Download citation
Download citation
link to html
Dibarium μ-oxido-bis­[penta­chloridoruthenate(IV)] deca­hydrate, Ba2Ru2Cl10O·10H2O, has been prepared from ruthenium(III) chloride and barium chloride in hydro­chloric acid. It crystallizes in the monoclinic system (space group C2/­c). The structure consists of alternating layers of [Ru2­Cl10O]4− and [Ba(H2O)7]2+ complex ions along the a direction. The O atom bonded to ruthenium occupies the 4e site, with \overline{1} symmetry, while the other atoms occupy general 8f sites. The overall structure is held together by O—H...O hydrogen bonds and O—H...Cl dipole–dipole inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107029551/bc3046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107029551/bc3046Isup2.hkl
Contains datablock I

Comment top

Previous investigations of MCl2—RuCl3 systems (M = K and Cs) have led to the identification of K4[Ru2Cl10O] (Deloume et al., 1979) and Cs4Ru2Cl10O (Santana Da Silva et al., 1999). We have investigated the hydrated systems MCl2—RuCl3—H2O (M = Mg, Ca and Ba) and, just recently, we have determined the structure of Mg2Ru2Cl10O.16H2O (Boufas et al., 2007). The structural study of the different phases of these systems has been performed in order to compare the cation coordination environments and the number of water molecules, and to study the Ru2Cl10O anionic group and understand the effect of the Mg/Ba substitution.

The asymmetric unit of the title compound contains one [Ru2Cl10O]4- anion, one Ba2+ cation and five water molecules (Fig. 1). The overall structure consists of layers stacked along the c direction, with [Ru2Cl10O]4- dimeric units bridging adjacent sheets that are held together by [Ba(H2O)7]2+ cations through the Cl atoms Cl2 and Cl3 along the (101) plane. As reported for Mg2Ru2Cl10O.16H2O (Boufas et al., 2007), the Ru atom resides in a distorted octahedron involving one bridging O atom [Ru1—O1 bond is 1.7657 (4) Å] and five Cl atoms with an Ru—Cl average distance of 2.3637 Å (Table 1). These distances are similar to those of the anhydrous compounds reported in the literature (1.800 and 2.362 Å for K4[Ru2Cl10O], and 1.791 and 2.357 Å for Cs4Ru2Cl10O] and agree well with those found in Mg2Ru2Cl10O.16H2O (1.7822 and 2.36284 Å). The standard deviations from the values given by the two hydrated compounds differ by about 0.02 and 0.0008 Å. The Ru—O distance in the title compound is the shortest and the Ru—Cl distance is the longest.

The barium cation is surrounded by nine atoms, viz. five O atoms belonging to five water molecules via metal–OH2 bonds and two Cl atoms (Cl2 and Cl3) from the Ru2Cl10O octahedron via metal–Cl bonds. The presence of additional interactions (Ba1—O2Wi and Ba1—O4Wi) leads to ninefold coordination for each Ba atom. The [Ba(H2O)7]2+ cations extend along the b direction in a zigzag fashion, forming layers parallel to the bc plane, and each [Ru2Cl10O]4- anion is surrounded by six [Ba(H2O)7]2+ cations (Fig. 2). The Ba1—Cl2 and Ba1—Cl3 distances (Table 1) are similar to those found in barium dichloride dihydrate (3.0901 and 3.2836 Å; Bochkova et al., 1980) and agree with the sum of the ionic radii of the Ba2+ (1.35 Å) and Cl- ions (1.81 Å) (Shannon, 1976).

The average Ba—Ow distance is 2.8724 Å, similar to that in Ba(OH)I(H2O)4 (2.8425 Å), where Ba is coordinated by only four water molecules (Fromm & Goesmann, 2000), and somewhat longer than that in Ba(C10H4O8)(H2O)5 (2.8094 Å), where Ba is surrounded by five O atoms (Dale et al., 2003). This difference is due to the presence of Ba–carboxylate bonds that reduce the Ba—OH2 distances.

The cations and anions of the title compound are linked into a three-dimensional network by means of O—H···Cl and O—H···O interactions (Table 2 and Fig. 2). The first type links the Ru2Cl10O octahedra to water molecules through all the Cl atoms, with distances of between 2.36 (6) and 2.81 (6) Å. Atoms Cl4 and Cl5 are involved in two hydrogen bonds each, Cl2 and Cl3 establish one hydrogen bond each, and Cl1 is engaged in three interactions. The O2W—H12W···Cl1iii interaction is the strongest, with an O—H···Cl distance of 2.36 (6) Å. Only three O—H···O hydrogen bonds are formed via O3W [2.58 (4) Å], O1W [2.25 (9) Å] and O5W [2.20 (7) Å]. The environment of the [Ru2Cl10O]4- anion contains nine O—H···Cl dipole–dipole interactions between the anion and the water molecules, i.e. this structure displays a lower degree of cohesion than that reported for Mg2Ru2Cl10O.16H2O characterized by 12 O—H···Cl dipole–dipole interactions and five O—H···O hydrogen bonds.

Overall, the various interactions bridge the ruthenate anions within and between layers and form cavities occupied by the [BaCl2(H2O)7] sheets.

Related literature top

For related literature, see: Bochkova et al. (1980); Boufas et al. (2007); Dale (2003); Deloume et al. (1979); Fromm & Goesmann (2000); Santana Da Silva, Zukerman-Schpector, Tfouni & Lever (1999); Shannon (1976); Sheldrick (1997).

Experimental top

The title compound was crystallized from a supersaturated hydrochloric acid solution (50%, 5 ml) prepared using doubly distilled water and a mixture of ruthenium(III) chloride trihydrate (2.61 g) and dehydrated barium chloride (2.263 g). Brown plates of Ba2Ru2Cl10O.10H2O were obtained at ambient temperature by slow evaporation of the solution.

Refinement top

H atoms were fixed by geometric constraints using the HFIX command (Sheldrick, 1997) and allowed to ride on the attached O atom [this appears to contradict following sentence]. The O—H distances were restrained to 0.85 (s.u. value?) Å to ensure chemically reasonable geometry, with Uiso(H) fixed at 1.5Ueq(O). Please check the values in Table 2; there are minor discrepancies between O—H values here and in _geom_bond_distance.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVAL (Nonius, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998) and ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 90% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis.
dibarium µ-oxo-bis(pentachlororuthenate(IV)) decahydrate top
Crystal data top
Ba2Ru2Cl10O·10H2OF(000) = 1912
Mr = 1027.48Dx = 2.78 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2096 reflections
a = 20.9386 (18) Åθ = 5.0–26.4°
b = 8.8654 (7) ŵ = 5.49 mm1
c = 16.0560 (15) ÅT = 293 K
β = 124.559 (5)°Plate, brown
V = 2454.5 (4) Å30.25 × 0.13 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2488 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.05
CCD scansθmax = 26.4°, θmin = 5°
Absorption correction: part of the refinement model (ΔF)
(Sheldrick, 1996 or 1990???)
h = 2426
Tmin = 0.441, Tmax = 0.862k = 1110
10480 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070Only H-atom coordinates refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0242P)2 + 9.3433P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.53 e Å3
15 restraintsΔρmin = 1.28 e Å3
Crystal data top
Ba2Ru2Cl10O·10H2OV = 2454.5 (4) Å3
Mr = 1027.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.9386 (18) ŵ = 5.49 mm1
b = 8.8654 (7) ÅT = 293 K
c = 16.0560 (15) Å0.25 × 0.13 × 0.03 mm
β = 124.559 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2488 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Sheldrick, 1996 or 1990???)
2103 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.862Rint = 0.05
10480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02915 restraints
wR(F2) = 0.070Only H-atom coordinates refined
S = 1.06Δρmax = 0.53 e Å3
2488 reflectionsΔρmin = 1.28 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.190281 (18)0.46951 (4)0.66934 (2)0.03451 (11)
Ru10.39877 (2)0.50729 (4)0.65883 (2)0.02010 (11)
Cl10.41487 (7)0.55179 (14)0.52648 (8)0.0317 (3)
Cl20.37459 (7)0.45890 (14)0.78403 (8)0.0302 (3)
Cl30.26475 (6)0.51664 (14)0.53772 (8)0.0320 (3)
Cl40.39331 (7)0.24665 (13)0.62485 (10)0.0352 (3)
Cl50.39538 (7)0.76962 (13)0.68603 (10)0.0353 (3)
O10.50.5020 (4)0.750.0204 (9)
O1W0.0670 (3)0.2681 (4)0.5698 (3)0.0488 (10)
H21W0.079 (4)0.183 (5)0.585 (4)0.073*
H11W0.037 (4)0.271 (7)0.5060 (10)0.073*
O2W0.2671 (2)0.2783 (4)0.8455 (3)0.0374 (8)
H12W0.304 (3)0.323 (7)0.893 (4)0.056*
H22W0.234 (3)0.277 (8)0.852 (5)0.056*
O3W0.0683 (3)0.5963 (6)0.6596 (4)0.0580 (12)
H13W0.066 (4)0.634 (9)0.698 (4)0.087*
H23W0.026 (3)0.576 (10)0.614 (4)0.087*
O4W0.2458 (2)0.1701 (5)0.6492 (3)0.0420 (9)
H24W0.209 (3)0.127 (7)0.596 (4)0.063*
H14W0.281 (3)0.177 (8)0.645 (5)0.063*
O5W0.0767 (2)0.5701 (5)0.4729 (3)0.0459 (9)
H15W0.043 (4)0.616 (8)0.472 (5)0.069*
H25W0.081 (4)0.607 (8)0.425 (5)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02783 (17)0.03410 (18)0.03573 (18)0.00183 (12)0.01453 (14)0.00030 (13)
Ru10.01603 (18)0.02381 (19)0.01740 (18)0.00012 (13)0.00764 (14)0.00005 (14)
Cl10.0326 (6)0.0405 (7)0.0246 (5)0.0010 (5)0.0178 (5)0.0030 (5)
Cl20.0266 (6)0.0404 (6)0.0247 (5)0.0029 (5)0.0153 (5)0.0011 (5)
Cl30.0184 (6)0.0464 (7)0.0237 (5)0.0004 (5)0.0075 (5)0.0041 (5)
Cl40.0372 (7)0.0259 (6)0.0415 (7)0.0035 (5)0.0218 (6)0.0067 (5)
Cl50.0336 (6)0.0288 (6)0.0417 (7)0.0015 (5)0.0202 (6)0.0004 (5)
O10.018 (2)0.024 (2)0.018 (2)00.0085 (17)0
O1W0.055 (3)0.033 (2)0.059 (3)0.0048 (19)0.033 (2)0.0003 (19)
O2W0.040 (2)0.041 (2)0.0342 (19)0.0075 (18)0.0227 (18)0.0021 (16)
O3W0.048 (3)0.062 (3)0.066 (3)0.008 (2)0.034 (2)0.027 (3)
O4W0.042 (2)0.050 (2)0.0344 (19)0.0087 (19)0.0221 (18)0.0114 (18)
O5W0.050 (2)0.041 (2)0.051 (2)0.0005 (19)0.030 (2)0.0033 (19)
Geometric parameters (Å, º) top
Ba1—O3W2.713 (4)Ru1—Cl52.3755 (15)
Ba1—O1W2.780 (4)O1—Ru1ii1.7657 (4)
Ba1—O5W2.809 (4)O1W—H21W0.79 (3)
Ba1—O2W2.882 (4)O1W—H11W0.846 (10)
Ba1—O2Wi2.931 (4)O2W—Ba1iii2.931 (4)
Ba1—O4W2.988 (4)O2W—H12W0.81 (4)
Ba1—O4Wi3.004 (4)O2W—H22W0.76 (4)
Ba1—Cl23.1986 (12)O3W—H13W0.73 (5)
Ba1—Cl33.2882 (13)O3W—H23W0.78 (4)
Ru1—O11.7657 (4)O4W—Ba1iii3.004 (4)
Ru1—Cl32.3394 (12)O4W—H24W0.85 (3)
Ru1—Cl42.3627 (14)O4W—H14W0.78 (4)
Ru1—Cl12.3665 (12)O5W—H15W0.81 (5)
Ru1—Cl22.3744 (12)O5W—H25W0.88 (5)
O3W—Ba1—O1W72.33 (13)Cl3—Ru1—Cl487.97 (4)
O3W—Ba1—O5W68.55 (14)O1—Ru1—Cl191.93 (4)
O1W—Ba1—O5W68.89 (12)Cl3—Ru1—Cl187.84 (4)
O3W—Ba1—O2W106.46 (14)Cl4—Ru1—Cl188.20 (5)
O1W—Ba1—O2W90.31 (12)O1—Ru1—Cl291.45 (4)
O5W—Ba1—O2W159.20 (12)Cl3—Ru1—Cl288.79 (4)
O3W—Ba1—O2Wi85.88 (14)Cl4—Ru1—Cl290.75 (4)
O1W—Ba1—O2Wi141.23 (12)Cl1—Ru1—Cl2176.50 (4)
O5W—Ba1—O2Wi73.44 (11)O1—Ru1—Cl591.19 (13)
O2W—Ba1—O2Wi127.12 (6)Cl3—Ru1—Cl588.35 (4)
O3W—Ba1—O4W140.66 (13)Cl4—Ru1—Cl5176.30 (5)
O1W—Ba1—O4W70.02 (12)Cl1—Ru1—Cl592.07 (5)
O5W—Ba1—O4W107.09 (12)Cl2—Ru1—Cl588.76 (4)
O2W—Ba1—O4W63.18 (10)Ru1—Cl2—Ba1105.92 (4)
O2Wi—Ba1—O4W131.76 (11)Ru1—Cl3—Ba1104.10 (4)
O3W—Ba1—O4Wi72.37 (12)Ru1—O1—Ru1ii176.9 (3)
O1W—Ba1—O4Wi134.09 (12)Ba1—O1W—H21W115 (5)
O5W—Ba1—O4Wi121.94 (11)Ba1—O1W—H11W119 (5)
O2W—Ba1—O4Wi72.71 (11)H21W—O1W—H11W108 (4)
O2Wi—Ba1—O4Wi62.42 (10)Ba1—O2W—Ba1iii119.74 (12)
O4W—Ba1—O4Wi130.13 (6)Ba1—O2W—H12W110 (5)
O3W—Ba1—Cl2146.54 (10)Ba1iii—O2W—H12W111 (5)
O1W—Ba1—Cl2137.37 (9)Ba1—O2W—H22W95 (5)
O5W—Ba1—Cl2129.21 (9)Ba1iii—O2W—H22W110 (5)
O2W—Ba1—Cl266.31 (8)H12W—O2W—H22W109 (5)
O2Wi—Ba1—Cl275.56 (8)Ba1—O3W—H13W131 (6)
O4W—Ba1—Cl267.66 (8)Ba1—O3W—H23W119 (6)
O4Wi—Ba1—Cl274.37 (8)H13W—O3W—H23W108 (6)
O3W—Ba1—Cl3133.20 (12)Ba1—O4W—Ba1iii114.07 (11)
O1W—Ba1—Cl3109.65 (9)Ba1—O4W—H24W108 (5)
O5W—Ba1—Cl369.25 (9)Ba1iii—O4W—H24W111 (5)
O2W—Ba1—Cl3120.12 (8)Ba1—O4W—H14W113 (5)
O2Wi—Ba1—Cl363.36 (7)Ba1iii—O4W—H14W101 (5)
O4W—Ba1—Cl371.82 (8)H24W—O4W—H14W109 (5)
O4Wi—Ba1—Cl3115.81 (8)Ba1—O5W—H15W111 (5)
Cl2—Ba1—Cl361.10 (3)Ba1—O5W—H25W130 (4)
O1—Ru1—Cl3179.48 (13)H15W—O5W—H25W108 (5)
O1—Ru1—Cl492.49 (13)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Wiv0.85 (1)2.58 (4)3.347 (7)151 (6)
O2W—H12W···Cl1v0.82 (6)2.36 (6)3.176 (4)177 (7)
O3W—H13W···Cl4i0.73 (7)2.66 (6)3.354 (6)161 (7)
O4W—H14W···Cl40.78 (8)2.62 (8)3.395 (5)171 (7)
O5W—H15W···O1Wiv0.81 (9)2.25 (9)3.040 (9)166 (7)
O1W—H21W···Cl2iii0.79 (5)2.65 (5)3.357 (4)151 (6)
O1W—H21W···Cl1vi0.79 (5)2.80 (6)3.354 (5)130 (5)
O2W—H22W···Cl5iii0.76 (8)2.42 (8)3.144 (5)161 (7)
O3W—H23W···O5Wiv0.79 (6)2.20 (7)2.932 (8)155 (8)
O4W—H24W···Cl1vi0.85 (6)2.71 (6)3.519 (5)160 (5)
O4W—H24W···Cl3vi0.85 (6)2.81 (6)3.324 (5)121 (6)
O5W—H25W···Cl5vii0.87 (8)2.38 (8)3.251 (6)173 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y+1, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaBa2Ru2Cl10O·10H2O
Mr1027.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.9386 (18), 8.8654 (7), 16.0560 (15)
β (°) 124.559 (5)
V3)2454.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.25 × 0.13 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Sheldrick, 1996 or 1990???)
Tmin, Tmax0.441, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
10480, 2488, 2103
Rint0.05
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.06
No. of reflections2488
No. of parameters144
No. of restraints15
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.53, 1.28

Computer programs: COLLECT (Nonius, 2002), DIRAX (Duisenberg, 1992), EVAL (Nonius, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998) and ATOMS (Dowty, 1995), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Ba1—O3W2.713 (4)Ba1—Cl33.2882 (13)
Ba1—O1W2.780 (4)Ru1—O11.7657 (4)
Ba1—O5W2.809 (4)Ru1—Cl32.3394 (12)
Ba1—O2W2.882 (4)Ru1—Cl42.3627 (14)
Ba1—O2Wi2.931 (4)Ru1—Cl12.3665 (12)
Ba1—O4W2.988 (4)Ru1—Cl22.3744 (12)
Ba1—O4Wi3.004 (4)Ru1—Cl52.3755 (15)
Ba1—Cl23.1986 (12)
O3W—Ba1—O1W72.33 (13)O2W—Ba1—Cl266.31 (8)
O3W—Ba1—O5W68.55 (14)O5W—Ba1—Cl369.25 (9)
O1W—Ba1—O5W68.89 (12)O1—Ru1—Cl3179.48 (13)
O3W—Ba1—O2W106.46 (14)O1—Ru1—Cl492.49 (13)
O1W—Ba1—O2W90.31 (12)O1—Ru1—Cl191.93 (4)
O3W—Ba1—O2Wi85.88 (14)O1—Ru1—Cl291.45 (4)
O2W—Ba1—O2Wi127.12 (6)O1—Ru1—Cl591.19 (13)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Wii0.845 (14)2.58 (4)3.347 (7)151 (6)
O2W—H12W···Cl1iii0.82 (6)2.36 (6)3.176 (4)177 (7)
O3W—H13W···Cl4i0.73 (7)2.66 (6)3.354 (6)161 (7)
O4W—H14W···Cl40.78 (8)2.62 (8)3.395 (5)171 (7)
O5W—H15W···O1Wii0.81 (9)2.25 (9)3.040 (9)166 (7)
O1W—H21W···Cl2iv0.79 (5)2.65 (5)3.357 (4)151 (6)
O1W—H21W···Cl1v0.79 (5)2.80 (6)3.354 (5)130 (5)
O2W—H22W···Cl5iv0.76 (8)2.42 (8)3.144 (5)161 (7)
O3W—H23W···O5Wii0.79 (6)2.20 (7)2.932 (8)155 (8)
O4W—H24W···Cl1v0.85 (6)2.71 (6)3.519 (5)160 (5)
O4W—H24W···Cl3v0.85 (6)2.81 (6)3.324 (5)121 (6)
O5W—H25W···Cl5vi0.87 (8)2.38 (8)3.251 (6)173 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds