (6)0.0174 (5)0.0093 (5)0.0107 (5)
C150.0409 (7)0.0533 (8)0.0451 (7)0.0206 (6)0.0144 (6)0.0251 (6)
C160.0398 (7)0.0583 (9)0.0497 (8)0.0224 (6)0.0098 (6)0.0217 (7)
C170.0506 (8)0.0644 (9)0.0399 (7)0.0295 (7)0.0063 (6)0.0196 (7)
C180.0530 (8)0.0729 (10)0.0383 (7)0.0273 (8)0.0137 (6)0.0287 (7)
Geometric parameters (Å, º) top
N1—C11.3325 (19)C8—C91.380 (2)
N1—C51.3432 (18)C8—H80.9300
N2—C61.2797 (17)C9—C101.385 (2)
N2—C11.4060 (16)C9—H90.9300
N3—C61.3953 (15)C10—C111.383 (2)
N3—C141.4024 (16)C10—H100.9300
N3—C131.4656 (16)C11—C121.3827 (19)
N4—C141.3338 (16)C11—H110.9300
N4—C181.3378 (18)C12—C131.4903 (18)
C1—C21.3892 (19)C13—H130.9700
C2—C31.371 (2)C13—H140.9700
C2—H20.9300C14—C151.3953 (18)
C3—C41.377 (2)C15—C161.375 (2)
C3—H30.9300C15—H150.9300
C4—C51.368 (2)C16—C171.374 (2)
C4—H40.9300C16—H160.9300
C5—H50.9300C17—C181.370 (2)
C6—C71.4839 (18)C17—H170.9300
C7—C121.3867 (18)C18—H180.9300
C7—C81.3947 (18)
C1—N1—C5117.37 (12)C10—C9—H9119.3
C6—N2—C1121.20 (12)C11—C10—C9120.57 (14)
C6—N3—C14128.75 (11)C11—C10—H10119.7
C6—N3—C13112.22 (10)C9—C10—H10119.7
C14—N3—C13118.85 (10)C12—C11—C10118.32 (13)
C14—N4—C18117.72 (12)C12—C11—H11120.8
N1—C1—C2122.43 (12)C10—C11—H11120.8
N1—C1—N2117.73 (12)C11—C12—C7121.37 (12)
C2—C1—N2119.60 (13)C11—C12—C13128.40 (12)
C3—C2—C1118.84 (14)C7—C12—C13110.22 (11)
C3—C2—H2120.6N3—C13—C12102.90 (10)
C1—C2—H2120.6N3—C13—H13111.2
C2—C3—C4119.44 (14)C12—C13—H13111.2
C2—C3—H3120.3N3—C13—H14111.2
C4—C3—H3120.3C12—C13—H14111.2
C5—C4—C3118.07 (14)H13—C13—H14109.1
C5—C4—H4121.0N4—C14—C15122.18 (12)
C3—C4—H4121.0N4—C14—N3113.52 (11)
N1—C5—C4123.85 (14)C15—C14—N3124.30 (11)
N1—C5—H5118.1C16—C15—C14118.21 (12)
C4—C5—H5118.1C16—C15—H15120.9
N2—C6—N3122.49 (12)C14—C15—H15120.9
N2—C6—C7131.41 (11)C17—C16—C15120.30 (13)
N3—C6—C7106.04 (10)C17—C16—H16119.9
C12—C7—C8120.14 (12)C15—C16—H16119.9
C12—C7—C6108.58 (11)C18—C17—C16117.41 (13)
C8—C7—C6131.20 (12)C18—C17—H17121.3
C9—C8—C7118.22 (13)C16—C17—H17121.3
C9—C8—H8120.9N4—C18—C17124.18 (13)
C7—C8—H8120.9N4—C18—H18117.9
C8—C9—C10121.37 (14)C17—C18—H18117.9
C8—C9—H9119.3
C5—N1—C1—C20.1 (2)C9—C10—C11—C120.2 (2)
C5—N1—C1—N2174.56 (12)C10—C11—C12—C70.0 (2)
C6—N2—C1—N173.68 (17)C10—C11—C12—C13178.68 (13)
C6—N2—C1—C2111.73 (16)C8—C7—C12—C110.08 (19)
N1—C1—C2—C30.4 (2)C6—C7—C12—C11177.06 (11)
N2—C1—C2—C3174.77 (14)C8—C7—C12—C13178.94 (12)
C1—C2—C3—C40.9 (3)C6—C7—C12—C131.80 (14)
C2—C3—C4—C51.1 (3)C6—N3—C13—C120.29 (13)
C1—N1—C5—C40.3 (2)C14—N3—C13—C12175.88 (10)
C3—C4—C5—N10.8 (3)C11—C12—C13—N3177.45 (12)
C1—N2—C6—N3174.52 (11)C7—C12—C13—N31.30 (14)
C1—N2—C6—C78.8 (2)C18—N4—C14—C150.9 (2)
C14—N3—C6—N28.3 (2)C18—N4—C14—N3179.11 (12)
C13—N3—C6—N2176.67 (12)C6—N3—C14—N4170.91 (11)
C14—N3—C6—C7174.30 (11)C13—N3—C14—N43.85 (16)
C13—N3—C6—C70.74 (13)C6—N3—C14—C159.1 (2)
N2—C6—C7—C12175.52 (13)C13—N3—C14—C15176.12 (12)
N3—C6—C7—C121.57 (13)N4—C14—C15—C160.1 (2)
N2—C6—C7—C81.2 (2)N3—C14—C15—C16179.90 (12)
N3—C6—C7—C8178.27 (13)C14—C15—C16—C171.0 (2)
C12—C7—C8—C90.2 (2)C15—C16—C17—C180.9 (2)
C6—C7—C8—C9176.54 (13)C14—N4—C18—C171.0 (2)
C7—C8—C9—C100.4 (2)C16—C17—C18—N40.1 (2)
C8—C9—C10—C110.5 (2)

Experimental details

Crystal data
Chemical formulaC18H14N4
Mr286.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.2571 (17), 8.2797 (17), 12.521 (3)
α, β, γ (°)105.97 (3), 92.13 (3), 118.51 (3)
V3)708.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.25 × 0.21
Data collection
DiffractometerRigaku RAXIS-RAPID
Absorption correctionMulti-scan
ABSCOR (Higashi, 1995)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6990, 3208, 2492
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.13
No. of reflections3208
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-II (Johnson, 1976), SHELXL97.

π-π contacts (Å, °) for the title compound top
Cg1Cg2Cg1···Cg2 (Å)Dihedral angle (°)<Cg···Perp> (Å)
CgACgDi3.8672 (13)7.94 (1)3.63 (7)
CgBCgBi4.3836 (13)0.003.48 (1)
CgBCgDi4.0391 (13)7.86 (1)3.58 (12)
CgBCgDii4.2714 (14)7.86 (1)3.53 (13)
CgDCgDii3.9380 (12)0.003.48 (1)
Symmetry codes: i = -x,1-y,1-z; ii = -x,2-y,1-z

Ring code: as in Fig. 1
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds