Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C29H49N3O4, is a model compound synthesized to obtain information on the inter­momecular forces that drive the self-assembly of a similar compound bearing longer aliphatic chains. In the crystal, molecules are arranged in columns due to the formation of two antiparallel strong hydrogen-bonded chains by the carbamate units. The two long aliphatic chains are trans.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702572X/bg2057sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702572X/bg2057Isup2.hkl
Contains datablock I

CCDC reference: 654865

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.096
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 100 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT322_ALERT_2_C Check Hybridisation of H23A in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of H23B in Main Residue . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 74.22 From the CIF: _reflns_number_total 5438 Count of symmetry unique reflns 3094 Completeness (_total/calc) 175.76% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2344 Fraction of Friedel pairs measured 0.758 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), was synthesized as a model compound. Its 150 K data collection was useful to suggest a model for the formation of organogels by its homologue, (3S, 4S)-Dodecyl-carbamic acid 1-benzyl-4-dodecylcarbamoyl oxy-pyrrolidin-3-yl ester, bearing longer aliphatic chains (C12) (Cicchi et al., 2007). To develop such a model for the formation of the gel it was necessary to obtain information about the more stable conformation of the carbamate units responsable for the self assembling process that give origin to an organogel. Information derived from X-Ray crystallography had already been used to propose suitable models for gel formation (viz., Schoonbeek et al., 2000). In the presents case, while C12 did not afford suitable crystals, compound (I) crystallized from diisopropyl ether. The structure showed that the crystal is formed by long columns in which the two carbamates units of each molecule participate in the formation of two antiparallel strong H-bonded chains (Table 2). The long all-trans aliphatic chains contributes to the packing of the crystal by Van der Walls interactions. Dimensions are available in the archived CIF.

Related literature top

For related literature, see: Cicchi et al. (2007); Schoonbeek et al. (2000).

Experimental top

An anhydrous toluene solution (10 ml) of (3R,4S)-1-benzylpyrrolidine-3,4-diol (200 mg, 1.04 mmol, 1eq) and octylisocianate (321 mg, 2.1eq) were refluxed for 72 h. The crude reaction mixture was concentrated and purified by flash column chromatography (Rf = 1/2, CH2Cl2/AcOEt 1:1) to obtain 323 mg of a white solid (64% yield). The compound was crystallized from diisopropylether to obtain white crystals. M.p. 94–95°C. Crystals suitable for X-ray analysis were obtained by slow evaporation of a diluted diisopropyl ether solution.

Refinement top

All H atoms were clearly observable in the difference Fourier map but were placed at ideal positions (C—H3: 0.98) Å, C—H2: 0.99 Å, C—H: 1.00 Å, N—H: 0.88 Å), and allowed to ride with U(H) = 1.2 × Ueq(Host).

Structure description top

The title compound, (I), was synthesized as a model compound. Its 150 K data collection was useful to suggest a model for the formation of organogels by its homologue, (3S, 4S)-Dodecyl-carbamic acid 1-benzyl-4-dodecylcarbamoyl oxy-pyrrolidin-3-yl ester, bearing longer aliphatic chains (C12) (Cicchi et al., 2007). To develop such a model for the formation of the gel it was necessary to obtain information about the more stable conformation of the carbamate units responsable for the self assembling process that give origin to an organogel. Information derived from X-Ray crystallography had already been used to propose suitable models for gel formation (viz., Schoonbeek et al., 2000). In the presents case, while C12 did not afford suitable crystals, compound (I) crystallized from diisopropyl ether. The structure showed that the crystal is formed by long columns in which the two carbamates units of each molecule participate in the formation of two antiparallel strong H-bonded chains (Table 2). The long all-trans aliphatic chains contributes to the packing of the crystal by Van der Walls interactions. Dimensions are available in the archived CIF.

For related literature, see: Cicchi et al. (2007); Schoonbeek et al. (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing view of (I) showing the connectivity of molecules via N—H···O links (dashed lines). Only nitrogen and oxygen atoms involved in intermolecular hydrogen bonding have been labelled. [Symmetry codes as in Table 2].
(3S,4S)-1-Benzyl-4-(N-octylcarbamoyloxy)pyrrolidin-3-yl N-octylcarbamate top
Crystal data top
C29H49N3O4F(000) = 552
Mr = 503.71Dx = 1.145 Mg m3
Monoclinic, P21Melting point: 94 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54184 Å
a = 5.039 (1) ÅCell parameters from 10467 reflections
b = 15.825 (1) Åθ = 3.7–74.2°
c = 18.330 (1) ŵ = 0.60 mm1
β = 90.884 (1)°T = 150 K
V = 1461.5 (3) Å3Prismatic, colourless
Z = 20.32 × 0.22 × 0.18 mm
Data collection top
Oxford Diffraction XCALIBUR PX Ultra CCD
diffractometer
5438 independent reflections
Radiation source: Enhance (Cu) X-ray Source4359 reflections with I > 2σ(I)
Oxford Diffraction Enhance ULTRA assembly monochromatorRint = 0.053
Detector resolution: 8.1241 pixels mm-1θmax = 74.2°, θmin = 3.7°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1919
Tmin = 0.851, Tmax = 0.898l = 2222
23018 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5438 reflectionsΔρmax = 0.30 e Å3
327 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (16)
Crystal data top
C29H49N3O4V = 1461.5 (3) Å3
Mr = 503.71Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.039 (1) ŵ = 0.60 mm1
b = 15.825 (1) ÅT = 150 K
c = 18.330 (1) Å0.32 × 0.22 × 0.18 mm
β = 90.884 (1)°
Data collection top
Oxford Diffraction XCALIBUR PX Ultra CCD
diffractometer
5438 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4359 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.898Rint = 0.053
23018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.30 e Å3
S = 1.08Δρmin = 0.22 e Å3
5438 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
327 parametersAbsolute structure parameter: 0.02 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4101 (3)0.30272 (10)0.04853 (9)0.0330 (3)
N20.9553 (3)0.00132 (10)0.10478 (8)0.0337 (4)
HN21.11420.02160.09600.040*
N30.4456 (3)0.20838 (11)0.21319 (7)0.0314 (3)
HN30.27700.20640.20150.038*
O10.8120 (2)0.11802 (8)0.05040 (7)0.0319 (3)
O20.5140 (2)0.02369 (9)0.09573 (8)0.0401 (3)
O30.5166 (2)0.21265 (9)0.09450 (6)0.0341 (3)
O40.8671 (2)0.22108 (10)0.17371 (7)0.0367 (3)
C10.6848 (3)0.22989 (12)0.03276 (9)0.0291 (4)
H10.87680.22210.04400.035*
C20.5931 (3)0.17090 (12)0.02901 (9)0.0296 (4)
H20.44160.13520.01130.035*
C30.4998 (4)0.22994 (13)0.08996 (10)0.0362 (4)
H3A0.35330.20440.11780.043*
H3B0.64720.24480.12390.043*
C40.6266 (3)0.31805 (12)0.00332 (9)0.0320 (4)
H4B0.78460.34230.02180.038*
H4A0.56870.35670.04300.038*
C50.3196 (4)0.37631 (14)0.09092 (11)0.0389 (4)
H5A0.18210.35710.12520.047*
H5B0.23480.41710.05690.047*
C60.5319 (4)0.42160 (13)0.13372 (11)0.0374 (4)
C70.6694 (4)0.48838 (14)0.10240 (12)0.0436 (5)
H70.62380.50580.05420.052*
C80.8694 (5)0.52962 (15)0.13954 (14)0.0521 (6)
H80.96040.57540.11760.063*
C90.9355 (4)0.50376 (17)0.20860 (14)0.0537 (6)
H91.07510.53140.23460.064*
C100.8012 (4)0.43777 (18)0.24092 (13)0.0544 (6)
H100.84950.42030.28890.065*
C110.5966 (4)0.39690 (15)0.20387 (11)0.0464 (5)
H110.50210.35240.22660.056*
C120.7430 (3)0.04508 (12)0.08529 (9)0.0290 (4)
C130.9289 (4)0.08052 (13)0.14085 (10)0.0349 (4)
H13A1.08390.11590.12850.042*
H13B0.76830.10910.12120.042*
C140.9094 (4)0.07582 (13)0.22323 (11)0.0362 (4)
H14A0.77870.03180.23600.043*
H14B0.84280.13050.24170.043*
C151.1704 (4)0.05602 (14)0.26068 (10)0.0371 (4)
H15A1.23280.00020.24460.045*
H15B1.30430.09840.24620.045*
C161.1456 (4)0.05638 (15)0.34315 (11)0.0406 (5)
H16A1.02200.01090.35740.049*
H16B1.06720.11090.35830.049*
C171.4051 (4)0.04410 (16)0.38341 (11)0.0424 (5)
H17A1.48070.01130.36970.051*
H17B1.53110.08850.36810.051*
C181.3776 (4)0.04762 (15)0.46605 (11)0.0434 (5)
H18A1.25420.00260.48150.052*
H18B1.29910.10260.47970.052*
C191.6352 (4)0.03697 (18)0.50561 (11)0.0516 (6)
H19A1.71210.01840.49250.062*
H19B1.75930.08140.48940.062*
C201.6105 (6)0.0417 (2)0.58814 (12)0.0639 (7)
H20A1.53900.09700.60170.077*
H20B1.49090.00290.60480.077*
H20C1.78590.03410.61110.077*
C210.6301 (3)0.21444 (12)0.16218 (9)0.0273 (4)
C220.5237 (3)0.20502 (15)0.28971 (9)0.0374 (4)
H22B0.63650.15470.29760.045*
H22A0.62920.25590.30150.045*
C230.2871 (3)0.20081 (14)0.33888 (9)0.0344 (4)
H23A0.10930.19620.32290.041*
H23B0.18780.14860.32870.041*
C240.3689 (4)0.20496 (14)0.41899 (9)0.0373 (4)
H24A0.46490.25860.42720.045*
H24B0.49330.15800.42880.045*
C250.1414 (4)0.19961 (14)0.47192 (9)0.0385 (5)
H25A0.01820.24720.46320.046*
H25B0.04340.14630.46370.046*
C260.2326 (4)0.20255 (15)0.55127 (10)0.0404 (5)
H26B0.32580.25670.55950.049*
H26A0.36150.15630.55910.049*
C270.0124 (4)0.19438 (15)0.60607 (10)0.0424 (5)
H27A0.11130.24240.60030.051*
H27B0.08720.14180.59630.051*
C280.1096 (4)0.19258 (17)0.68477 (11)0.0487 (6)
H28A0.19480.24730.69600.058*
H28B0.24570.14790.68930.058*
C290.1075 (5)0.17669 (19)0.73927 (12)0.0578 (6)
H29C0.24190.22120.73560.069*
H29B0.18900.12170.72960.069*
H29A0.03420.17680.78850.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0300 (8)0.0340 (9)0.0349 (8)0.0031 (6)0.0037 (6)0.0025 (7)
N20.0230 (7)0.0401 (9)0.0379 (8)0.0018 (6)0.0030 (6)0.0054 (7)
N30.0233 (7)0.0444 (9)0.0263 (7)0.0013 (7)0.0036 (5)0.0014 (7)
O10.0224 (5)0.0334 (7)0.0397 (7)0.0003 (5)0.0040 (5)0.0058 (6)
O20.0221 (6)0.0453 (8)0.0528 (8)0.0030 (5)0.0049 (6)0.0140 (7)
O30.0249 (6)0.0529 (8)0.0242 (6)0.0067 (6)0.0049 (5)0.0028 (6)
O40.0250 (6)0.0522 (8)0.0329 (6)0.0017 (6)0.0039 (5)0.0010 (6)
C10.0228 (8)0.0371 (10)0.0271 (8)0.0016 (7)0.0091 (7)0.0000 (7)
C20.0224 (8)0.0348 (10)0.0314 (9)0.0015 (7)0.0049 (7)0.0015 (8)
C30.0375 (9)0.0385 (11)0.0327 (10)0.0018 (8)0.0034 (8)0.0024 (8)
C40.0305 (9)0.0338 (10)0.0315 (9)0.0003 (8)0.0060 (7)0.0017 (8)
C50.0296 (9)0.0422 (12)0.0448 (11)0.0062 (8)0.0025 (8)0.0038 (9)
C60.0345 (9)0.0366 (11)0.0409 (10)0.0077 (8)0.0015 (8)0.0086 (9)
C70.0474 (11)0.0338 (11)0.0495 (12)0.0070 (9)0.0061 (9)0.0049 (9)
C80.0486 (12)0.0356 (12)0.0721 (16)0.0019 (9)0.0035 (11)0.0132 (11)
C90.0410 (11)0.0564 (15)0.0635 (15)0.0015 (11)0.0079 (11)0.0294 (12)
C100.0497 (13)0.0732 (18)0.0401 (11)0.0109 (12)0.0083 (10)0.0189 (11)
C110.0457 (12)0.0535 (14)0.0399 (11)0.0030 (10)0.0022 (9)0.0080 (10)
C120.0237 (8)0.0333 (10)0.0299 (9)0.0004 (7)0.0056 (7)0.0018 (7)
C130.0299 (9)0.0346 (10)0.0400 (10)0.0011 (8)0.0060 (8)0.0054 (8)
C140.0286 (8)0.0389 (11)0.0411 (10)0.0012 (8)0.0028 (8)0.0036 (9)
C150.0306 (9)0.0458 (12)0.0348 (10)0.0003 (8)0.0034 (7)0.0006 (9)
C160.0385 (10)0.0458 (12)0.0374 (10)0.0000 (9)0.0021 (8)0.0009 (9)
C170.0372 (10)0.0530 (13)0.0369 (11)0.0007 (9)0.0035 (8)0.0009 (9)
C180.0455 (11)0.0514 (13)0.0334 (10)0.0029 (9)0.0008 (9)0.0004 (9)
C190.0458 (12)0.0713 (17)0.0375 (12)0.0054 (11)0.0052 (9)0.0016 (11)
C200.0699 (16)0.083 (2)0.0387 (13)0.0004 (14)0.0107 (11)0.0018 (12)
C210.0247 (8)0.0272 (9)0.0300 (8)0.0003 (7)0.0039 (6)0.0002 (8)
C220.0298 (8)0.0549 (13)0.0275 (8)0.0007 (9)0.0021 (7)0.0023 (9)
C230.0286 (8)0.0460 (12)0.0286 (8)0.0033 (8)0.0036 (7)0.0016 (8)
C240.0317 (9)0.0488 (13)0.0314 (9)0.0035 (9)0.0043 (7)0.0000 (9)
C250.0348 (9)0.0504 (13)0.0301 (9)0.0016 (9)0.0061 (7)0.0036 (9)
C260.0381 (9)0.0513 (13)0.0318 (9)0.0038 (9)0.0049 (7)0.0006 (9)
C270.0399 (10)0.0546 (14)0.0326 (9)0.0008 (9)0.0065 (8)0.0007 (9)
C280.0488 (12)0.0638 (16)0.0334 (10)0.0009 (10)0.0079 (9)0.0017 (10)
C290.0607 (14)0.0780 (17)0.0344 (11)0.0084 (13)0.0121 (10)0.0003 (11)
Geometric parameters (Å, º) top
N1—C31.448 (3)C14—H14B0.9900
N1—C51.476 (3)C15—C161.519 (3)
N1—C41.478 (2)C15—H15A0.9900
N2—C121.319 (2)C15—H15B0.9900
N2—C131.461 (2)C16—C171.504 (3)
N2—HN20.8800C16—H16A0.9900
N3—C211.312 (2)C16—H16B0.9900
N3—C221.463 (2)C17—C181.524 (3)
N3—HN30.8800C17—H17A0.9900
O1—C121.367 (2)C17—H17B0.9900
O1—C21.434 (2)C18—C191.486 (3)
O2—C121.220 (2)C18—H18A0.9900
O3—C211.374 (2)C18—H18B0.9900
O3—C11.4295 (19)C19—C201.522 (3)
O4—C211.2206 (19)C19—H19A0.9900
C1—C41.526 (3)C19—H19B0.9900
C1—C21.544 (3)C20—H20A0.9800
C1—H11.0000C20—H20B0.9800
C2—C31.536 (3)C20—H20C0.9800
C2—H21.0000C22—C231.485 (2)
C3—H3A0.9900C22—H22B0.9900
C3—H3B0.9900C22—H22A0.9900
C4—H4B0.9900C23—C241.533 (2)
C4—H4A0.9900C23—H23A0.9500
C5—C61.499 (3)C23—H23B0.9858
C5—H5A0.9900C24—C251.493 (2)
C5—H5B0.9900C24—H24A0.9900
C6—C111.378 (3)C24—H24B0.9900
C6—C71.392 (3)C25—C261.533 (3)
C7—C81.372 (3)C25—H25A0.9900
C7—H70.9500C25—H25B0.9900
C8—C91.367 (4)C26—C271.491 (3)
C8—H80.9500C26—H26B0.9900
C9—C101.383 (4)C26—H26A0.9900
C9—H90.9500C27—C281.531 (3)
C10—C111.386 (3)C27—H27A0.9900
C10—H100.9500C27—H27B0.9900
C11—H110.9500C28—C291.491 (3)
C13—C141.517 (3)C28—H28A0.9900
C13—H13A0.9900C28—H28B0.9900
C13—H13B0.9900C29—H29C0.9800
C14—C151.507 (3)C29—H29B0.9800
C14—H14A0.9900C29—H29A0.9800
C3—N1—C5116.61 (15)C17—C16—H16A108.8
C3—N1—C4103.91 (14)C15—C16—H16A108.8
C5—N1—C4116.49 (15)C17—C16—H16B108.8
C12—N2—C13120.59 (14)C15—C16—H16B108.8
C12—N2—HN2119.7H16A—C16—H16B107.7
C13—N2—HN2119.7C16—C17—C18113.03 (17)
C21—N3—C22119.20 (14)C16—C17—H17A109.0
C21—N3—HN3120.4C18—C17—H17A109.0
C22—N3—HN3120.4C16—C17—H17B109.0
C12—O1—C2114.85 (13)C18—C17—H17B109.0
C21—O3—C1117.45 (12)H17A—C17—H17B107.8
O3—C1—C4109.87 (14)C19—C18—C17112.86 (18)
O3—C1—C2106.55 (14)C19—C18—H18A109.0
C4—C1—C2103.44 (15)C17—C18—H18A109.0
O3—C1—H1112.2C19—C18—H18B109.0
C4—C1—H1112.2C17—C18—H18B109.0
C2—C1—H1112.2H18A—C18—H18B107.8
O1—C2—C3113.52 (14)C18—C19—C20113.3 (2)
O1—C2—C1108.41 (14)C18—C19—H19A108.9
C3—C2—C1105.31 (15)C20—C19—H19A108.9
O1—C2—H2109.8C18—C19—H19B108.9
C3—C2—H2109.8C20—C19—H19B108.9
C1—C2—H2109.8H19A—C19—H19B107.7
N1—C3—C2101.48 (14)C19—C20—H20A109.5
N1—C3—H3A111.5C19—C20—H20B109.5
C2—C3—H3A111.5H20A—C20—H20B109.5
N1—C3—H3B111.5C19—C20—H20C109.5
C2—C3—H3B111.5H20A—C20—H20C109.5
H3A—C3—H3B109.3H20B—C20—H20C109.5
N1—C4—C1103.00 (14)O4—C21—N3124.57 (16)
N1—C4—H4B111.2O4—C21—O3125.44 (14)
C1—C4—H4B111.2N3—C21—O3109.99 (14)
N1—C4—H4A111.2N3—C22—C23111.00 (14)
C1—C4—H4A111.2N3—C22—H22B109.4
H4B—C4—H4A109.1C23—C22—H22B109.4
N1—C5—C6115.41 (15)N3—C22—H22A109.4
N1—C5—H5A108.4C23—C22—H22A109.4
C6—C5—H5A108.4H22B—C22—H22A108.0
N1—C5—H5B108.4C22—C23—C24110.76 (15)
C6—C5—H5B108.4C22—C23—H23A124.6
H5A—C5—H5B107.5C24—C23—H23A124.6
C11—C6—C7119.19 (19)C22—C23—H23B109.2
C11—C6—C5120.62 (19)C24—C23—H23B111.2
C7—C6—C5120.18 (18)H23A—C23—H23B52.6
C8—C7—C6121.5 (2)C25—C24—C23113.90 (15)
C8—C7—H7119.2C25—C24—H24A108.8
C6—C7—H7119.2C23—C24—H24A108.8
C7—C8—C9118.9 (2)C25—C24—H24B108.8
C7—C8—H8120.5C23—C24—H24B108.8
C9—C8—H8120.5H24A—C24—H24B107.7
C8—C9—C10120.6 (2)C24—C25—C26112.11 (15)
C8—C9—H9119.7C24—C25—H25A109.2
C10—C9—H9119.7C26—C25—H25A109.2
C11—C10—C9120.5 (2)C24—C25—H25B109.2
C11—C10—H10119.7C26—C25—H25B109.2
C9—C10—H10119.7H25A—C25—H25B107.9
C6—C11—C10119.2 (2)C27—C26—C25113.93 (16)
C6—C11—H11120.4C27—C26—H26B108.8
C10—C11—H11120.4C25—C26—H26B108.8
O2—C12—N2125.23 (17)C27—C26—H26A108.8
O2—C12—O1123.74 (15)C25—C26—H26A108.8
N2—C12—O1111.02 (14)H26B—C26—H26A107.7
N2—C13—C14114.50 (16)C26—C27—C28113.02 (17)
N2—C13—H13A108.6C26—C27—H27A109.0
C14—C13—H13A108.6C28—C27—H27A109.0
N2—C13—H13B108.6C26—C27—H27B109.0
C14—C13—H13B108.6C28—C27—H27B109.0
H13A—C13—H13B107.6H27A—C27—H27B107.8
C15—C14—C13113.22 (15)C29—C28—C27113.10 (19)
C15—C14—H14A108.9C29—C28—H28A109.0
C13—C14—H14A108.9C27—C28—H28A109.0
C15—C14—H14B108.9C29—C28—H28B109.0
C13—C14—H14B108.9C27—C28—H28B109.0
H14A—C14—H14B107.7H28A—C28—H28B107.8
C14—C15—C16111.59 (16)C28—C29—H29C109.5
C14—C15—H15A109.3C28—C29—H29B109.5
C16—C15—H15A109.3H29C—C29—H29B109.5
C14—C15—H15B109.3C28—C29—H29A109.5
C16—C15—H15B109.3H29C—C29—H29A109.5
H15A—C15—H15B108.0H29B—C29—H29A109.5
C17—C16—C15113.81 (16)
C21—O3—C1—C4105.90 (18)C7—C6—C11—C101.5 (3)
C21—O3—C1—C2142.69 (16)C5—C6—C11—C10177.36 (19)
C12—O1—C2—C384.66 (19)C9—C10—C11—C61.3 (3)
C12—O1—C2—C1158.70 (14)C13—N2—C12—O21.1 (3)
O3—C1—C2—O1120.31 (15)C13—N2—C12—O1177.95 (15)
C4—C1—C2—O1123.87 (14)C2—O1—C12—O22.6 (2)
O3—C1—C2—C3117.88 (15)C2—O1—C12—N2178.32 (15)
C4—C1—C2—C32.06 (17)C12—N2—C13—C1487.7 (2)
C5—N1—C3—C2176.27 (15)N2—C13—C14—C1574.3 (2)
C4—N1—C3—C246.63 (17)C13—C14—C15—C16177.03 (17)
O1—C2—C3—N1147.80 (14)C14—C15—C16—C17175.20 (18)
C1—C2—C3—N129.35 (17)C15—C16—C17—C18178.06 (19)
C3—N1—C4—C146.10 (16)C16—C17—C18—C19179.0 (2)
C5—N1—C4—C1175.81 (14)C17—C18—C19—C20179.1 (2)
O3—C1—C4—N187.93 (16)C22—N3—C21—O43.2 (3)
C2—C1—C4—N125.51 (15)C22—N3—C21—O3177.17 (16)
C3—N1—C5—C668.1 (2)C1—O3—C21—O47.8 (3)
C4—N1—C5—C655.2 (2)C1—O3—C21—N3171.84 (16)
N1—C5—C6—C1188.4 (2)C21—N3—C22—C23178.32 (17)
N1—C5—C6—C790.5 (2)N3—C22—C23—C24175.15 (16)
C11—C6—C7—C80.6 (3)C22—C23—C24—C25179.04 (18)
C5—C6—C7—C8178.28 (19)C23—C24—C25—C26179.07 (17)
C6—C7—C8—C90.5 (3)C24—C25—C26—C27177.99 (19)
C7—C8—C9—C100.7 (3)C25—C26—C27—C28176.83 (19)
C8—C9—C10—C110.2 (3)C26—C27—C28—C29174.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.882.012.8449 (19)157
N3—HN3···O4ii0.882.153.0211 (19)172
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC29H49N3O4
Mr503.71
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.039 (1), 15.825 (1), 18.330 (1)
β (°) 90.884 (1)
V3)1461.5 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction XCALIBUR PX Ultra CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.851, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
23018, 5438, 4359
Rint0.053
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.08
No. of reflections5438
No. of parameters327
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.02 (16)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N2—C121.319 (2)N3—C221.463 (2)
N2—C131.461 (2)N3—HN30.8800
N2—HN20.8800O2—C121.220 (2)
N3—C211.312 (2)O4—C211.2206 (19)
N2—C12—O1111.02 (14)O4—C21—N3124.57 (16)
C13—N2—C12—O21.1 (3)C1—O3—C21—O47.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.882.012.8449 (19)156.8
N3—HN3···O4ii0.882.153.0211 (19)171.7
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds