Download citation
Download citation
link to html
Sodium trichloro­methane­sulfonate monohydrate, Na+·CCl3SO3·H2O, crystallizes in P21/a with all the atoms located in general positions. The trichloro­methane­sulfonate (trichlate) anion consists of pyramidal SO3 and CCl3 groups connected via an S—C bond in a staggered conformation with approximate C3v symmetry. The water mol­ecule is hydrogen bonded to the sulfonate O atoms, with one water H atom forming weak bifurcated O—H...O hydrogen bonds to two different trichlate ions. Two water O atoms and three O atoms from different SO3 groups form a square-pyramidal arrangement around the sodium ion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106026448/bc3009sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106026448/bc3009Isup2.hkl
Contains datablock I

CCDC reference: 621262

Comment top

Trichloromethanesulfonate (CCl3SO3-) salts were first prepared more than 150 years ago (Kolbe, 1845). The trichlate and the related trifluoromethanesulfonate (CF3SO3-) and mesylate (CH3SO3-) anions have been studied by means of vibrational spectroscopy complemented by normal coordinate analysis (Miles et al., 1969; Bürger et al., 1970). Gejji et al. (1994) performed quantum chemical calculations of the structure and vibrational frequencies of trichloromethanesulfonic acid, CCl3SO3H, and its anion. Edwards & Smith (1991) reported vibrational assignments of the acid and determined its dissociation constant in 2 mol dm-3 aqueous solution by Raman measurements. A recent 35Cl nuclear quadrupole resonance study concluded that the trichlate anion has weaker coordination ability than several chloroacetate anions (Wulfsberg et al., 2004). The present study of sodium trichloromethanesulfonate monohydrate (CCl3SO3Na·H2O) seems to be the first crystal structure reported containing a trichlate anion.

The crystal structure is described in the space group P21/a with all atoms located in general sites (4e). The pyramidal SO3 and CCl3 groups of the triclate anion are in a staggered conformation (Fig. 1 and Table 1). One water H atom (H42) is involved in a weak, bifurcated hydrogen bond to two O atoms, O1 and O2, of different trichlate ions, while the other H atom (H41) forms a shorter hydrogen bond (Fig. 1 and Table 2). The Na+ ion has an almost square-pyramidal environment of O atoms from two water molecules and three different SO3 groups, with a mean Na+···O distance of 2.38 Å.

As shown in Table 3, the mean S—O bond distance is not significantly influenced by hydrogen bonding or by replacing the –CCl3 group with –CH3 or –CF3. The C—S bond increases considerably from the mesylate (H3C—SO3-) to the trifluoromethanesulfonate (F3C—SO3-) ion, with an even longer C—S bond for the trichlate (Cl3C—SO3-), as predicted by theoretical studies. The electron-withdrawing effect of the electronegative Cl and F atoms evidently weakens the C—S bond and makes the O—S—O angles about two degrees larger than in the mesylate ion. The mean C—Cl bond length and Cl—C—Cl angle determined in this work agree well with the values found for trichloromethane (Sutton, 1965). Please check all of the values in Table 2 carefully; O4—H42 distance in _geom_bond loop in CIF is 0.74 (5).

Experimental top

CCl3SO3Na·H2O was obtained from a solution prepared by stirring and heating [323 (2) K] wax-like crystals of trichloromethanesulfonyl chloride (CCl3SO2Cl, 2.547 g, Aldrich) in an excess (36 ml) of 1 mol dm-3 sodium hydroxide solution (Edwards & Smith, 1991). After evaporating the solvent, first in a rotary evaporator at 355 (2) K and then at reduced pressure in a vacuum desiccator, colourless crystals were obtained, which recrystallized from water.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1997); cell refinement: CELL in IPDS Software (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The trichlate ion and the environment of the sodium ion and the water molecule (40% probability displacement ellipsoids). Broken lines indicate hydrogen bonds (see Table 2 for geometric details).
Sodium trichloromethanesulfonate monohydrate top
Crystal data top
Na+·CCl3O3S·H2OF(000) = 472
Mr = 239.43Dx = 2.072 Mg m3
MonoclinicP21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 221 reflections
a = 10.727 (7) Åθ = 3.5–27.1°
b = 5.828 (3) ŵ = 1.47 mm1
c = 12.613 (9) ÅT = 291 K
β = 103.24 (8)°Pentagonal prism, colourless
V = 767.6 (9) Å30.5 × 0.3 × 0.1 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
1805 independent reflections
Radiation source: fine-focus sealed tube1312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 6.67 pixels mm-1θmax = 27.8°, θmin = 3.3°
φ scansh = 1414
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 77
Tmin = 0.579, Tmax = 0.953l = 1616
6794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.127All H-atom parameters refined
S = 0.96 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
1805 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
Na+·CCl3O3S·H2OV = 767.6 (9) Å3
Mr = 239.43Z = 4
MonoclinicP21/aMo Kα radiation
a = 10.727 (7) ŵ = 1.47 mm1
b = 5.828 (3) ÅT = 291 K
c = 12.613 (9) Å0.5 × 0.3 × 0.1 mm
β = 103.24 (8)°
Data collection top
Stoe IPDS
diffractometer
1805 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
1312 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.953Rint = 0.100
6794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127All H-atom parameters refined
S = 0.96Δρmax = 0.86 e Å3
1805 reflectionsΔρmin = 0.43 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.05676 (7)0.04739 (11)0.17539 (7)0.0266 (2)
O10.0697 (2)0.1198 (4)0.1188 (2)0.0379 (6)
O20.1600 (2)0.1947 (4)0.1607 (2)0.0401 (6)
O30.0811 (2)0.1956 (4)0.1632 (2)0.0333 (5)
C0.0572 (3)0.0779 (5)0.3212 (3)0.0317 (7)
Cl10.07508 (10)0.07896 (17)0.34637 (9)0.0490 (3)
Cl20.20084 (10)0.02867 (19)0.40237 (9)0.0544 (3)
Cl30.03900 (10)0.37046 (15)0.35018 (9)0.0504 (3)
Na0.27893 (13)0.0510 (2)0.09992 (13)0.0393 (4)
O40.3336 (3)0.1051 (4)0.0781 (2)0.0391 (6)
H410.409 (5)0.124 (7)0.116 (4)0.045 (12)*
H420.315 (5)0.003 (9)0.107 (4)0.057 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0232 (4)0.0190 (4)0.0403 (5)0.0016 (3)0.0132 (3)0.0001 (3)
O10.0295 (12)0.0314 (12)0.0515 (15)0.0041 (9)0.0066 (10)0.0024 (11)
O20.0377 (13)0.0285 (12)0.0617 (17)0.0095 (9)0.0271 (12)0.0012 (11)
O30.0315 (11)0.0195 (10)0.0525 (15)0.0002 (8)0.0170 (10)0.0057 (10)
C0.0335 (16)0.0222 (13)0.0419 (18)0.0024 (12)0.0142 (14)0.0014 (13)
Cl10.0537 (6)0.0431 (5)0.0606 (6)0.0089 (4)0.0349 (5)0.0012 (4)
Cl20.0479 (6)0.0595 (6)0.0507 (6)0.0182 (4)0.0007 (4)0.0009 (5)
Cl30.0650 (6)0.0248 (4)0.0639 (7)0.0042 (4)0.0201 (5)0.0117 (4)
Na0.0325 (7)0.0251 (6)0.0652 (10)0.0040 (5)0.0211 (7)0.0080 (6)
O40.0313 (13)0.0244 (12)0.0607 (18)0.0029 (9)0.0087 (12)0.0037 (11)
Geometric parameters (Å, º) top
S—O11.444 (3)Na—O2iii2.358 (3)
S—O21.446 (2)Na—O42.368 (4)
S—O31.455 (2)Na—O3iv2.371 (3)
S—C1.847 (4)Na—O4v2.388 (3)
O1—Na2.417 (3)Na—Nav3.993 (3)
O2—Nai2.358 (3)Na—Navi3.993 (3)
O3—Naii2.371 (3)Na—H422.57 (5)
C—Cl21.757 (4)O4—Navi2.388 (3)
C—Cl31.764 (3)O4—H410.85 (5)
C—Cl11.777 (3)O4—H420.74 (5)
O1—S—O2115.05 (15)O2iii—Na—Nav160.53 (10)
O1—S—O3113.80 (14)O4—Na—Nav73.89 (10)
O2—S—O3113.77 (13)O3iv—Na—Nav87.72 (8)
O1—S—C104.58 (17)O4v—Na—Nav32.74 (8)
O2—S—C104.09 (16)O1—Na—Nav95.04 (9)
O3—S—C103.84 (14)O2iii—Na—Navi69.96 (7)
S—O1—Na132.41 (15)O4—Na—Navi33.05 (7)
S—O2—Nai147.40 (16)O3iv—Na—Navi150.34 (9)
S—O3—Naii141.68 (13)O4v—Na—Navi112.57 (10)
Cl2—C—Cl3110.18 (19)O1—Na—Navi59.10 (8)
Cl2—C—Cl1110.11 (19)Nav—Na—Navi93.72 (8)
Cl3—C—Cl1109.25 (17)O2iii—Na—H42103.5 (12)
Cl2—C—S110.37 (18)O4—Na—H4216.8 (12)
Cl3—C—S108.92 (18)O3iv—Na—H42117.3 (11)
Cl1—C—S107.97 (19)O4v—Na—H4287.1 (12)
O2iii—Na—O486.72 (11)O1—Na—H4288.3 (11)
O2iii—Na—O3iv101.21 (10)Nav—Na—H4257.2 (12)
O4—Na—O3iv121.34 (12)Navi—Na—H4243.8 (11)
O2iii—Na—O4v164.20 (12)Na—O4—Navi114.21 (13)
O4—Na—O4v103.58 (9)Na—O4—H41125 (3)
O3iv—Na—O4v83.81 (10)Navi—O4—H41106 (3)
O2iii—Na—O185.76 (10)Na—O4—H4297 (4)
O4—Na—O187.58 (12)Navi—O4—H42115 (4)
O3iv—Na—O1150.33 (11)H41—O4—H4299 (5)
O4v—Na—O182.80 (10)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y1/2, z; (v) x1/2, y1/2, z; (vi) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3vi0.85 (5)2.09 (5)2.871 (4)153 (4)
O4—H42···O1v0.75 (5)2.54 (5)3.016 (4)123 (5)
O4—H42···O2vii0.75 (5)2.25 (5)2.915 (4)148 (5)
Symmetry codes: (v) x1/2, y1/2, z; (vi) x1/2, y+1/2, z; (vii) x, y, z.

Experimental details

Crystal data
Chemical formulaNa+·CCl3O3S·H2O
Mr239.43
Crystal system, space groupMonoclinicP21/a
Temperature (K)291
a, b, c (Å)10.727 (7), 5.828 (3), 12.613 (9)
β (°) 103.24 (8)
V3)767.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.5 × 0.3 × 0.1
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.579, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
6794, 1805, 1312
Rint0.100
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 0.96
No. of reflections1805
No. of parameters99
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.86, 0.43

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 1997), CELL in IPDS Software (Stoe & Cie, 1997), INTEGRATE in IPDS Software (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S—O11.444 (3)C—Cl21.757 (4)
S—O21.446 (2)C—Cl31.764 (3)
S—O31.455 (2)C—Cl11.777 (3)
S—C1.847 (4)
O1—S—O2115.05 (15)O3—S—C103.84 (14)
O1—S—O3113.80 (14)Cl2—C—Cl3110.18 (19)
O2—S—O3113.77 (13)Cl2—C—Cl1110.11 (19)
O1—S—C104.58 (17)Cl3—C—Cl1109.25 (17)
O2—S—C104.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3i0.85 (5)2.09 (5)2.871 (4)153 (4)
O4—H42···O1ii0.75 (5)2.54 (5)3.016 (4)123 (5)
O4—H42···O2iii0.75 (5)2.25 (5)2.915 (4)148 (5)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x, y, z.
S—C and mean S—O and C—X bond distances (Å), and O—S—O, C—S—O and X—C—X angles (°), for several related compounds (X = F or Cl) top
CompoundS-CS-OC-XO-S-OC-S-OX-C-X
11.754 (2)1.45-111.9106.9-
21.746 (5)1.45-112.8105.9-
31.747 (6)1.44-112.5106.2-
41.811 (4)1.431.31114.3104.1108.5
51.809 (4)1.431.31113.8104.3108.7
61.833 (6)1.441.31114.4103.9109.3
71.8781.4381.777-102.3-
81.9071.4761.778-101.7-
91.847 (4)1.451.77114.2104.2109.8
10--1.76--110.9
Notes: (1) CH3SO3Na (Wei & Hingerty, 1981); (2) C20H23ClN3OS+.CH3SO3- (Wei, 1981); (3) C21H26NO+.CH3SO3-.H2O (Jones et al., 1978); (4) CF3SO3H.2H2O at 225K (Delaplane et al., 1975); (5) CF3SO3Na (Sofina et al., 2003); (6) Tb(H2O)9(CF3SO3)3 (Abbasi et al., 2005); (7) CCl3SO3- at HF 6-31G* (Gejji et al., 1994); (8) CCl3SO3- at MP2 6-31G* (Gejji et al., 1994); (9) CCl3SO3Na.H2O (this work); (10) CHCl3 (Sutton, 1965).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds