Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In sodium hexa­amminecobalt(III) tetra­kis­(4-fluoro­benzoate) monohydrate, Na[Co(NH3)6](C7H4FO2)4·H2O, determined at 180 K, [Co(NH3)6]3+ cations lie on centres of inversion and form layers in which their C4 axes lie perpendicular to the layer planes. 4-Fluoro­benzoate anions lie on twofold axes and general positions and adopt near-planar geometries. Na+ cations and water mol­ecules lie on twofold axes, forming [NaO5] square pyramids that lie between the [Co(NH3)6]3+ cations. The second-sphere inter­actions between [Co(NH3)6]3+ cations and 4-fluorobenzoate anions comprise edge-to-face and vertex-to-face arrangements. The structure is closely comparable with that of the benzoic acid salt, demonstrating that fluorination of the anion in the para position has no significant influence on the second-sphere inter­actions and minimal influence on the gross crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105018500/bg1006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105018500/bg1006Isup2.hkl
Contains datablock I

CCDC reference: 245560

Comment top

We are currently engaged in studies to explore cobalt(III) complexes as potential anion receptors and have reported previously the crystal structures of some hexaamminecobalt(III) salts with organic sulphonate (Sharma et al., 2004) and benzoate anions (Sharma et al., 2005). The cation [Co(NH3)6]3+ has also been characterized previously in several structures containing organic carboxylate anions, including [Co(NH3)6]2(Ox)3·4H2O (Ox is oxalate; Gorol et al., 2000) and [Co(NH3)6][(NpO2)2(HMal)(Mal)]·Mal (Mal is malonate; Grigor'ev et al. 2004). In continuation of our interest in this class of compounds, we describe here the crystal structure of sodium hexaamminecobalt(III) para-fluorobenzoate monohydrate, Na[Co(NH3)6](FC6H4CO2)4·H2O, (I) (Fig. 1).

In compound (I), the [Co(NH3)6]3+ cations lie on centres of inversion, with an approximately regular octahedral coordination geometry about Co1 (Table 1). There are three crystallographically distinct para-fluorobenzoate anions: one (containing atom F1) lies on a general position, and two (containing atoms F2 and F3) lie on twofold axes. The bond distances and angles in each case are unremarkable. The dihedral angles between the least-squares plane through the six C atoms of the phenyl ring and the plane of the carboxylate group are 8.6 (1), 13.4 (1) and 2.1 (1)° in the three distinct moieties, respectively. Similar near-planar geometry is observed for para-fluorobenzoate or para-fluorobenzoic acid in the relatively small number of crystal structures reported previously. Of 11 examples in the Cambridge Structural Database (November 2004 release plus 2 updates; Allen, 2002), the maximum dihedral angle is ca 18° in the CuII complex salt [Cu(NH2(CH2)2NH(CH2)2OH)2](FC6H4CO2)2 (Qu et al., 2004).

The [Co(NH3)6]3+ cations in (I) are arranged into layers parallel to the ac plane, lying at y = 1/4 and y = 3/4. The C4 axes of the cations lie approximately perpendicular to the layer planes (Fig. 2). The Na+ cations and water molecules also lie within these layers, so that the hydrophobic and charged portions of the structure are segregated. The FC6H4CO2 anions display essentially two modes of interaction with the [Co(NH3)6]3+ anions, namely edge-to-face and vertex-to-face (Fig. 3). In the first crystallographically distinct anion (containing atoms O1 and O2), the CO2 group forms an edge-to-face interaction with a neighbouring [Co(NH3)6]3+ cation [N1—H11···O1iii, N2—H21···O2iii and N3—H31···O2iii; symmetry code (iii) x, y, z − 1; Table 2]. One O atom of the same CO2 group (O1) also forms a vertex-to-face interaction with a second [Co(NH3)6]3+ cation, in which all three N···O contacts are of comparable magnitude [N1—H13···O1ii, N2—H23···O1 and N3—H32···O1ii; symmetry code (ii) 1/2 − x, 1/2 − y, 1 − z]. Atom O2 also forms two opposing corners in the basal plane of the square-pyramidal twofold symmetric coordination environment of Na1 (Table 1). In the other two crystallographically distinct FC6H4CO2 anions, the two O atoms of each CO2 group form identical interactions (related by twofold rotation axes). In the first anion, atom O3 forms a vertex-to-face interaction comprising one clear non-hydrogen-bonded N···O contact [N2···O3 3.4419 (16) Å], one intermediate N···O contact with a bent N—H···O geometry [N3···O3 3.1548 (16) Å and N3—H33···O3 122 (2)°], and one clear hydrogen bond (N1—H12···O3ii; Table 2). The same O atom also forms the remaining two corners of the basal plane around Na1. In the second anion, atom O4 forms a more symmetrical vertex-to-face interaction with [Co(NH3)6]3+, comprising two clear hydrogen bonds (N2—H22···O4 and N3—H33···O4ii; Table 2) and one longer bent N—H···O contact [N1···H12 2.9533 (15) Å and N1—H12···O4 103 (1)°].

In projection onto the plane of a single layer (Fig. 4), the [Co(NH3)6]3+ cations of (I) form an approximate primitive rectangular arrangement of dimensions ca 6.5 × 7.5 Å. The shorter side of the rectangular arrangement is formed by [Co(NH3)6]3+ cations linked via the anions containing atoms O1 and O2, and the longer sides of the rectangles are linked by anions containing atoms O3 and O4. The centres of these rectangles are occupied by Na+ ions. The axial coordination site of Na1 is occupied by a water molecule, which forms O—H···O hydrogen bonds to atom O4 (Table 2). The [NaO5] square pyramids are situated so that the axial water molecules lie on twofold axes and point into the centres of the layers. Between layers, the phenyl rings of the FC6H4CO2 anions interdigitate in an edge-to-face manner similar to that observed in p-FC6H4NH3+X (X is Br or I), for example (Klebe et al., 1983).

The structure of (I) is closely comparable with that of the benzoate salt Na[Co(NH3)6](C6H5CO2)4·H2O (Sharma et al., 2005). The layers in the ac plane are essentially identical in both cases, but the structure of (I) expands by ca 1 Å along the b direction to accommodate the fluoro-substituents. This demonstrates that fluorination of the benzoate anion in the para-position has no significant influence on its second-sphere interactions with [Co(NH3)6]3+, and minimal influence on the gross crystal structure.

Experimental top

Hexaamminecobalt(III) chloride (1 g, 0.003 mol) was dissolved in hot water (20 ml) with mechanical stirring. In a second beaker, the sodium salt of para-fluorobenzoic acid (1.825 g, 0.011 mol) was dissolved in hot water (20 ml). These solutions were mixed and allowed to cool slowly to room temperature. After 1 d, orange crystals were formed, which were filtered off and dried in air. The overall yield is quantitative (m.p. 478 K). Elemental analysis is consistent with the composition Na[Co(NH3)6](FC6H4CO2)4·H2O.

Refinement top

H atoms bound to C atoms were placed in calculated positions and allowed to ride during subsequent refinement, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms of the NH3 groups were located in difference Fourier maps and refined with isotropic displacement parameters. All nine independent N—H bond lengths were restrained to a common refined value with a standard uncertainty of 0.01 Å. The single unique H atom of the water molecule was also located in a difference Fourier map and refined isotropically without restraint.

Computing details top

Data collection: APEX2 (Bruker Nonius, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular units in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (ii) 1/2 − x, 1/2 − y, 1 − z; (iv) −x, y, 1/2 − z; (v) 1 − x, y, 3/2 − z.]
[Figure 2] Fig. 2. A projection of the unit cell of (I) along the c direction, showing layers of [Co(NH3)6]3+ cations lying parallel to the ac plane at y = 1/4 and y = 3/4. The organic anions are interdigitated between these layers. H atoms have been omitted.
[Figure 3] Fig. 3. The second-sphere coordination of the [Co(NH3)6]3+ cation in (I). The CO2 group containing atoms O1 and O2 forms an edge-to-face interaction, while the other three interactions shown are vertex-to-face. Atom Co1 lies on a centre of inversion so that a comparable arrangement is formed on the opposite side of the plane (not shown). H atoms have been omitted. [Symmetry codes: (ii) 1/2 − x, 1/2 − y, 1 − z; (iii) x, y, z − 1.]
[Figure 4] Fig. 4. A projection onto the plane of a single layer, showing the approximate rectangular arrangement of [Co(NH3)6]3+ cations, with Na+ cations between them. The [NaO5] square pyramids are viewed in projection along their axial Na1—O1W vectors, which point upwards for [NaO5] lying close to the corners of the unit cell and downwards for [NaO5] lying close to the middle of the unit cell. H atoms have been omitted.
sodium hexaamminecobalt(III) tetrakis(4-fluorobenzoate) monohydrate top
Crystal data top
Na[Co(NH3)6](C7H4FO2)4·H2OF(000) = 1568
Mr = 758.55Dx = 1.543 Mg m3
Monoclinic, C2/cMelting point: 478 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.1930 (4) ÅCell parameters from 6005 reflections
b = 33.4500 (9) Åθ = 2.3–28.0°
c = 6.5169 (2) ŵ = 0.62 mm1
β = 112.349 (1)°T = 180 K
V = 3264.77 (16) Å3Block, orange
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Bruker Nonius X8APEX-II CCD area-detector
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
thin–slice ω and ϕ scansθmax = 28.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission 0.788976
h = 2018
Tmin = 0.699, Tmax = 0.886k = 4044
11474 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2 + 1.8227P]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.58 e Å3
9 restraintsΔρmin = 0.24 e Å3
Crystal data top
Na[Co(NH3)6](C7H4FO2)4·H2OV = 3264.77 (16) Å3
Mr = 758.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.1930 (4) ŵ = 0.62 mm1
b = 33.4500 (9) ÅT = 180 K
c = 6.5169 (2) Å0.40 × 0.30 × 0.20 mm
β = 112.349 (1)°
Data collection top
Bruker Nonius X8APEX-II CCD area-detector
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission 0.788976
2909 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.886Rint = 0.019
11474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0299 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.58 e Å3
3531 reflectionsΔρmin = 0.24 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

ANION 1 =======

3.4563(0.0121) x − 1.8736(0.0194) y + 5.3499(0.0029) z = 5.4140(0.0084)

* 0.0006 (0.0010) C2 * −0.0049 (0.0011) C3 * 0.0045 (0.0012) C4 * 0.0003 (0.0011) C5 * −0.0046 (0.0012) C6 * 0.0042 (0.0012) C7

Rms deviation of fitted atoms = 0.0037

1.0715(0.0118) x − 1.1486(0.0826) y + 5.8466(0.0019) z = 5.6279(0.0277)

Angle to previous plane (with approximate e.s.d.) = 8.63 (0.08)

* 0.0000 (0.0000) C1 * 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2

Rms deviation of fitted atoms = 0.0000

ANION 2 =======

−15.2312(0.0057) x − 0.0000(0.0002) y + 4.3772(0.0050) z = 1.0943(0.0012)

* 0.0000 (0.0000) C9 * 0.0056 (0.0012) C10 * −0.0055 (0.0012) C11 * 0.0000 (0.0000) C12 * −0.0056 (0.0012) C10 * 0.0055 (0.0012) C11

Rms deviation of fitted atoms = 0.0045

− 16.0890(0.0018) x + 0.0000(0.0003) y + 3.1441(0.0053) z = 0.7860(0.0013)

Angle to previous plane (with approximate e.s.d.) = 13.35 (0.06)

* 0.0000 (0.0000) C8 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) O3

Rms deviation of fitted atoms = 0.0000

ANION 3 ======= 15.6103(0.0047) x − 0.0000(0.0003) y − 3.9912(0.0056) z = 4.8118(0.0065)

* 0.0000 (0.0000) C14 * 0.0030 (0.0013) C15 * −0.0030 (0.0013) C16 * 0.0000 (0.0000) C17 * −0.0030 (0.0013) C15 * 0.0030 (0.0013) C16

Rms deviation of fitted atoms = 0.0025

15.4428(0.0048) x + 0.0000(0.0003) y − 4.1766(0.0049) z = 4.5889(0.0060)

Angle to previous plane (with approximate e.s.d.) = 2.09 (0.07)

* 0.0000 (0.0000) C13 * 0.0000 (0.0000) O4 * 0.0000 (0.0000) O4

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.00000.30706 (2)0.75000.02469 (19)
Co10.25000.25000.50000.01635 (9)
N10.32012 (8)0.24780 (3)0.3142 (2)0.0199 (2)
H120.3743 (8)0.2401 (5)0.395 (3)0.038 (5)*
H110.3206 (14)0.2701 (4)0.245 (3)0.049 (6)*
H130.2979 (11)0.2295 (4)0.211 (3)0.031 (5)*
N20.25725 (8)0.30863 (4)0.50156 (18)0.0216 (3)
H210.2136 (10)0.3202 (5)0.393 (3)0.047 (6)*
H220.3084 (9)0.3156 (5)0.495 (3)0.038 (5)*
H230.2581 (13)0.3179 (5)0.628 (2)0.041 (5)*
N30.14240 (8)0.25011 (3)0.2282 (2)0.0209 (3)
H310.1394 (12)0.2721 (4)0.152 (3)0.032 (5)*
H320.1425 (12)0.2301 (4)0.141 (3)0.030 (5)*
H330.0940 (11)0.2476 (5)0.254 (4)0.054 (7)*
O10.27698 (7)0.31719 (3)0.97414 (17)0.0297 (2)
O20.14494 (7)0.32681 (3)1.00023 (17)0.0283 (2)
O30.03594 (7)0.30544 (3)0.43393 (16)0.0251 (2)
O40.45223 (7)0.30789 (3)0.57339 (18)0.0291 (2)
F10.27048 (9)0.50546 (3)1.01595 (18)0.0560 (3)
F20.00000.49109 (4)0.25000.0540 (4)
F30.50000.49354 (4)0.75000.0590 (5)
C10.21670 (10)0.33954 (4)0.9896 (2)0.0229 (3)
C20.23177 (10)0.38393 (4)0.9968 (2)0.0234 (3)
C30.17330 (11)0.40959 (5)1.0425 (3)0.0299 (3)
H3A0.12390.39891.06880.036*
C40.18627 (12)0.45061 (5)1.0503 (3)0.0367 (4)
H4A0.14690.46811.08360.044*
C50.25735 (11)0.46525 (5)1.0087 (2)0.0369 (4)
C60.31642 (12)0.44119 (5)0.9612 (3)0.0399 (4)
H6A0.36480.45230.93210.048*
C70.30349 (11)0.40006 (5)0.9568 (3)0.0322 (3)
H7A0.34400.38280.92620.039*
C80.00000.32280 (6)0.25000.0195 (4)
C90.00000.36805 (6)0.25000.0214 (4)
C100.05339 (10)0.38922 (5)0.4370 (2)0.0282 (3)
H10A0.08970.37510.56620.034*
C110.05441 (12)0.43078 (5)0.4381 (3)0.0368 (4)
H11A0.09160.44520.56500.044*
C120.00000.45025 (7)0.25000.0353 (5)
C130.50000.32551 (6)0.75000.0215 (4)
C140.50000.37072 (6)0.75000.0230 (4)
C150.45117 (11)0.39170 (5)0.5582 (3)0.0311 (3)
H15A0.41780.37750.42630.037*
C160.45067 (12)0.43336 (5)0.5578 (3)0.0407 (4)
H16A0.41690.44790.42740.049*
C170.50000.45281 (7)0.75000.0384 (5)
O1W0.00000.23282 (5)0.75000.0297 (3)
H1W0.0088 (14)0.2167 (6)0.662 (3)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0225 (4)0.0291 (4)0.0219 (4)0.0000.0079 (3)0.000
Co10.01559 (15)0.01713 (15)0.01553 (14)0.00076 (9)0.00502 (10)0.00016 (9)
N10.0190 (6)0.0220 (6)0.0194 (6)0.0006 (5)0.0082 (5)0.0007 (4)
N20.0234 (6)0.0215 (6)0.0194 (6)0.0007 (5)0.0078 (5)0.0004 (4)
N30.0188 (6)0.0231 (6)0.0196 (6)0.0002 (5)0.0059 (5)0.0000 (5)
O10.0322 (6)0.0273 (6)0.0297 (5)0.0031 (4)0.0117 (4)0.0030 (4)
O20.0272 (5)0.0267 (5)0.0290 (5)0.0044 (4)0.0084 (4)0.0023 (4)
O30.0281 (5)0.0249 (5)0.0220 (5)0.0054 (4)0.0093 (4)0.0035 (4)
O40.0285 (5)0.0273 (5)0.0305 (6)0.0054 (4)0.0100 (4)0.0052 (4)
F10.0843 (8)0.0234 (5)0.0592 (7)0.0134 (5)0.0259 (6)0.0006 (4)
F20.0798 (12)0.0208 (7)0.0602 (10)0.0000.0253 (9)0.000
F30.0843 (13)0.0208 (7)0.0733 (11)0.0000.0314 (10)0.000
C10.0244 (7)0.0255 (7)0.0155 (6)0.0013 (6)0.0039 (5)0.0016 (5)
C20.0256 (7)0.0229 (7)0.0191 (7)0.0019 (5)0.0057 (5)0.0006 (5)
C30.0307 (8)0.0267 (8)0.0343 (8)0.0023 (6)0.0146 (6)0.0001 (6)
C40.0426 (9)0.0268 (8)0.0418 (9)0.0040 (7)0.0174 (8)0.0022 (7)
C50.0507 (11)0.0216 (8)0.0344 (9)0.0080 (7)0.0117 (8)0.0005 (6)
C60.0432 (10)0.0375 (9)0.0433 (10)0.0163 (8)0.0213 (8)0.0014 (8)
C70.0313 (8)0.0342 (8)0.0340 (8)0.0030 (7)0.0155 (7)0.0027 (7)
C80.0163 (9)0.0233 (9)0.0207 (9)0.0000.0089 (7)0.000
C90.0203 (9)0.0233 (10)0.0214 (9)0.0000.0088 (7)0.000
C100.0290 (8)0.0281 (8)0.0233 (7)0.0000 (6)0.0052 (6)0.0006 (6)
C110.0427 (10)0.0281 (8)0.0354 (9)0.0081 (7)0.0103 (7)0.0070 (7)
C120.0467 (13)0.0210 (11)0.0420 (13)0.0000.0210 (11)0.000
C130.0184 (9)0.0232 (10)0.0264 (10)0.0000.0125 (8)0.000
C140.0197 (9)0.0254 (10)0.0243 (10)0.0000.0090 (8)0.000
C150.0326 (8)0.0277 (8)0.0285 (8)0.0004 (6)0.0063 (6)0.0025 (6)
C160.0483 (11)0.0309 (9)0.0398 (10)0.0056 (7)0.0131 (8)0.0103 (7)
C170.0459 (14)0.0212 (11)0.0527 (15)0.0000.0239 (12)0.000
O1W0.0314 (8)0.0305 (9)0.0288 (8)0.0000.0135 (7)0.000
Geometric parameters (Å, º) top
Co1—N11.9510 (12)C2—C71.392 (2)
Co1—N1i1.9511 (12)C3—C41.386 (2)
Co1—N3i1.9562 (12)C3—H3A0.950
Co1—N31.9562 (12)C4—C51.369 (2)
Co1—N2i1.9642 (13)C4—H4A0.950
Co1—N21.9643 (13)C5—C61.373 (3)
Na1—O3ii2.3444 (10)C6—C71.390 (2)
Na1—O32.3444 (10)C6—H6A0.950
Na1—O22.3861 (10)C7—H7A0.950
Na1—O2ii2.3862 (10)C8—O3iii1.2578 (13)
Na1—O1W2.4834 (19)C8—C91.514 (3)
N1—H120.87 (1)C9—C101.3904 (17)
N1—H110.87 (1)C9—C10iii1.3904 (17)
N1—H130.88 (1)C10—C111.390 (2)
N2—H210.88 (1)C10—H10A0.950
N2—H220.88 (1)C11—C121.372 (2)
N2—H230.88 (1)C11—H11A0.950
N3—H310.88 (1)C12—C11iii1.372 (2)
N3—H320.88 (1)C13—O4iv1.2623 (14)
N3—H330.86 (1)C13—C141.512 (3)
O1—C11.2635 (19)C14—C15iv1.3885 (18)
O2—C11.2640 (18)C14—C151.3886 (18)
O3—C81.2578 (13)C15—C161.394 (2)
O4—C131.2623 (14)C15—H15A0.950
F1—C51.3598 (19)C16—C171.367 (2)
F2—C121.366 (3)C16—H16A0.950
F3—C171.363 (3)C17—C16iv1.367 (2)
C1—C21.503 (2)O1W—H1W0.84 (2)
C2—C31.391 (2)
O3—Na1—O3ii177.34 (6)O1—C1—C2117.78 (13)
O3ii—Na1—O285.08 (4)O2—C1—C2118.22 (13)
O3—Na1—O295.66 (4)C3—C2—C7119.01 (15)
O3ii—Na1—O2ii95.66 (4)C3—C2—C1120.04 (13)
O3—Na1—O2ii85.08 (4)C7—C2—C1120.94 (14)
O2—Na1—O2ii147.85 (6)C4—C3—C2120.82 (15)
O3ii—Na1—O1W88.67 (3)C4—C3—H3A119.6
O3—Na1—O1W88.67 (3)C2—C3—H3A119.6
O2—Na1—O1W106.07 (3)C5—C4—C3118.27 (16)
O2ii—Na1—O1W106.08 (3)C5—C4—H4A120.9
N1—Co1—N289.61 (5)C3—C4—H4A120.9
N1—Co1—N388.06 (5)F1—C5—C4118.61 (16)
N2—Co1—N391.93 (5)F1—C5—C6118.34 (15)
N1—Co1—N1i180.0C4—C5—C6123.05 (16)
N2—Co1—N2i180.0C5—C6—C7118.19 (16)
N3—Co1—N3i180.0C5—C6—H6A120.9
N1—Co1—N2i90.39 (5)C7—C6—H6A120.9
N1—Co1—N3i91.94 (5)C6—C7—C2120.64 (15)
N3—Co1—N2i88.07 (5)C6—C7—H7A119.7
N3i—Co1—N288.06 (5)C2—C7—H7A119.7
N1i—Co1—N290.39 (5)O3iii—C8—O3125.01 (18)
N1i—Co1—N391.94 (5)O3iii—C8—C9117.49 (9)
N1i—Co1—N3i88.06 (5)O3—C8—C9117.49 (9)
N1i—Co1—N2i89.61 (5)C10—C9—C10iii118.77 (19)
N3i—Co1—N2i91.94 (5)C10—C9—C8120.61 (9)
Co1—N1—H12109.0 (13)C10iii—C9—C8120.61 (9)
Co1—N1—H11114.2 (15)C11—C10—C9121.04 (14)
H12—N1—H11111.0 (19)C11—C10—H10A119.5
Co1—N1—H13109.6 (12)C9—C10—H10A119.5
H12—N1—H13106.5 (17)C12—C11—C10117.91 (15)
H11—N1—H13106 (2)C12—C11—H11A121.0
Co1—N2—O384.90 (4)C10—C11—H11A121.0
Co1—N2—H21114.0 (13)F2—C12—C11iii118.35 (11)
O3—N2—H2155.4 (13)F2—C12—C11118.35 (11)
Co1—N2—H22108.7 (12)C11iii—C12—C11123.3 (2)
O3—N2—H22163.5 (12)O4—C13—O4iv124.32 (18)
H21—N2—H22109.1 (18)O4—C13—C14117.84 (9)
Co1—N2—H23109.8 (12)O4iv—C13—C14117.84 (9)
O3—N2—H2376.9 (13)C15iv—C14—C15119.28 (19)
H21—N2—H23108.9 (19)C15iv—C14—C13120.36 (10)
H22—N2—H23106.0 (18)C15—C14—C13120.36 (10)
Co1—N3—H31110.7 (12)C14—C15—C16120.54 (15)
Co1—N3—H32111.4 (12)C14—C15—H15A119.7
H31—N3—H32106.4 (18)C16—C15—H15A119.7
Co1—N3—H33112.7 (17)C17—C16—C15118.22 (16)
H31—N3—H33109.3 (18)C17—C16—H16A120.9
H32—N3—H33106.1 (18)C15—C16—H16A120.9
C1—O2—Na1137.87 (9)F3—C17—C16iv118.40 (11)
C8—O3—Na1130.32 (7)F3—C17—C16118.41 (11)
C8—O3—N2100.93 (6)C16iv—C17—C16123.2 (2)
Na1—O3—N2118.75 (4)Na1—O1W—H1W129.9 (14)
O1—C1—O2124.00 (14)
N1—Co1—N2—O3138.16 (4)F1—C5—C6—C7179.17 (14)
N1i—Co1—N2—O341.84 (4)C4—C5—C6—C70.4 (2)
N3i—Co1—N2—O3129.89 (4)C5—C6—C7—C20.8 (2)
N3—Co1—N2—O350.11 (4)C3—C2—C7—C60.3 (2)
O3ii—Na1—O2—C1171.04 (14)C1—C2—C7—C6179.24 (14)
O3—Na1—O2—C111.53 (15)Na1—O3—C8—O3iii118.43 (11)
O2ii—Na1—O2—C178.23 (14)N2—O3—C8—O3iii97.82 (5)
O1W—Na1—O2—C1101.77 (14)Na1—O3—C8—C961.58 (11)
O2—Na1—O3—C8125.27 (12)N2—O3—C8—C982.18 (4)
O2ii—Na1—O3—C822.45 (13)O3iii—C8—C9—C10166.91 (9)
O1W—Na1—O3—C8128.71 (12)O3—C8—C9—C1013.08 (9)
O2—Na1—O3—N213.26 (6)O3iii—C8—C9—C10iii13.09 (9)
O2ii—Na1—O3—N2160.98 (5)O3—C8—C9—C10iii166.91 (9)
O1W—Na1—O3—N292.76 (4)C10iii—C9—C10—C110.54 (12)
Co1—N2—O3—C8118.57 (10)C8—C9—C10—C11179.46 (12)
Co1—N2—O3—Na192.37 (5)C9—C10—C11—C121.0 (2)
Na1—O2—C1—O185.45 (18)C10—C11—C12—F2179.49 (11)
Na1—O2—C1—C294.87 (15)C10—C11—C12—C11iii0.51 (11)
O1—C1—C2—C3171.65 (13)O4—C13—C14—C15iv177.76 (10)
O2—C1—C2—C38.05 (19)O4iv—C13—C14—C15iv2.24 (10)
O1—C1—C2—C78.78 (19)O4—C13—C14—C152.24 (10)
O2—C1—C2—C7171.53 (13)O4iv—C13—C14—C15177.76 (10)
C7—C2—C3—C40.5 (2)C15iv—C14—C15—C160.29 (12)
C1—C2—C3—C4179.88 (13)C13—C14—C15—C16179.71 (12)
C2—C3—C4—C50.9 (2)C14—C15—C16—C170.6 (2)
C3—C4—C5—F1179.98 (14)C15—C16—C17—F3179.72 (12)
C3—C4—C5—C60.4 (2)C15—C16—C17—C16iv0.28 (12)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+3/2; (iii) x, y, z+1/2; (iv) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O3i0.87 (1)2.11 (1)2.8962 (15)150 (2)
N1—H11···O1v0.87 (1)2.27 (1)3.1000 (16)159 (2)
N1—H13···O1i0.88 (1)2.06 (1)2.9124 (16)163 (2)
N2—H21···O2v0.88 (1)2.38 (2)3.1357 (15)144 (2)
N2—H22···O40.88 (1)2.20 (1)3.0108 (16)153 (2)
N2—H23···O10.87 (1)2.16 (1)2.9867 (16)158 (2)
N3—H31···O2v0.88 (1)2.10 (1)2.9730 (15)174 (2)
N3—H32···O1i0.88 (1)2.35 (1)3.1335 (16)149 (2)
N3—H33···O4i0.86 (1)2.43 (2)3.0481 (16)129 (2)
O1W—H1W···O4i0.84 (2)2.04 (2)2.8519 (14)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaNa[Co(NH3)6](C7H4FO2)4·H2O
Mr758.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)16.1930 (4), 33.4500 (9), 6.5169 (2)
β (°) 112.349 (1)
V3)3264.77 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker Nonius X8APEX-II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission 0.788976
Tmin, Tmax0.699, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
11474, 3531, 2909
Rint0.019
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.085, 1.03
No. of reflections3531
No. of parameters269
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.24

Computer programs: APEX2 (Bruker Nonius, 2003), SAINT (Bruker, 2003), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—N11.9510 (12)Na1—O32.3444 (10)
Co1—N31.9562 (12)Na1—O22.3861 (10)
Co1—N21.9643 (13)Na1—O1W2.4834 (19)
O3—Na1—O3i177.34 (6)N2—Co1—N391.93 (5)
O3—Na1—O295.66 (4)N1—Co1—N1ii180.0
O3—Na1—O2i85.08 (4)N2—Co1—N2ii180.0
O2—Na1—O2i147.85 (6)N3—Co1—N3ii180.0
O3—Na1—O1W88.67 (3)N1—Co1—N2ii90.39 (5)
O2—Na1—O1W106.07 (3)N1—Co1—N3ii91.94 (5)
N1—Co1—N289.61 (5)N3—Co1—N2ii88.07 (5)
N1—Co1—N388.06 (5)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O3ii0.87 (1)2.11 (1)2.8962 (15)150 (2)
N1—H11···O1iii0.87 (1)2.27 (1)3.1000 (16)159 (2)
N1—H13···O1ii0.88 (1)2.06 (1)2.9124 (16)163 (2)
N2—H21···O2iii0.88 (1)2.38 (2)3.1357 (15)144 (2)
N2—H22···O40.88 (1)2.20 (1)3.0108 (16)153 (2)
N2—H23···O10.87 (1)2.16 (1)2.9867 (16)158 (2)
N3—H31···O2iii0.88 (1)2.10 (1)2.9730 (15)174 (2)
N3—H32···O1ii0.88 (1)2.35 (1)3.1335 (16)149 (2)
N3—H33···O4ii0.86 (1)2.43 (2)3.0481 (16)129 (2)
O1W—H1W···O4ii0.84 (2)2.04 (2)2.8519 (14)163 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds