Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title three-dimensional coordination polymer, [Sr(4-CPOA)(H2O)]n (where 4-CPOA2− is the 4-carboxylatophenoxy­acetate dianion, C9H6O5), each SrII atom displays a bicapped triangular prismatic configuration, defined by five carboxyl and one ether O atom from five different 4-CPOA2− ligands, as well as two water mol­ecules. The SrII atoms are covalently linked by 4-CPOA2− ligands and water mol­ecules, giving rise to a three-dimensional open framework. In previously studied polymers of this type, the 4-CPOA2− ligand shows a variety of binding modes to metal ions, from mono- to pentadentate. In the present SrII complex, a novel hexadentate bridging mode is observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105034554/bg1021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105034554/bg1021Isup2.hkl
Contains datablock I

CCDC reference: 294314

Comment top

In recent years, great interest has been focused on the design and synthesis of coordination polymers for their intriguing architectures and favorable properties (Moulton & Zaworotko, 2001). Among the self-assembly processing, the selected ligand is an important factor that greatly influences the structure of the coordination polymer and the functionality of the complex formed. 4-Carboxyphenoxyacetic acid (4-CPOAH2) is a multidentate carboxylate with both rigid and flexible parts, which can be used as a terminal or a bridging ligand with different coordination modes when coordinated to various metal ions (see scheme). Hence, 4-CPOAH2 can be considered as an excellent candidate for the construction of supramolecular architectures. In our previous work we have synthesized and reported some transition metal complexes containing the 4-CPOAH2 ligand, such as the cobalt (Gao et al., 2004a; Gao, Huo, Gu, Liu & Zhao, 2005), zinc (Gao et al., 2004b; Gao, Huo et al., 2004), cadmium (Gao, Huo, Gu & Zhao, 2005; Gao, Liu et al., 2005), copper (Gao, Huo, Liu, Gu et al., 2005), manganese (Gu, Gao, Huo et al., 2004; Gao, Huo, Liu & Zhao, 2005) and nickel complexes (Gu, Gao, Zhao et al., 2004), in which the 4-CPOA2− ligand shows a variety of binding modes from mono- to tetradentate. On the other hand, the structures of alkali earth metal complexes have been explored less than those of the extensively investigated transition metal complexes. Recently, we reported the crystal structures of [Mg(4-CPOAH)2(H2O)4] (Gao, Li et al., 2004) and [Sr2(4-CPOA)2(H2O)5] (Gao, Huo, Zhao et al., 2005), in which the 4-CPOAH2 ligand is present in mono- or pentadentate binding modes. In order to explore further the coordination behavior of alkali earth metal with the 4-CPOAH2 ligand, we present here an investigation into the hydrothermal synthesis and structural characterization of a novel three-dimensional SrII coordination polymer, [Sr(4-CPOA)(H2O)]n (I).

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one SrII ion, one 4-CPOA2− dianion and one coordinated water molecule. Each SrII atom is eight-coordinated by five carboxyl O atoms and one ether O atom from five different 4-CPOA2− ligands, as well as two bridging water molecules. The coordination environment of the SrII atom can be described as a bicapped triangular prism (Fig. 2). Table 1 presents selected coordination distances. The dihedral angle between the two basal planes (O1W/O4ii/O1iv and O1/O2i/O5iii) is 11.5 (6)° [symmetry codes: (i) −x + 3/2, y − 1/2, z; (ii) −x + 1, −y, −z + 1; (iii) x, −y + 1/2, z − 1/2; (iv) −x + 1, y − 1/2, −z + 1/2], and the vertical distances between the two capping atoms, O1Wiv and O3, and their side planes O1iv/O2i/O4ii/O5iii and O1W/O1/O2i/O4ii are 2.1745 (3) and 2.1910 (3) Å, respectively. The Sr—Ocarboxyl bond distances fall in the range 2.4824 (19)–2.9325 (18) Å, the longest of which (Sr1—O3) is essentially the same as the corresponding distance [2.932 (2) Å] in [Sr2(4-CPOA)2(H2O)5] (Gao, Huo, Zhao et al., 2005). The mean Sr—O1W distance [2.883 (3) Å] is somewhat longer than that in [Sr(Hbtc)(H2O)2]·0.5H2O [mean 2.714 (9) Å; Hbtc is benzene-1,3,5-tricarboxylate; Plater et al., 1998], in which the SrII atom is nine-coordinated by two bidentate carboxylate groups, three monodentate carboxylate groups and two water molecules.

In (I), the terminal 4-CPOA2− groups adopt two diferent coordination modes, namely bridging bidentate and bridging tetradentate. In the first case, the O4/C9/O5 carboxylate group, in a bis-monodentate mode, is coordinated to atoms Sr1C and Sr1D through carboxyl atoms O5 and O4, the Sr1C···Sr1D [symmetry codes: (C) x, −y + 1/2, z + 1/2; (D) −x + 1, −y, −z + 1] separation being 4.131 (3) Å. In the second case, the phenoxyacetate group (O1/C1/O2) chelates atom Sr1 through ether atom O3 and carboxyl atom O1, bridges to a neighboring atom Sr1A through carboxyl atom O1, and links to atom Sr1B through carboxyl atom O2, the Sr1···Sr1A and Sr1A···Sr1B separations [symmetry codes: (A) −x + 1, y + 1/2, −z + 1/2; (B) −x + 3/2, y + 1/2, z] being 4.131 (3) and 6.200 (3) Å, respectively. Thus, the 4-CPOA2− ligand provides a total of six binding sites to link five SrII atoms, giving rise to a five-membered chelate ring, O1/C1/C2/O3/Sr1, while the ligand has a pentadentate coordination mode in [Sr2(4-CPOA)2(H2O)5] (Gao, Huo, Zhao et al., 2005). The dihedral angles between the two carboxyl groups and the aromatic ring are 9.8 (6) (O1/C1/O2) and 14.6 (6)° (O4/C9/O5), respectively. The torsion angle of the oxyacetate group (C3—O3—C2—C1) is −168.8 (2)°, showing that the 4-CPOA2− ligand is almost [essentially?] planar.

The carboxyl atom O1iv and water molecule O1Wiv link adjacent SrII atoms to afford one Sr2O2 four-membered ring and two Sr2O3C six-membered rings [Sr···Sr = 4.131 (3) Å], and are further linked by a pair of 4-CPOA2− ligands to produce a centrosymmetric macrocyclic structure, with an Sr1···Sr1D distance of 10.049 (3) Å and a shortest centroid–centroid separation between two inversion-related benzene rings of 4.949 (3) Å. As a consequence of the 4-CPOA2− bridges, polymer (I) has an extended three-dimensional open framework, with alternating `organic' and `inorganic' sheets (Fig. 3).

Besides the rigid bonding network defining the three-dimensional structure, there are a number of softer non-bonding interactions present. Both H atoms of the coordinated water molecule are involved in hydrogen bonding (H1W2 in a bifurcated mode), interacting with both sides of the 4-CPOA2− ligand through carboxylate atoms O2 and O5 (Table 2). Moreover, there also exist ππ stacking interactions between the adjacent aromatic rings along the b axis, with a shortest centroid–centroid separation of 3.800 (3) Å.

Experimental top

An aqueous solution (30 ml) of SrCO3 (2.95 g, 20 mmol) and 4-CPOAH2 (3.92 g, 20 mmol) was prepared, stirred for 1 h, sealed in a 50 ml Teflon-lined stainless steel bomb and finally held at 423 K for 3 d. The bomb was cooled naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for C9H8O6Sr: C 36.06, H 2.69%; found: C 36.10, H 2.72%.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C), and were refined in the riding-model approximation. Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) plot of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) −x + 3/2, y − 1/2, z; (ii) −x + 1, −y, −z + 1; (iii) x, −y + 1/2, z − 1/2; (iv) −x + 1, y − 1/2, −z + 1/2; (A) −x + 1, y + 1/2, −z + 1/2; (B) −x + 3/2, y + 1/2, z; (C) x, −y + 1/2, z + 1/2; (D) −x + 1, −y, − z + 1.]
[Figure 2] Fig. 2. The coordination polyhedron of the Sr atom in the title complex. [Symmetry codes: (i) −x + 3/2, y − 1/2, z; (ii) −x + 1, −y,- z + 1; (iii) x, −y + 1/2, z − 1/2; (iv) −x + 1, y − 1/2, −z + 1/2].
[Figure 3] Fig. 3. The packing of the title complex, viewed along the b axis. (H atoms have been omitted.)
Poly[strontium(II)-µ2-aqua-µ5-4-carboxylatophenoxyacetato] top
Crystal data top
[Sr(C9H6O5)(H2O)F(000) = 1184
Mr = 299.77Dx = 2.020 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16445 reflections
a = 12.028 (2) Åθ = 3.4–27.5°
b = 7.4280 (15) ŵ = 5.48 mm1
c = 22.062 (4) ÅT = 295 K
V = 1971.1 (6) Å3Prism, colorless
Z = 80.35 × 0.26 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2263 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scanh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.201, Tmax = 0.363l = 2828
17416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.3751P]
where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.49 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Sr(C9H6O5)(H2O)V = 1971.1 (6) Å3
Mr = 299.77Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.028 (2) ŵ = 5.48 mm1
b = 7.4280 (15) ÅT = 295 K
c = 22.062 (4) Å0.35 × 0.26 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2263 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1874 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.363Rint = 0.059
17416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
2263 reflectionsΔρmin = 0.34 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.541419 (18)0.20534 (3)0.284183 (10)0.01783 (8)
O1W0.36514 (17)0.3812 (3)0.30061 (15)0.0637 (8)
O10.59451 (13)0.5385 (2)0.28489 (8)0.0214 (4)
O20.75329 (15)0.6899 (2)0.29449 (8)0.0249 (4)
O30.61093 (15)0.3958 (2)0.39427 (8)0.0256 (4)
O40.48961 (16)0.0644 (3)0.65079 (9)0.0333 (5)
O50.62266 (17)0.2552 (3)0.67869 (8)0.0291 (4)
C10.67912 (19)0.5872 (3)0.31342 (11)0.0169 (5)
C20.6956 (2)0.5210 (3)0.37786 (11)0.0211 (5)
C30.6044 (2)0.3498 (3)0.45463 (11)0.0204 (5)
C40.5105 (2)0.2533 (4)0.47143 (12)0.0259 (6)
C50.4987 (2)0.1984 (3)0.53105 (12)0.0251 (5)
C60.5782 (2)0.2395 (3)0.57445 (11)0.0206 (5)
C70.6706 (2)0.3389 (4)0.55710 (12)0.0258 (6)
C80.6849 (2)0.3933 (4)0.49750 (12)0.0255 (5)
C90.5625 (2)0.1821 (3)0.63943 (12)0.0217 (5)
H1W10.352 (3)0.478 (4)0.3198 (19)0.066*
H1W20.306 (2)0.337 (5)0.2868 (19)0.066*
H2A0.76780.46380.38140.025*
H2B0.69390.62260.40550.025*
H40.45610.22590.44290.031*
H50.43620.13260.54220.030*
H70.72370.36940.58590.031*
H80.74760.45840.48630.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01937 (12)0.01758 (12)0.01655 (12)0.00218 (8)0.00142 (9)0.00161 (10)
O1W0.0236 (11)0.0485 (14)0.119 (3)0.0026 (10)0.0094 (13)0.0453 (16)
O10.0212 (8)0.0206 (8)0.0225 (9)0.0021 (7)0.0054 (8)0.0026 (8)
O20.0212 (8)0.0303 (9)0.0232 (9)0.0070 (7)0.0010 (7)0.0069 (8)
O30.0306 (9)0.0315 (10)0.0147 (9)0.0118 (8)0.0015 (7)0.0029 (8)
O40.0410 (11)0.0334 (10)0.0253 (11)0.0082 (9)0.0035 (9)0.0101 (9)
O50.0395 (11)0.0324 (10)0.0153 (9)0.0025 (9)0.0005 (8)0.0004 (8)
C10.0177 (11)0.0176 (10)0.0155 (11)0.0028 (9)0.0024 (9)0.0019 (10)
C20.0222 (12)0.0246 (12)0.0165 (12)0.0065 (10)0.0008 (10)0.0020 (11)
C30.0248 (13)0.0224 (11)0.0141 (11)0.0002 (10)0.0047 (10)0.0001 (10)
C40.0287 (13)0.0303 (13)0.0186 (13)0.0082 (11)0.0008 (11)0.0002 (11)
C50.0298 (13)0.0257 (12)0.0199 (13)0.0068 (11)0.0062 (11)0.0017 (12)
C60.0279 (12)0.0187 (11)0.0152 (11)0.0024 (10)0.0040 (10)0.0009 (10)
C70.0259 (13)0.0337 (14)0.0178 (12)0.0028 (11)0.0024 (10)0.0008 (11)
C80.0251 (12)0.0322 (13)0.0193 (13)0.0070 (11)0.0032 (10)0.0024 (12)
C90.0263 (13)0.0212 (12)0.0175 (12)0.0040 (10)0.0041 (10)0.0013 (10)
Geometric parameters (Å, º) top
Sr1—O1i2.5555 (17)O2—Sr1vi2.4824 (19)
Sr1—O12.5561 (17)O3—C31.377 (3)
Sr1—O2ii2.4824 (19)O3—C21.426 (3)
Sr1—O32.9325 (18)O4—Sr1iii2.4926 (19)
Sr1—O4iii2.4926 (19)O5—Sr1vii2.5411 (19)
Sr1—O5iv2.5411 (19)C1—C21.517 (3)
Sr1—O1W2.517 (2)C2—H2A0.9700
Sr1—O1Wi3.249 (3)C2—H2B0.9700
O1—C11.250 (3)C3—C41.388 (4)
O2—C11.246 (3)C3—C81.391 (4)
O4—C91.263 (3)C4—C51.384 (3)
O5—C91.253 (3)C4—H40.9300
Sr1—C9iv3.311 (3)C5—C61.388 (4)
Sr1—C13.347 (2)C5—H50.9300
Sr1—Sr1i4.1306 (7)C6—C71.388 (4)
Sr1—Sr1v4.1306 (7)C6—C91.507 (3)
O1W—Sr1v3.249 (3)C7—C81.386 (4)
O1W—H1W10.85 (3)C7—H70.9300
O1W—H1W20.84 (3)C8—H80.9300
O1—Sr1v2.5555 (17)C9—Sr1vii3.311 (3)
O1i—Sr1—O1129.27 (4)O2ii—Sr1—Sr1v108.35 (4)
O1—Sr1—O1Wi129.38 (6)O3—C2—C1110.85 (19)
O1i—Sr1—O1Wi61.23 (6)O3—C2—H2A109.5
O1i—Sr1—O3155.54 (5)O3—C2—H2B109.5
O1—Sr1—O357.08 (5)O3—C3—C4115.6 (2)
O1W—Sr1—O172.96 (7)O3—C3—C8124.1 (2)
O1W—Sr1—O1i78.38 (7)O3—Sr1—C144.81 (5)
O1W—Sr1—O1Wi139.37 (4)O3—Sr1—C9iv130.94 (5)
O1W—Sr1—O382.56 (7)O3—Sr1—Sr1i143.61 (4)
O1W—Sr1—O5iv113.32 (9)O3—Sr1—Sr1v86.41 (4)
O2ii—Sr1—O1i131.96 (6)O4—C9—C6118.1 (2)
O2ii—Sr1—O178.21 (5)O4—C9—Sr1vii86.00 (15)
O2ii—Sr1—O1W148.08 (7)O4iii—Sr1—C1130.12 (6)
O2ii—Sr1—O1Wi71.00 (6)O4iii—Sr1—C9iv140.32 (6)
O2ii—Sr1—O370.29 (5)O4iii—Sr1—Sr1v153.75 (5)
O2ii—Sr1—O4iii93.39 (6)O4iii—Sr1—Sr1i56.71 (5)
O2ii—Sr1—O5iv72.94 (6)O5—C9—C6117.6 (2)
O3—Sr1—O1Wi137.36 (6)O5—C9—O4124.3 (2)
O4iii—Sr1—O1144.32 (6)O5iv—Sr1—C183.59 (6)
O4iii—Sr1—O1i81.82 (6)O5iv—Sr1—C9iv19.61 (6)
O4iii—Sr1—O1W102.03 (9)O5iv—Sr1—Sr1v69.79 (4)
O4iii—Sr1—O1Wi77.73 (7)O5iv—Sr1—Sr1i82.08 (4)
O4iii—Sr1—O387.36 (6)C1—C2—H2A109.5
O4iii—Sr1—O5iv132.65 (6)C1—C2—H2B109.5
O5iv—Sr1—O1i75.87 (6)C1—O1—Sr1119.10 (14)
O5iv—Sr1—O178.33 (6)C1—O1—Sr1v132.93 (15)
O5iv—Sr1—O1Wi54.92 (6)C1—O2—Sr1vi140.45 (16)
O5iv—Sr1—O3126.38 (6)C1—Sr1—Sr1i162.11 (4)
Sr1v—O1—Sr1107.82 (6)C1—Sr1—Sr1v55.10 (4)
Sr1—O1W—Sr1v90.59 (8)C2—C1—Sr188.32 (13)
Sr1—O1W—H1W1132 (3)C2—O3—Sr1107.94 (13)
Sr1v—O1W—H1W174 (3)C3—C4—H4120.4
Sr1v—O1W—H1W2112 (3)C3—C8—H8120.3
Sr1—O1W—H1W2117 (3)C3—O3—C2116.61 (19)
Sr1i—Sr1—Sr1v128.093 (16)C3—O3—Sr1131.68 (14)
O1—C1—C2119.0 (2)C4—C3—C8120.3 (2)
O1i—Sr1—C1147.39 (6)C4—C5—C6121.3 (2)
O1—Sr1—C119.05 (5)C4—C5—H5119.3
O1i—Sr1—C9iv66.18 (6)C5—C4—C3119.3 (2)
O1—Sr1—C9iv75.06 (6)C5—C4—H4120.4
O1—Sr1—Sr1i158.93 (4)C5—C6—C9120.5 (2)
O1—Sr1—Sr1v36.09 (4)C6—C5—H5119.3
O1i—Sr1—Sr1i36.10 (4)C6—C7—H7119.5
O1i—Sr1—Sr1v93.66 (4)C6—C9—Sr1vii148.80 (16)
O1Wi—Sr1—C1124.58 (6)C7—C6—C5118.6 (2)
O1W—Sr1—C187.09 (7)C7—C6—C9120.9 (2)
O1Wi—Sr1—C9iv66.75 (6)C7—C8—C3119.4 (2)
O1W—Sr1—C9iv94.14 (9)C7—C8—H8120.3
O1W—Sr1—Sr1i108.43 (5)C8—C7—C6121.1 (2)
O1Wi—Sr1—Sr1v122.64 (5)C8—C7—H7119.5
O1Wi—Sr1—Sr1i37.54 (4)C9—O4—Sr1iii140.76 (18)
O1W—Sr1—Sr1v51.87 (7)C9—O5—Sr1vii117.47 (16)
O2—C1—C2114.8 (2)C9iv—Sr1—C186.22 (6)
O2—C1—O1126.2 (2)C9iv—Sr1—Sr1v55.89 (4)
O2—C1—Sr1143.97 (16)C9iv—Sr1—Sr1i83.87 (4)
O2ii—Sr1—C161.91 (6)H1W1—O1W—H1W2110.6 (17)
O2ii—Sr1—C9iv91.37 (6)H2A—C2—H2B108.1
O2ii—Sr1—Sr1i103.41 (4)
O2ii—Sr1—O1W—Sr1v59.80 (18)O1W—Sr1—C1—O2129.6 (3)
O4iii—Sr1—O1W—Sr1v176.95 (6)O5iv—Sr1—C1—O215.7 (3)
O5iv—Sr1—O1W—Sr1v35.25 (8)O1i—Sr1—C1—O266.6 (3)
O1i—Sr1—O1W—Sr1v104.14 (7)O1—Sr1—C1—O288.4 (3)
O1—Sr1—O1W—Sr1v33.50 (5)O3—Sr1—C1—O2148.0 (3)
O3—Sr1—O1W—Sr1v91.28 (6)O1Wi—Sr1—C1—O223.0 (3)
O1Wi—Sr1—O1W—Sr1v97.95 (11)C9iv—Sr1—C1—O235.2 (3)
C9iv—Sr1—O1W—Sr1v39.50 (6)Sr1i—Sr1—C1—O221.2 (4)
C1—Sr1—O1W—Sr1v46.49 (6)Sr1v—Sr1—C1—O285.5 (3)
Sr1i—Sr1—O1W—Sr1v124.41 (4)O2ii—Sr1—C1—O1146.71 (19)
O2ii—Sr1—O1—C129.65 (17)O4iii—Sr1—C1—O1144.52 (16)
O4iii—Sr1—O1—C149.6 (2)O1W—Sr1—C1—O141.22 (18)
O1W—Sr1—O1—C1136.50 (19)O5iv—Sr1—C1—O172.65 (17)
O5iv—Sr1—O1—C1104.41 (18)O1i—Sr1—C1—O121.8 (3)
O1i—Sr1—O1—C1165.02 (18)O3—Sr1—C1—O1123.59 (19)
O3—Sr1—O1—C144.38 (16)O1Wi—Sr1—C1—O1111.40 (17)
O1Wi—Sr1—O1—C182.66 (18)C9iv—Sr1—C1—O153.13 (17)
C9iv—Sr1—O1—C1124.29 (18)Sr1i—Sr1—C1—O1109.57 (18)
Sr1i—Sr1—O1—C1126.37 (16)Sr1v—Sr1—C1—O12.86 (15)
Sr1v—Sr1—O1—C1176.0 (2)O2ii—Sr1—C1—C273.91 (14)
O2ii—Sr1—O1—Sr1v146.37 (7)O4iii—Sr1—C1—C25.14 (16)
O4iii—Sr1—O1—Sr1v134.42 (9)O1W—Sr1—C1—C298.16 (15)
O1W—Sr1—O1—Sr1v47.48 (9)O5iv—Sr1—C1—C2147.97 (14)
O5iv—Sr1—O1—Sr1v71.60 (7)O1i—Sr1—C1—C2161.18 (13)
O3—Sr1—O1—Sr1v139.61 (8)O1—Sr1—C1—C2139.4 (2)
O1Wi—Sr1—O1—Sr1v93.35 (8)O3—Sr1—C1—C215.80 (12)
C9iv—Sr1—O1—Sr1v51.72 (6)O1Wi—Sr1—C1—C2109.22 (14)
C1—Sr1—O1—Sr1v176.0 (2)C9iv—Sr1—C1—C2167.49 (14)
Sr1i—Sr1—O1—Sr1v49.64 (14)Sr1i—Sr1—C1—C2111.05 (16)
O2ii—Sr1—O3—C3104.9 (2)Sr1v—Sr1—C1—C2142.24 (14)
O4iii—Sr1—O3—C310.3 (2)C3—O3—C2—C1168.8 (2)
O1W—Sr1—O3—C392.2 (2)Sr1—O3—C2—C130.4 (2)
O5iv—Sr1—O3—C3154.27 (19)O2—C1—C2—O3176.3 (2)
O1i—Sr1—O3—C353.2 (3)O1—C1—C2—O34.8 (3)
O1—Sr1—O3—C3166.7 (2)Sr1—C1—C2—O324.97 (18)
O1Wi—Sr1—O3—C379.0 (2)C2—O3—C3—C4169.2 (2)
C9iv—Sr1—O3—C3178.79 (18)Sr1—O3—C3—C435.6 (3)
C1—Sr1—O3—C3174.5 (2)C2—O3—C3—C811.1 (3)
Sr1i—Sr1—O3—C318.9 (2)Sr1—O3—C3—C8144.1 (2)
Sr1v—Sr1—O3—C3144.2 (2)O3—C3—C4—C5178.6 (2)
O2ii—Sr1—O3—C251.85 (15)C8—C3—C4—C51.1 (4)
O4iii—Sr1—O3—C2146.41 (15)C3—C4—C5—C60.7 (4)
O1W—Sr1—O3—C2111.10 (16)C4—C5—C6—C70.4 (4)
O5iv—Sr1—O3—C22.46 (17)C4—C5—C6—C9178.6 (2)
O1i—Sr1—O3—C2150.05 (15)C5—C6—C7—C81.3 (4)
O1—Sr1—O3—C236.61 (14)C9—C6—C7—C8179.4 (2)
O1Wi—Sr1—O3—C277.77 (16)C6—C7—C8—C30.9 (4)
C9iv—Sr1—O3—C222.06 (18)O3—C3—C8—C7179.4 (2)
C1—Sr1—O3—C217.72 (14)C4—C3—C8—C70.3 (4)
Sr1i—Sr1—O3—C2137.79 (13)Sr1vii—O5—C9—O430.9 (3)
Sr1v—Sr1—O3—C259.10 (14)Sr1vii—O5—C9—C6148.83 (17)
Sr1vi—O2—C1—O1128.7 (2)Sr1iii—O4—C9—O540.1 (4)
Sr1vi—O2—C1—C252.5 (3)Sr1iii—O4—C9—C6140.2 (2)
Sr1vi—O2—C1—Sr172.9 (4)Sr1iii—O4—C9—Sr1vii60.6 (2)
Sr1v—O1—C1—O241.6 (3)C7—C6—C9—O513.6 (4)
Sr1—O1—C1—O2133.2 (2)C5—C6—C9—O5164.6 (2)
Sr1v—O1—C1—C2137.12 (18)C7—C6—C9—O4166.7 (2)
Sr1—O1—C1—C248.1 (3)C5—C6—C9—O415.2 (4)
Sr1v—O1—C1—Sr1174.8 (3)C7—C6—C9—Sr1vii56.4 (4)
O2ii—Sr1—C1—O258.3 (3)C5—C6—C9—Sr1vii121.7 (3)
O4iii—Sr1—C1—O2127.1 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y1/2, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z; (vii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5viii0.85 (3)2.01 (3)2.743 (3)145 (4)
O1W—H1W2···O2i0.84 (3)2.22 (3)2.907 (3)139 (4)
O1W—H1W2···O5ix0.84 (3)2.43 (3)3.121 (3)140 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Sr(C9H6O5)(H2O)
Mr299.77
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)12.028 (2), 7.4280 (15), 22.062 (4)
V3)1971.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)5.48
Crystal size (mm)0.35 × 0.26 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.201, 0.363
No. of measured, independent and
observed [I > 2σ(I)] reflections
17416, 2263, 1874
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 1.04
No. of reflections2263
No. of parameters151
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected bond lengths (Å) top
Sr1—O1i2.5555 (17)Sr1—O1W2.517 (2)
Sr1—O12.5561 (17)Sr1—O1Wi3.249 (3)
Sr1—O2ii2.4824 (19)O1—C11.250 (3)
Sr1—O32.9325 (18)O2—C11.246 (3)
Sr1—O4iii2.4926 (19)O4—C91.263 (3)
Sr1—O5iv2.5411 (19)O5—C91.253 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y1/2, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5v0.85 (3)2.01 (3)2.743 (3)145 (4)
O1W—H1W2···O2i0.84 (3)2.22 (3)2.907 (3)139 (4)
O1W—H1W2···O5vi0.84 (3)2.43 (3)3.121 (3)140 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds