Download citation
Download citation
link to html
Single crystals of ammonium trisilver bis­[fluoro­phos­phate(V)], NH4Ag3(PO3F)2, were obtained from an aqueous solution and the structure was refined from a racemically twinned crystal. The asymmetric unit contains seven crystallographically distinct Ag atoms (two of which are located on twofold axes), four PO3F tetra­hedra and two ammonium cations. The layered structure is composed of silver–monofluoro­phosphate sheets, [Ag3(PO3F)2], that extend parallel to (100). The F atoms of the PO3F tetra­hedra point towards the ammonium cations, which are located in the inter­layer space and stabilize the structure via moderate N—H...O and N—H...F hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107008967/bc3036sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107008967/bc3036Isup2.hkl
Contains datablock I

Comment top

Monofluorophosphates MI2PO3F.xH2O or MII2PO3F.xH2O (MI = NH4+ or an alkali metal; MII = a transition or an alkaline earth metal; x can range from 0 to 5) are important materials that are used as pesticides, corrosion inhibitors, wood preservatives, toothpaste additives, solubility inhibitors for heavy metals, or as active agents against osteoporosis or caries during biomineralization of fluoroapatite. Preparation methods for monofluorophosphates include solid-state reactions between the corresponding metal fluorides and phosphates, flux reactions in fluoride melts, or conversion of the readily soluble (NH4)2PO3F with metal salts in aqueous solutions. One of the most convenient (but also most expensive) preparation routes for these materials is the metathesis reaction of Ag2PO3F and metal chlorides in aqueous solutions: Ag2PO3F + 2MICl / (MIICl2) MI2PO3F / (MIIPO3F) + 2 AgCl. An advantage of this method is the separation of the phosphate anions, which are invariably present in aqueous solutions due to hydrolysis of the PO3F2- anion, by simultaneous precipitation as Ag3PO4. Crystallization from the remaining filtrate then leads to single-phase products. Although the preparation of Ag2PO3F was described a long time ago (Lange, 1929), its crystal structure was unknown until very recently (Weil et al., 2007). During single-crystal growth experiments aimed at Ag2PO3F from aqueous AgNO3 and (NH4)2PO3F solutions, crystals of NH4Ag3(PO3F)2 were obtained serendipitously, and the crystal structure of this new compound is reported here.

The asymmetric unit of the title compound contains seven crystallographically independent Ag+ cations, four PO3F2- tetrahedra and two NH4+ cations. A characteristic feature of the crystal structure is the formation of two silver monofluorophosphate sheets, each with an overall composition of [Ag3(PO3F)2]-, that extend parallel to (100) (Fig. 1). The first silver monofluorophosphate sheet (labelled I) comprises atoms Ag1—Ag4, P3 and P4 (Fig. 2a), and the second layer (labelled II) comprises atoms Ag5–Ag7, P1 and P2 (Fig. 2b). Within such a sheet, the Ag and O atoms form a sublayer that is covered on the outside by the P and F atoms of the monofluorophosphate units, whereby the F atoms point towards the interlayer space. Sheets I and II are separated by interjacent ammonium cations, which stabilize the structure by means of moderate N—H···O and N—H···F hydrogen bonds.

As can be seen in Fig. 1, a superstructure seems to be present along a/2. However, on closer inspection it is apparent that in fact sheets II and II' show a superstructure relation with a translation of a/2, but such a translation is absent for sheets I and I' because the orientation of the PO3F tetrahedra in these layers is topologically different. Whereas in sheet I the vertices of the tetrahedra point alternately up (U) and down (D), in sheet I' the direction is reversed with an alternating D and U orientation of the respective tetrahedra.

The Ag+ cations exhibit different coordination numbers (CN) with different [AgOx] coordination polyhedra. A review of the multifarious crystal chemistry of multinary silver oxides and silver oxocompounds has been given recently by Müller-Buschbaum (2004). Atoms Ag1, Ag2, Ag5 and Ag6 are surrounded by four O atoms in a strongly distorted tetrahedral manner with average Ag—Otetrahedral 2.39 Å (Table 1), which is in very good agreement with the sum of the ionic radii (Shannon, 1976) for Ag (CN = 4; 1.00 Å) and O (1.38 Å). Each of the [AgO4] polyhedra is surrounded by one additional F atom at distances 3.06 Å. However, the resulting Ag—F interactions are very weak (the contributions of the corresponding Ag—F bond valences are only 0.02 valence units) and therefore these contributions might be neglected. Atoms Ag3, Ag4 and Ag7 exhibit a distorted octahedral coordination with average Ag—Ooctahedral 2.58 Å, likewise in good agreement with the sum of the ionic radii (2.54 Å). However, the variations of the bond lengths for these [AgO6] polyhedra are quite different. On the one hand, Ag3 and Ag4 are located on twofold axes and are better described as [2 + 2+2] coordinated with two shorter ( 2.36 Å), two medium ( 2.51 Å) and two longer ( 2.91 Å) Ag—O bonds. On the other hand, Ag7 has a [4 + 2] coordination with four similar equatorial Ag—O bonds ( 2.45 Å) and two longer axial Ag—O bonds ( 2.74 Å).

The four PO3F tetrahedra deviate slightly from the ideal C3v symmetry, with an average P—O distance of 1.507 Å and an average P—F distance of = 1.590 Å (Table 1). In agreement with other monofluorophophates (Weil et al., 2007) or monosubstituted phosphates of the type PO3X (X = H, OH or OR), the P—O bond lengths are shorter than in a regular PO4 tetrahedron (1.535 Å) and the P–X bond length is significantly increased. Likewise, the O—P—O angles, with an average of 114.4°, are widened and the corresponding O—P—F angles, with an average of 104.0°, are reduced. This behaviour is characteristic for all PO3X tetrahedra and has been attributed to the stronger π-character per P—O bond (Corbridge, 1974).

All O atoms have CN = 4 and are coordinated by one P atom and either by three Ag atoms or, when involved in hydrogen bonding, by two Ag atoms and one N atom, in a considerably distorted tetrahedral fashion.

The two interjacent ammonium cations show similar donor–acceptor distances, indicating medium-to-weak hydrogen bonds of types N—H···O and N—H···F (Table 2). Each N atom is surrounded by four O atoms [N1 2.826 (9)–2.942 (10) Å and N2 2.773 (8)–2.887 (9) Å] and by two additional F atoms [N1 3.002 (8) and 3.116 (11) Å, and N2 3.056 (9) and 3.076 (11) Å]. The presence of six neighbouring atoms with similar donor–acceptor distances, and the fact that a refinement of H-atom positions was not successful, might be an indication of an orientational disorder of the ammonium H atoms. A verification of this assumption is planned for the future with high-resolution neutron data.

Results of bond-valence calculations (Brown, 2002), using the parameters of Brese & O'Keeffe (1991), are in accordance with expected values. The bond valence sums are equal to (v.u.): Ag1 1.01, Ag2 0.94, Ag3 0.92, Ag4 0.93, Ag5 0.92, Ag6 0.95, Ag7 0.95, P1 5.13, P2 5.13, P3 5.19, P4 5.06, F1 1.09, F2 1.08, F3 1.07 and F4 1.10, and all O atoms (hydrogen bonds not considered) between 1.75 and 1.92.

Related literature top

For related literature, see: Brese & O'Keeffe (1991); Brown (2002); Corbridge (1974); Flack (1983); Lange (1929); Müller-Buschbaum (2004); Schülke & Kayser (1991); Shannon (1976); Spek (2003); Weil et al. (2007).

Experimental top

(NH4)2PO3F was prepared according to the method given by Schülke & Kayser (1991) from a stoichiometric mixture of (NH4)2HPO4 (Merck, p·A.) and NH4·HF (Fluka, p·A.) in a urea melt at 443 K for 2 h. The product was then recrystallized from an acetone–water solution (Ratio of solvents?). X-ray powder diffraction (XRPD) revealed a single-phase product. Coarse crystalline (NH4)2PO3F (0.17 g) was added to an aqueous solution (10 ml) of AgNO3 (0.43 g) (Merck, p·A.). Since phosphate anions were present in the solution owing to the hydrolysis of the monofluorophosphate anion, the precipitated yellow Ag3PO4 was filtered off, and the remaining clear solution was allowed to stand in a dark room for 2 d. Besides minor quantities of plate-like crystals of Ag2PO3F (Weil et al., 2007), crystals of the title compound with a block-like habit were obtained and separated mechanically under a microscope.

Refinement top

The non-standard setting I2 for space group No. 5 (standard setting C2) was chosen to emphasize the pseudo-orthorhombic metrics with β very close to 90°. The structure was refined from a racemically twinned crystal with an approximate twin ratio of 1:1 [Flack parameter 0.48 (5); Flack, 1983]. Checking of the final model with the program PLATON (Spek, 2003) did not reveal any higher symmetry. As in many other silver (oxo)compounds, the displacement parameters of the Ag atoms are comparatively large. However, refinement of the site occupation factors (s.o.f.) did not reveal any statistical population and all s.o.f. refined to full occupancy within the standard deviation. One of the ammonium N atoms had a physically meaningless displacement parameter when refined anisotropically, and therefore the displacement parameters of both ammonium N atoms were refined isotropically. The H atoms of the ammonium cations could not be located unambiguously from difference Fourier maps. When placed in calculated positions, the displacement parameters of the H atoms inflated to unreasonable values, also accompanied with slightly higher residuals. Thus, the H atoms were excluded from the refinement (for discussion of a possible disorder of the ammonium cations, see Comment section). The highest remaining electron density in the final Fourier map is 0.78 Å from Ag3 and the deepest hole is 0.67 from Ag1.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A projection of the crystal structure along [010]. The two different silver monofluorophosphate sheets are denoted I and II, with the symmetry-related sheets denoted I' and I'', respectively. For clarity, only Ag—O bonds < 2.6 Å are drawn.
[Figure 2] Fig. 2. Details of the silver monofluorophosphate sheets. (a) Sheet I. (b) Sheet II. Atom shading as in Fig. 1. [Symmetry code: (i) -x, y, 1 - z.]
Ammonium trisilver bis[fluorophosphate(V)] top
Crystal data top
NH4Ag3(PO3F)2F(000) = 1984
Mr = 537.59Dx = 4.234 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2yCell parameters from 4493 reflections
a = 30.895 (4) Åθ = 2.6–30.5°
b = 5.5976 (7) ŵ = 7.31 mm1
c = 9.7522 (13) ÅT = 293 K
β = 90.027 (2)°Block, colourless
V = 1686.6 (4) Å30.14 × 0.08 × 0.03 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4876 independent reflections
Radiation source: fine-focus sealed tube4262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 30.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 4444
Tmin = 0.427, Tmax = 0.810k = 77
9818 measured reflectionsl = 1313
Refinement top
Refinement on F2H-atom parameters not refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0288P)2 + 9.9388P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.076Δρmax = 0.82 e Å3
S = 1.07Δρmin = 0.95 e Å3
4876 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
245 parametersExtinction coefficient: 0.00055 (3)
1 restraintAbsolute structure: Flack (1983), with 2094 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (5)
Secondary atom site location: difference Fourier map
Crystal data top
NH4Ag3(PO3F)2V = 1686.6 (4) Å3
Mr = 537.59Z = 8
Monoclinic, I2Mo Kα radiation
a = 30.895 (4) ŵ = 7.31 mm1
b = 5.5976 (7) ÅT = 293 K
c = 9.7522 (13) Å0.14 × 0.08 × 0.03 mm
β = 90.027 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4262 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.810Rint = 0.019
9818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters not refined
wR(F2) = 0.076Δρmax = 0.82 e Å3
S = 1.07Δρmin = 0.95 e Å3
4876 reflectionsAbsolute structure: Flack (1983), with 2094 Friedel pairs
245 parametersAbsolute structure parameter: 0.48 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.03968 (2)0.75964 (14)0.86502 (7)0.03129 (19)
Ag20.03911 (3)0.33330 (14)0.36558 (7)0.0329 (2)
Ag30.00000.2459 (3)0.00000.0316 (2)
Ag40.00000.8494 (3)0.50000.0312 (2)
Ag50.28956 (3)0.29461 (15)0.29565 (7)0.0336 (2)
Ag60.28921 (3)0.79663 (14)0.79172 (7)0.0335 (2)
Ag70.25042 (3)0.2882 (2)0.00072 (9)0.03186 (10)
P10.31127 (7)0.7974 (4)0.1267 (2)0.0188 (5)
P20.31171 (7)0.3022 (4)0.6267 (2)0.0196 (6)
P30.06110 (7)0.8449 (6)0.2013 (2)0.0194 (4)
P40.06217 (7)0.2501 (6)0.7011 (2)0.0185 (4)
F10.36166 (16)0.8189 (15)0.1562 (5)0.0442 (16)
F20.36241 (16)0.3027 (16)0.6562 (6)0.059 (3)
F30.11173 (16)0.8195 (13)0.1725 (5)0.0385 (17)
F40.11240 (15)0.2717 (13)0.6705 (5)0.0372 (15)
O10.30346 (14)0.9556 (8)0.0021 (4)0.0280 (9)
O20.30527 (16)0.4692 (9)0.5052 (5)0.0320 (10)
O30.28976 (15)0.8868 (9)0.2553 (4)0.0312 (10)
O40.29095 (16)0.3895 (9)0.7573 (5)0.0334 (10)
O50.30722 (15)0.5357 (8)0.1000 (5)0.0300 (9)
O60.30391 (16)0.0454 (9)0.5956 (5)0.0328 (10)
O70.0405 (2)0.6846 (15)0.0945 (6)0.0362 (17)
O80.04071 (18)0.4117 (13)0.6002 (6)0.0271 (14)
O90.0516 (2)0.1022 (15)0.1798 (6)0.0330 (17)
O100.0528 (2)0.9837 (11)0.6810 (6)0.0239 (13)
O110.05719 (19)0.7639 (16)0.3472 (5)0.0316 (16)
O120.05714 (19)0.3367 (13)0.8480 (5)0.0254 (13)
N10.1260 (2)0.3187 (18)0.0385 (7)0.0257 (6)*
N20.1250 (2)0.7819 (18)0.5331 (7)0.0257 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0371 (4)0.0296 (4)0.0272 (3)0.0005 (4)0.0046 (3)0.0078 (4)
Ag20.0386 (4)0.0316 (5)0.0286 (4)0.0055 (4)0.0051 (3)0.0076 (4)
Ag30.0286 (5)0.0397 (6)0.0264 (5)0.0000.0049 (4)0.000
Ag40.0291 (5)0.0386 (6)0.0259 (5)0.0000.0042 (4)0.000
Ag50.0402 (4)0.0329 (7)0.0277 (4)0.0001 (4)0.0002 (3)0.0001 (3)
Ag60.0410 (4)0.0306 (7)0.0290 (4)0.0001 (4)0.0013 (3)0.0038 (3)
Ag70.02958 (18)0.0293 (2)0.0367 (2)0.00015 (14)0.00880 (14)0.00082 (15)
P10.0213 (10)0.0170 (15)0.0182 (9)0.0016 (8)0.0018 (7)0.0004 (9)
P20.0201 (10)0.0218 (16)0.0169 (9)0.0004 (9)0.0008 (7)0.0012 (10)
P30.0173 (9)0.0238 (11)0.0171 (9)0.0026 (11)0.0042 (7)0.0008 (11)
P40.0249 (10)0.0167 (10)0.0141 (9)0.0037 (11)0.0000 (7)0.0020 (11)
F10.026 (2)0.072 (5)0.035 (3)0.007 (3)0.009 (2)0.004 (3)
F20.016 (2)0.111 (8)0.049 (3)0.005 (3)0.005 (2)0.003 (4)
F30.025 (2)0.049 (5)0.042 (3)0.011 (3)0.013 (2)0.002 (4)
F40.024 (2)0.038 (4)0.049 (3)0.005 (3)0.007 (2)0.000 (4)
O10.038 (2)0.027 (2)0.018 (2)0.0015 (18)0.0017 (16)0.0053 (17)
O20.046 (3)0.030 (2)0.020 (2)0.002 (2)0.0004 (18)0.0040 (18)
O30.044 (2)0.027 (2)0.023 (2)0.0022 (19)0.0113 (18)0.0024 (18)
O40.048 (3)0.028 (3)0.024 (2)0.000 (2)0.0103 (19)0.0046 (18)
O50.034 (2)0.022 (2)0.034 (3)0.0033 (17)0.0007 (18)0.0062 (18)
O60.043 (3)0.026 (2)0.030 (2)0.0043 (19)0.0010 (19)0.0086 (19)
O70.053 (4)0.034 (4)0.021 (3)0.010 (4)0.004 (3)0.003 (3)
O80.035 (3)0.023 (3)0.023 (3)0.003 (3)0.002 (2)0.006 (3)
O90.044 (4)0.033 (4)0.022 (3)0.005 (4)0.005 (3)0.007 (3)
O100.035 (3)0.010 (3)0.026 (3)0.000 (3)0.000 (2)0.005 (3)
O110.030 (3)0.046 (4)0.019 (3)0.010 (3)0.003 (2)0.018 (3)
O120.040 (3)0.019 (3)0.018 (3)0.011 (3)0.004 (2)0.002 (3)
Geometric parameters (Å, º) top
Ag1—O102.227 (6)F1—N2viii3.209 (11)
Ag1—O7i2.277 (6)F1—N2vii3.551 (11)
Ag1—O122.434 (7)F2—N2xi3.056 (9)
Ag1—O7ii2.545 (7)F2—N1vii3.328 (12)
Ag1—Ag3iii3.2628 (15)F2—N1viii3.476 (12)
Ag1—Ag3i3.3922 (15)F3—N1ix3.116 (11)
Ag1—Ag43.7978 (8)F3—N13.124 (10)
Ag2—O92.259 (7)F3—N23.547 (8)
Ag2—O82.330 (6)F4—N2iv3.076 (11)
Ag2—O112.481 (9)F4—N23.179 (11)
Ag2—O8ii2.527 (6)F4—N1i3.623 (9)
Ag2—Ag4iv3.2429 (15)O1—Ag6v2.279 (5)
Ag2—Ag43.3951 (15)O1—Ag7ix2.480 (5)
Ag2—Ag33.7955 (9)O1—N2viii2.887 (9)
Ag3—O12ii2.361 (5)O1—N2vii4.384 (10)
Ag3—O12v2.361 (5)O2—Ag7viii2.480 (5)
Ag3—O9vi2.501 (7)O2—N1viii2.919 (10)
Ag3—O92.501 (7)O2—N1vii4.237 (10)
Ag3—O72.906 (8)O3—Ag5ix2.317 (5)
Ag3—O7vi2.906 (8)O3—Ag5viii2.553 (5)
Ag4—O11ii2.361 (6)O3—Ag7viii2.741 (4)
Ag4—O112.361 (6)O3—N1viii3.311 (8)
Ag4—O10ii2.518 (6)O3—Ag7ix3.562 (5)
Ag4—O102.518 (6)O3—N2viii4.443 (9)
Ag4—O8ii2.922 (7)O4—Ag6xi2.575 (5)
Ag4—O82.922 (7)O4—Ag7i2.743 (5)
Ag5—O22.317 (5)O4—N2xi3.357 (8)
Ag5—O3iv2.317 (5)O4—Ag7viii3.598 (5)
Ag5—O52.400 (5)O5—N2vii2.844 (9)
Ag5—O3vii2.553 (5)O5—N1viii4.380 (8)
Ag5—Ag73.1197 (13)O6—Ag7vii2.402 (5)
Ag5—Ag7viii3.6203 (13)O6—Ag6iv2.409 (5)
Ag5—Ag7vii3.6752 (13)O6—N1vii2.831 (9)
Ag6—O1i2.279 (5)O6—N2xi4.436 (8)
Ag6—O42.304 (5)O7—Ag1v2.277 (6)
Ag6—O6ix2.409 (5)O7—Ag1ii2.545 (7)
Ag6—O4x2.575 (5)O7—N13.386 (11)
Ag6—Ag7viii3.1035 (12)O7—Ag3ix3.506 (9)
Ag6—Ag7iii3.6283 (13)O7—N1ix4.457 (12)
Ag6—Ag7i3.7003 (13)O8—Ag2ii2.527 (6)
Ag7—O6viii2.402 (5)O8—N23.393 (10)
Ag7—O52.436 (5)O8—Ag4iv3.527 (7)
Ag7—O1iv2.480 (5)O8—N2iv4.432 (11)
Ag7—O2vii2.480 (5)O9—P3iv1.485 (9)
Ag7—O3vii2.741 (4)O9—Ag4iv3.781 (7)
Ag7—O4v2.743 (5)O10—P4ix1.532 (7)
P1—O51.493 (5)O11—N14.449 (10)
P1—O31.504 (5)O12—Ag3i2.361 (5)
P1—O11.523 (5)O12—N1i2.826 (9)
P1—F11.587 (5)N1—O12v2.826 (9)
P2—O61.489 (5)N1—O6viii2.831 (9)
P2—O41.508 (5)N1—O2vii2.919 (9)
P2—O21.522 (5)O9—N12.942 (10)
P2—F21.592 (5)N1—F1vii3.002 (8)
P3—O9ix1.485 (9)N1—F3iv3.116 (11)
P3—O111.498 (6)N1—O3vii3.311 (8)
P3—O71.514 (7)N2—O5viii2.844 (9)
P3—F31.596 (5)N2—O1vii2.887 (9)
P4—O81.492 (7)N2—F2x3.056 (9)
P4—O121.520 (6)N2—F4ix3.076 (11)
P4—O10iv1.532 (7)N2—F1vii3.209 (11)
P4—F41.585 (5)O10—N22.887 (9)
F1—N1viii3.002 (8)O11—N22.773 (9)
O10—Ag1—O7i153.4 (3)P2—O4—Ag7i149.1 (3)
O10—Ag1—O12116.9 (2)Ag6—O4—Ag7i93.89 (15)
O7i—Ag1—O1283.4 (2)Ag6xi—O4—Ag7i71.32 (12)
O10—Ag1—O7ii113.3 (2)P2—O4—N2xi97.3 (3)
O7i—Ag1—O7ii80.1 (2)Ag6—O4—N2xi96.1 (2)
O12—Ag1—O7ii93.8 (2)Ag6xi—O4—N2xi145.1 (2)
O9—Ag2—O8153.1 (3)Ag7i—O4—N2xi77.83 (16)
O9—Ag2—O11117.4 (2)P2—O4—Ag7viii76.2 (2)
O8—Ag2—O1183.3 (2)Ag6—O4—Ag7viii58.67 (11)
O9—Ag2—O8ii111.8 (2)Ag6xi—O4—Ag7viii69.76 (12)
O8—Ag2—O8ii81.8 (2)Ag7i—O4—Ag7viii124.84 (16)
O11—Ag2—O8ii93.5 (2)N2xi—O4—Ag7viii144.2 (2)
O12ii—Ag3—O12v155.1 (4)P1—O5—Ag5115.6 (3)
O12ii—Ag3—O9vi91.9 (2)P1—O5—Ag7133.4 (3)
O12v—Ag3—O9vi96.0 (2)Ag5—O5—Ag780.34 (14)
O12ii—Ag3—O996.0 (2)P1—O5—N2vii120.5 (3)
O12v—Ag3—O991.9 (2)Ag5—O5—N2vii104.5 (2)
O9vi—Ag3—O9142.5 (4)Ag7—O5—N2vii93.7 (2)
O12ii—Ag3—O786.6 (2)P1—O5—N1viii57.7 (2)
O12v—Ag3—O772.2 (2)Ag5—O5—N1viii70.79 (16)
O9vi—Ag3—O7140.2 (2)Ag7—O5—N1viii149.8 (2)
O9—Ag3—O777.0 (2)N2vii—O5—N1viii101.63 (18)
O12ii—Ag3—O7vi72.2 (2)P2—O6—Ag7vii140.5 (3)
O12v—Ag3—O7vi86.6 (2)P2—O6—Ag6iv115.3 (3)
O9vi—Ag3—O7vi77.0 (2)Ag7vii—O6—Ag6iv80.33 (15)
O9—Ag3—O7vi140.2 (2)P2—O6—N1vii113.8 (3)
O7—Ag3—O7vi64.7 (3)Ag7vii—O6—N1vii94.9 (2)
O11ii—Ag4—O11156.6 (4)Ag6iv—O6—N1vii104.6 (2)
O11ii—Ag4—O10ii91.0 (2)P2—O6—N2xi57.7 (2)
O11—Ag4—O10ii95.93 (19)Ag7vii—O6—N2xi147.5 (2)
O11ii—Ag4—O1095.93 (19)Ag6iv—O6—N2xi67.54 (16)
O11—Ag4—O1091.0 (2)N1vii—O6—N2xi97.61 (19)
O10ii—Ag4—O10145.3 (3)P3—O7—Ag1v124.8 (5)
O11ii—Ag4—O8ii73.7 (2)P3—O7—Ag1ii101.7 (4)
O11—Ag4—O8ii86.6 (2)Ag1v—O7—Ag1ii96.4 (2)
O10ii—Ag4—O8ii74.77 (19)P3—O7—Ag3154.1 (4)
O10—Ag4—O8ii139.75 (19)Ag1v—O7—Ag380.8 (2)
O11ii—Ag4—O886.6 (2)Ag1ii—O7—Ag376.64 (18)
O11—Ag4—O873.7 (2)P3—O7—N198.2 (4)
O10ii—Ag4—O8139.75 (19)Ag1v—O7—N187.8 (3)
O10—Ag4—O874.77 (19)Ag1ii—O7—N1152.2 (3)
O8ii—Ag4—O866.0 (3)Ag3—O7—N176.9 (2)
O2—Ag5—O3iv124.41 (16)P3—O7—Ag3ix78.4 (4)
O2—Ag5—O5114.61 (16)Ag1v—O7—Ag3ix64.68 (19)
O3iv—Ag5—O5114.74 (15)Ag1ii—O7—Ag3ix62.93 (18)
O2—Ag5—O3vii106.68 (16)Ag3—O7—Ag3ix121.3 (2)
O3iv—Ag5—O3vii99.71 (14)N1—O7—Ag3ix141.1 (3)
O5—Ag5—O3vii87.15 (15)P3—O7—N1ix50.5 (3)
O1i—Ag6—O4120.85 (17)Ag1v—O7—N1ix74.9 (2)
O1i—Ag6—O6ix116.91 (16)Ag1ii—O7—N1ix117.7 (3)
O4—Ag6—O6ix116.85 (16)Ag3—O7—N1ix152.8 (2)
O1i—Ag6—O4x105.88 (16)N1—O7—N1ix90.0 (2)
O4—Ag6—O4x101.25 (15)Ag3ix—O7—N1ix57.70 (15)
O6ix—Ag6—O4x85.26 (16)P4—O8—Ag2122.9 (4)
O6viii—Ag7—O5108.52 (18)P4—O8—Ag2ii103.9 (3)
O6viii—Ag7—O1iv155.99 (16)Ag2—O8—Ag2ii94.4 (2)
O5—Ag7—O1iv87.08 (16)P4—O8—Ag4156.9 (4)
O6viii—Ag7—O2vii86.43 (17)Ag2—O8—Ag479.67 (17)
O5—Ag7—O2vii156.66 (16)Ag2ii—O8—Ag476.69 (16)
O1iv—Ag7—O2vii85.29 (17)P4—O8—N299.0 (3)
O6viii—Ag7—O3vii84.38 (16)Ag2—O8—N286.7 (2)
O5—Ag7—O3vii82.34 (16)Ag2ii—O8—N2151.8 (3)
O1iv—Ag7—O3vii116.49 (14)Ag4—O8—N275.7 (2)
O2vii—Ag7—O3vii81.41 (15)P4—O8—Ag4iv78.5 (3)
O6viii—Ag7—O4v81.77 (16)Ag2—O8—Ag4iv63.43 (16)
O5—Ag7—O4v84.12 (16)Ag2ii—O8—Ag4iv62.22 (14)
O1iv—Ag7—O4v81.84 (15)Ag4—O8—Ag4iv120.15 (18)
O2vii—Ag7—O4v116.46 (15)N2—O8—Ag4iv139.9 (2)
O3vii—Ag7—O4v156.45 (15)P4—O8—N2iv49.8 (3)
O5—P1—O3115.7 (3)Ag2—O8—N2iv73.60 (19)
O5—P1—O1114.7 (3)Ag2ii—O8—N2iv117.1 (2)
O3—P1—O1113.7 (3)Ag4—O8—N2iv150.5 (2)
O5—P1—F1100.8 (4)N2—O8—N2iv90.34 (19)
O3—P1—F1104.9 (3)Ag4iv—O8—N2iv57.25 (14)
O1—P1—F1104.8 (3)P3iv—O9—Ag2118.4 (4)
O6—P2—O4114.6 (3)P3iv—O9—Ag3122.5 (4)
O6—P2—O2114.4 (3)Ag2—O9—Ag3105.6 (3)
O4—P2—O2113.8 (3)P3iv—O9—N1108.1 (4)
O6—P2—F2101.4 (4)Ag2—O9—N1105.9 (3)
O4—P2—F2105.4 (3)Ag3—O9—N192.1 (2)
O2—P2—F2105.5 (3)P3iv—O9—Ag4iv66.7 (3)
O9ix—P3—O11114.3 (5)Ag2—O9—Ag4iv58.67 (14)
O9ix—P3—O7113.2 (5)Ag3—O9—Ag4iv115.5 (2)
O11—P3—O7116.1 (5)N1—O9—Ag4iv150.5 (3)
O9ix—P3—F3104.8 (4)P4ix—O10—Ag1118.6 (4)
O11—P3—F3102.7 (3)P4ix—O10—Ag4120.1 (3)
O7—P3—F3103.7 (4)Ag1—O10—Ag4106.2 (2)
O8—P4—O12112.5 (4)P4ix—O10—N2107.4 (4)
O8—P4—O10iv115.0 (4)Ag1—O10—N2108.9 (3)
O12—P4—O10iv114.3 (4)Ag4—O10—N292.0 (2)
O8—P4—F4105.3 (3)P4ix—O10—Ag3iii66.5 (2)
O12—P4—F4104.7 (3)Ag1—O10—Ag3iii58.68 (14)
O10iv—P4—F4103.5 (4)Ag4—O10—Ag3iii114.2 (2)
P1—F1—N1viii107.7 (3)N2—O10—Ag3iii152.9 (2)
P1—F1—N2viii94.8 (3)P3—O11—Ag4126.8 (4)
N1viii—F1—N2viii123.7 (4)P3—O11—Ag2112.4 (4)
P1—F1—N2vii87.5 (3)Ag4—O11—Ag289.0 (2)
N1viii—F1—N2vii120.0 (3)P3—O11—N2123.3 (4)
N2viii—F1—N2vii111.7 (2)Ag4—O11—N298.4 (2)
P2—F2—N2xi107.7 (3)Ag2—O11—N299.1 (3)
P2—F2—N1vii90.1 (3)P3—O11—N159.2 (3)
N2xi—F2—N1vii121.4 (4)Ag4—O11—N1154.0 (3)
P2—F2—N1viii90.2 (3)Ag2—O11—N167.2 (2)
N2xi—F2—N1viii124.1 (4)N2—O11—N195.8 (3)
N1vii—F2—N1viii110.7 (2)P4—O12—Ag3i126.9 (3)
P3—F3—N1ix97.6 (3)P4—O12—Ag1113.4 (4)
P3—F3—N1107.0 (3)Ag3i—O12—Ag190.0 (2)
N1ix—F3—N1127.5 (3)P4—O12—N1i122.1 (4)
P3—F3—N286.8 (2)Ag3i—O12—N1i98.2 (2)
N1ix—F3—N2116.9 (3)Ag1—O12—N1i99.0 (3)
N1—F3—N2110.2 (3)O12v—N1—O6viii104.8 (3)
P4—F4—N2iv98.0 (3)O12v—N1—O2vii118.4 (3)
P4—F4—N2105.6 (3)O6viii—N1—O2vii71.1 (2)
N2iv—F4—N2127.0 (3)O12v—N1—O974.6 (2)
P4—F4—N1i86.1 (2)O6viii—N1—O9177.7 (4)
N2iv—F4—N1i118.8 (3)O2vii—N1—O9111.2 (3)
N2—F4—N1i109.8 (3)O12v—N1—F1vii138.4 (3)
P1—O1—Ag6v121.5 (3)O6viii—N1—F1vii111.2 (3)
P1—O1—Ag7ix123.0 (3)O2vii—N1—F1vii93.0 (3)
Ag6v—O1—Ag7ix99.26 (16)O9—N1—F1vii68.6 (2)
P1—O1—N2viii110.0 (3)O12v—N1—F3iv101.6 (3)
Ag6v—O1—N2viii106.7 (2)O6viii—N1—F3iv134.8 (3)
Ag7ix—O1—N2viii91.7 (2)O2vii—N1—F3iv64.1 (2)
P1—O1—Ag762.21 (18)O9—N1—F3iv47.4 (2)
Ag6v—O1—Ag764.03 (11)F1vii—N1—F3iv66.6 (2)
Ag7ix—O1—Ag7114.97 (15)O12v—N1—F397.9 (3)
N2viii—O1—Ag7152.4 (2)O6viii—N1—F384.2 (3)
P1—O1—N2vii58.86 (19)O2vii—N1—F3139.9 (3)
Ag6v—O1—N2vii71.99 (14)O9—N1—F393.6 (3)
Ag7ix—O1—N2vii168.02 (19)F1vii—N1—F366.6 (2)
N2viii—O1—N2vii98.6 (2)F3iv—N1—F3127.5 (3)
Ag7—O1—N2vii54.16 (11)O12v—N1—O3vii170.7 (4)
P2—O2—Ag5117.1 (3)O6viii—N1—O3vii68.13 (19)
P2—O2—Ag7viii123.4 (3)O2vii—N1—O3vii66.04 (18)
Ag5—O2—Ag7viii97.94 (17)O9—N1—O3vii112.2 (3)
P2—O2—N1viii115.5 (3)F1vii—N1—O3vii45.40 (15)
Ag5—O2—N1viii107.8 (2)F3iv—N1—O3vii87.7 (2)
Ag7viii—O2—N1viii91.1 (2)F3—N1—O3vii75.7 (2)
P2—O2—N1vii59.0 (2)O11—N2—O5viii106.0 (3)
Ag5—O2—N1vii69.72 (15)O11—N2—O1075.9 (3)
Ag7viii—O2—N1vii164.6 (2)O5viii—N2—O10127.0 (4)
N1viii—O2—N1vii101.3 (2)O11—N2—O1vii118.5 (3)
P1—O3—Ag5ix118.1 (3)O5viii—N2—O1vii72.4 (2)
P1—O3—Ag5viii101.2 (2)O10—N2—O1vii154.0 (3)
Ag5ix—O3—Ag5viii103.27 (18)O11—N2—F2x138.2 (3)
P1—O3—Ag7viii149.0 (3)O5viii—N2—F2x109.9 (3)
Ag5ix—O3—Ag7viii92.84 (15)O10—N2—F2x65.7 (2)
Ag5viii—O3—Ag7viii72.12 (11)O1vii—N2—F2x92.6 (3)
P1—O3—N1viii96.9 (3)O11—N2—F4ix102.8 (3)
Ag5ix—O3—N1viii90.7 (2)O5viii—N2—F4ix81.2 (3)
Ag5viii—O3—N1viii148.1 (2)O10—N2—F4ix48.4 (2)
Ag7viii—O3—N1viii78.80 (16)O1vii—N2—F4ix135.5 (3)
P1—O3—Ag7ix77.3 (2)F2x—N2—F4ix63.3 (2)
Ag5ix—O3—Ag7ix59.72 (11)O11—N2—F498.6 (3)
Ag5viii—O3—Ag7ix70.41 (12)O5viii—N2—F4137.0 (3)
Ag7viii—O3—Ag7ix125.28 (16)O10—N2—F492.6 (2)
N1viii—O3—Ag7ix139.8 (2)O1vii—N2—F464.9 (2)
P1—O3—N2viii51.4 (2)F2x—N2—F468.4 (2)
Ag5ix—O3—N2viii67.58 (16)F4ix—N2—F4127.0 (3)
Ag5viii—O3—N2viii123.12 (17)O11—N2—F1vii72.0 (3)
Ag7viii—O3—N2viii156.73 (19)O5viii—N2—F1vii92.7 (2)
N1viii—O3—N2viii88.62 (17)O10—N2—F1vii134.6 (3)
Ag7ix—O3—N2viii56.41 (11)O1vii—N2—F1vii47.33 (18)
P2—O4—Ag6117.0 (3)F2x—N2—F1vii125.8 (4)
P2—O4—Ag6xi100.8 (2)F4ix—N2—F1vii170.7 (3)
Ag6—O4—Ag6xi101.79 (18)F4—N2—F1vii62.1 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y, z1; (vi) x, y, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1/2, y+1/2, z+3/2; (xi) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaNH4Ag3(PO3F)2
Mr537.59
Crystal system, space groupMonoclinic, I2
Temperature (K)293
a, b, c (Å)30.895 (4), 5.5976 (7), 9.7522 (13)
β (°) 90.027 (2)
V3)1686.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)7.31
Crystal size (mm)0.14 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.427, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
9818, 4876, 4262
Rint0.019
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.07
No. of reflections4876
No. of parameters245
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.82, 0.95
Absolute structureFlack (1983), with 2094 Friedel pairs
Absolute structure parameter0.48 (5)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2004), SHELXL97.

Selected geometric parameters (Å, º) top
Ag1—O102.227 (6)Ag6—O42.304 (5)
Ag1—O7i2.277 (6)Ag6—O6vii2.409 (5)
Ag1—O122.434 (7)Ag6—O4viii2.575 (5)
Ag1—O7ii2.545 (7)Ag7—O6ix2.402 (5)
Ag2—O92.259 (7)Ag7—O52.436 (5)
Ag2—O82.330 (6)Ag7—O1v2.480 (5)
Ag2—O112.481 (9)Ag7—O2vi2.480 (5)
Ag2—O8ii2.527 (6)Ag7—O3vi2.741 (4)
Ag3—O12ii2.361 (5)Ag7—O4iii2.743 (5)
Ag3—O12iii2.361 (5)P1—O51.493 (5)
Ag3—O9iv2.501 (7)P1—O31.504 (5)
Ag3—O92.501 (7)P1—O11.523 (5)
Ag3—O72.906 (8)P1—F11.587 (5)
Ag3—O7iv2.906 (8)P2—O61.489 (5)
Ag4—O11ii2.361 (6)P2—O41.508 (5)
Ag4—O112.361 (6)P2—O21.522 (5)
Ag4—O10ii2.518 (6)P2—F21.592 (5)
Ag4—O102.518 (6)P3—O9vii1.485 (9)
Ag4—O8ii2.922 (7)P3—O111.498 (6)
Ag4—O82.922 (7)P3—O71.514 (7)
Ag5—O22.317 (5)P3—F31.596 (5)
Ag5—O3v2.317 (5)P4—O81.492 (7)
Ag5—O52.400 (5)P4—O121.520 (6)
Ag5—O3vi2.553 (5)P4—O10v1.532 (7)
Ag6—O1i2.279 (5)P4—F41.585 (5)
O5—P1—O3115.7 (3)O9vii—P3—O11114.3 (5)
O5—P1—O1114.7 (3)O9vii—P3—O7113.2 (5)
O3—P1—O1113.7 (3)O11—P3—O7116.1 (5)
O5—P1—F1100.8 (4)O9vii—P3—F3104.8 (4)
O3—P1—F1104.9 (3)O11—P3—F3102.7 (3)
O1—P1—F1104.8 (3)O7—P3—F3103.7 (4)
O6—P2—O4114.6 (3)O8—P4—O12112.5 (4)
O6—P2—O2114.4 (3)O8—P4—O10v115.0 (4)
O4—P2—O2113.8 (3)O12—P4—O10v114.3 (4)
O6—P2—F2101.4 (4)O8—P4—F4105.3 (3)
O4—P2—F2105.4 (3)O12—P4—F4104.7 (3)
O2—P2—F2105.5 (3)O10v—P4—F4103.5 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y, z; (v) x, y1, z; (vi) x+1/2, y1/2, z+1/2; (vii) x, y+1, z; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1/2, y+1/2, z+1/2.
Hydrogen-bonding geometry top
D···ADistance (Å)D···ADistance (Å)
N1···O12i2.826 (9)N1···O6ii2.831 (9)
N1···O2iii2.919 (10)N1···O92.942 (10)
N1···F1iii3.002 (8)N1···F3iv3.116 (11)
N2···O112.773 (9)N2···O5ii2.844 (9)
N2···O102.887 (9)N2···O1iii2.887 (9)
N2···F2v3.056 (9)N2···F4vi3.076 (11)
Symmetry codes: (i) x, y, z-1; (ii) 1/2-x, 1/2+y, 1/2-z; (iii) 1/2-x, y-1/2, 1/2-z; (iv) x, y-1, z; (v) 1/2-x, 1/2+y, 3/2-z; (vi) x, 1+y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds