Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of a new complex phosphate, calcium sodium vanadium phosphate, Ca8.42Na1.16V(PO4)7, have been grown from a melt under an inert atmosphere. The crystal structure has rhombohedral (R3c) symmetry and belongs to the whitlockite structure type. Vanadium(III) ions occupy nearly regular octa­hedral sites (M5 with 3 point symmetry), which share corners with six PO4 tetra­hedra to form isolated units. The calcium ions occupy eight- and nine-coordinated sites. The sodium ions partially occupy one octa­hedral position and share one nine-coordinated position with a Ca atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105039041/bc1085sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105039041/bc1085Isup2.hkl
Contains datablock I

Comment top

The mineral whitlockite, Ca18.19(Mg1.17Fe0.83)H1.62(PO4)14 (Calvo & Gopal, 1975), is isomorphous with β-Ca3(PO4)2 (Dickens et al., 1974). Some whitlockite-like phases, such as M9A(XO4)7 (M = Ca and Sr, A is a rare-earth or transition metal, and X = P, V and As), show ferroelectric phase transitions or nonlinear optical properties, which make them potentially useful for practical applications. β-Ca3(PO4)2 crystallizes in the rhombohedral space group R3c, with unit-cell parameters a = 10.439 Å and c = 37.375 Å. The structure contains six metal (M1–M6) and three phosphorus (P1–P3) positions; M1–M3, P2 and P3 are in general (18b) positions, while M4–M6 and P1 are in special (6a) positions with a 3 point symmetry. Different combinations of occupied and unoccupied M1–M6 positions provide a basis for the large number of compounds that belong to the whitlockite structure type.

In the rhombohedral M9A(XO4)7 (M = Ca and Sr) whitlockites, M1–M3 are in eightfold coordination, M4 in ninefold coordination and M5 in octahedral coordination. The Ca and Sr atoms occupy the M1–M3 positions, while the M5 position is usually occupied by a trivalent cation (A = Al, Sc, Ga, Cr, Fe, In, Y and rare-earth metals). All P atoms are located at the centers of the PO4 phosphate groups, and small cations, such as V5+ or As5+, may also be accommodated in the P positions (Gopal & Calvo, 1971, 1973). In the case of M = Ca, all known compounds have non-centrosymmetric rhombohedral lattices (space group R3c or R3) with unit cells similar to that of β-Ca3(PO4)2 (Belik et al., 1997; Belik, Morozov, Kotov et al., 2000; Belik, Morozov, Grechkin et al., 2000; Belik, Grechkin et al., 2000; Golubev & Lazoryak, 1990, 1991; Evans et al., 2001; Lazoryak et al., 1996). The Ca9A(PO4)7 compounds (A = Fe or In) exhibit a reversible phase transition to a high-temperature centrosymmetric phase (space group R3c; Lazoryak et al., 2003; Morozov et al., 2002). The Sr9A(PO4)7 compounds [A = Sc, Cr, Fe, Ga and In (Belik, Izumi, Ikeda, Okui et al., 2002), or A = Y and Gd–Lu (Belik, Izumi, Ikeda, Lazoryak et al., 2002)] reveal a monoclinic distortion of the whitlockite-like structure. The corresponding vanadates all have a rhombohedral symmetry (Belik et al., 2005).

All M9A(XO4)7 compounds mentioned above may be easily synthesized by annealing mixtures of the corresponding oxides and phosphates in air, since the A cation is always in its highest or most stable oxidation state. At the same time, the M5 position of the whitlockite structure may be occupied by other trivalent cations. In this work, we demonstrate that V3+ can be accommodated within the whitlockite structure if the synthetic conditions prevent the oxidation of vanadium. Initially, this compound was synthesized accidentally during our study of the vanadyl(IV) phosphates, Na2MVO(PO4)2 (M = Ca and Sr; Chernaya et al., 2004), which melt incongruently with disproportionation of the V4+ cations.

The overall composition for the crystal investigated is Ca8.42Na1.16V(PO4)7. Its crystal structure was found to be similar to those of other Ca9A(PO4)7 compounds (Fig. 1). The VO6 octahedra share all six corners with PO4 tetrahedra, forming isolated anionic groups. Additional isolated P1O4 tetrahedra are also present in the structure. The Ca and Na cations randomly occupy interstices between the vanadium and phosphorus polyhedra.

All V–O distances are in the range 2.00–2.05 Å. The V atom is situated in a nearly regular octahedron that is typical for V3+. The calculated bond valence sum (BVS) of 2.89 is close to the estimated value of 3. The PO4 tetrahedra are almost regular, with the P–O distances ranging from 1.5196 (16) to 1.5838 (16) Å, and the BVS values are 4.99, 5.01, and 4.90 for atoms P1, P2 and P3, respectively. Atoms Ca1 and Ca2 exhibit coordination number eight, while atom Ca3 has a ninth O-atom neighbour located at 2.9784 (16) Å. The BVS values for atoms Ca1–Ca3 are 2.12, 2.14 and 1.93, respectively. It should be rememebered that the valence values estimated from the BVS calculations (Brown & Altermatt, 1985) are slightly conservative since the diffraction experiment was performed at low temperature. The lower BVS value for atom Ca3 may be caused by the presence of sodium in the M3 position. The Na atom occupying the M4 position is surrounded by six O atoms. However, the Na–O separations are significantly different, viz. three short distances equal to 2.4741 (16) Å and three long ones at 2.830 (3) Å.

As mentioned above, there are different possibilities for distribution of the metal atoms among the M1–M6 positions of the whitlockite structure. The filling of these positions in the Ca8.42Na1.16V(PO4)7 structure is somewhat similar to that observed previously in other Ca9M(PO4)7 phosphates (M = Li, Na and K, and A = Mg, Ca, Mn and Co (Morozov et al., 1997, 2000; Belik et al., 1999, 2001) or in the Ca10K(VO4)7 vanadate (Mueller-Buschbaum & Schrandt, 1996). In the latter structures, the alkali cations fully occupy the M4 position and, therefore, the divalent cation may be accommodated in the M5 position to keep electroneutrality of the compound. On the other hand, a monovalent cation can replace calcium in one of the M1–M3 positions, similar to what is found in Ca18Na3Fe(PO4)14 (Strunenkova et al., 1997). Thus, Ca8.42Na1.16V(PO4)7 demonstrates a coexistence of both types of alkali cations incorporated in the whitlockite-type structure. The observed distribution is necessary to maintain the trivalent state of the vanadium atoms.

We attempted to prepare an Na-free calcium vanadium phosphate, Ca9V(PO4)7, by annealing a stoichiometric mixture of Ca3(PO4)2, Ca2P2O7 and V2O3 in an evacuated silica tube at different temperatures (1023–1473 K). These reactions always resulted in multi-phase mixtures containing a whitlockite-like phase along with minor (5% or less) amounts of unknown species. On the other hand, an addition of even small amounts of sodium pyrophosphate to the reaction mixture resulted in the formation of a pure whitlockite phase. The latter result suggests that, in the case of A = VIII, the presence of Na atoms causes the whitlockite-type structure to be more stable than in the case of the Ca9A(PO4)7 phosphate.

Experimental top

Na2CaVO(PO4)2 was synthesized from Na4P2O7, Ca2P2O7 and VO2, as described previously (Chernaya et al., 2004). Single crystals of Ca8.42Na1.16V(PO4)7 were obtained by melting a single-phase powder sample of Na2CaVO(PO4)2 in an argon atmosphere at 1013 K followed by slow cooling (5 K min−1). In addition to the brown crystals used for the present study, green crystals with unit-cell parameters close to those for Ca8.42Na1.16V(PO4)7 were also recovered. A refinement of the Na/Ca ratio in these crystals resulted in almost the same value (1.09/8.46) as for the brown crystals. The difference in colour may be attributed to structural defects or to an inhomogeneous distribution of Na atoms in the crystals.

Refinement top

The atomic positions for the Ca, V, P and O atoms were determined by direct methods. Subsequent difference Fourier syntheses and least-square refinements resulted in the Ca9V(PO4)7 composition, confirming that the structure belongs to the whitlockite type.

The isotropic displacement parameter for atom Ca3 (0.015 Å2) was found to be twice as large as those for atoms Ca1 and Ca2 (0.007 Å2), despite the fact that all three positions have similar O-atom coordination. The larger displacement parameter for atom Ca3 may be indicative of a partial occupancy or of the presence of a lighter atom in this position. Furthermore, a significant residual electron density (about 7.5 e Å−3) was detected near the M4 position. Both discrepancies have been attributed to Na atoms, which were present in the reaction mixture and thus may have entered the structure. A simple introduction of Na cations into the Ca9NaxV(PO4)7 structure should result in the reduction of vanadium. However, it is well known that a very strong reducing agent is required to reduce vanadium below the +3 oxidation state, whereas our synthetic conditions should not allow for that. The insertion of Na into the structure must be accompanied by a decrease in the Ca content in order to keep the +3 oxidation state of vanadium. Thus, we have considered the following two models:

(i) Na randomly occupies the M4 position only, while the M3 position becomes partially occupied by Ca atoms, and the occupancy factors (g) for both cations are related by the equation gNa(M4) = 2[1 – gCa(M3)].

(ii) Na is located in both the M4 and the M3 positions. Then the occupancies should be expressed as gNa(M3) + gCa(M3) = 1 and gNa(M3) = gNa(M4).

Both models were checked carefully. Model (i) resulted in an R value of 0.025, while model (ii) led to an R value of 0.018. This value, however, is close to that (0.019) obtained for the structural model excluding Na atoms. Nevertheless, the similarity of the displacement parameters for the three Ca positions and the lower residual electron density peaks observed in the difference Fourier map indirectly confirm the correctness of our structure solution using model (ii).

During the refinement, the Flack parameter was found to be 0.47 (3). This may indicate that either the structure is centrosymmetric or the crystal is twinned. The only possible space group having particular systematic extinctions is R3c. Indeed, almost all cationic positions are placed in a centrosymmetric manner. However, this is not the case for the position of O atoms. The refinement in the R3c space group gave an R value of 0.30. Therefore, we considered the case of racemic twinning. This resulted in the R value of 0.016 and the BASF parameter of 0.47 (2). Thus, one can conclude that the crystal used in this study is a racemic mixture of two twins with a non-centrosymmetric R3c structure.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: JANA2000 (Petricek & Dusek, 2000); software used to prepare material for publication: JANA2000.

Figures top
[Figure 1] Fig. 1. A projection of the Ca8.42Na1.16V(PO4)7 structure along the [110] direction.
Calcium sodium vanadate phosphate top
Crystal data top
Ca8.42Na1.16V(PO4)7Dx = 3.139 Mg m3
Mr = 1079.88Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3cCell parameters from 9009 reflections
Hall symbol: R 3 -2"cθ = 2.5–28.1°
a = 10.3273 (3) ŵ = 2.97 mm1
c = 37.098 (2) ÅT = 173 K
V = 3426.5 (2) Å3Irregular, transparent, brown
Z = 60.18 × 0.16 × 0.06 mm
F(000) = 3199
Data collection top
Bruker SMART APEX CCD
diffractometer
1818 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
0.3° ω exposures scansθmax = 28.1°, θmin = 2.5°
Absorption correction: multi-scan
?
h = 1313
Tmin = 0.615, Tmax = 0.841k = 1313
9009 measured reflectionsl = 4949
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0355P)2 + 2.3095P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.001
wR(F2) = 0.048Δρmax = 0.35 e Å3
S = 1.12Δρmin = 0.67 e Å3
1818 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
143 parametersExtinction coefficient: 0.00038 (4)
2 restraintsAbsolute structure: Flack (1983), 875 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (3)
Crystal data top
Ca8.42Na1.16V(PO4)7Z = 6
Mr = 1079.88Mo Kα radiation
Trigonal, R3cµ = 2.97 mm1
a = 10.3273 (3) ÅT = 173 K
c = 37.098 (2) Å0.18 × 0.16 × 0.06 mm
V = 3426.5 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1818 independent reflections
Absorption correction: multi-scan
?
1808 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.841Rint = 0.014
9009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0162 restraints
wR(F2) = 0.048Δρmax = 0.35 e Å3
S = 1.12Δρmin = 0.67 e Å3
1818 reflectionsAbsolute structure: Flack (1983), 875 Friedel pairs
143 parametersAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V0.33330.66670.435576 (17)0.00602 (11)
Ca10.47745 (4)0.94303 (4)0.366928 (11)0.00863 (10)
Ca20.20426 (4)0.82509 (4)0.499885 (10)0.00806 (10)
Ca30.79266 (4)0.60531 (5)0.426576 (13)0.00783 (14)0.806 (2)
P10.66670.33330.36911 (2)0.00679 (17)
P20.48571 (6)0.47541 (5)0.465697 (12)0.00599 (11)
P30.17400 (6)0.86029 (6)0.403712 (12)0.00643 (11)
Na10.00000.00000.45676 (8)0.0116 (8)0.582 (6)
Na20.79266 (4)0.60531 (5)0.426576 (13)0.00783 (14)0.194
O10.66670.33330.41030 (7)0.0115 (5)
O20.42872 (14)0.83736 (18)0.47201 (4)0.0096 (3)
O30.51579 (14)0.47258 (14)0.42569 (4)0.0087 (3)
O40.27556 (15)0.99779 (14)0.38046 (3)0.0085 (3)
O50.24821 (14)0.75839 (14)0.40139 (4)0.0103 (3)
O60.01562 (15)0.76711 (16)0.38913 (3)0.0120 (3)
O70.63333 (16)0.55003 (16)0.48613 (4)0.0120 (3)
O80.52275 (14)0.32709 (17)0.35553 (4)0.0140 (3)
O90.17915 (16)0.91481 (17)0.44209 (4)0.0138 (3)
O100.37735 (14)0.31579 (15)0.47842 (4)0.0106 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.00558 (15)0.00558 (15)0.0069 (2)0.00279 (8)0.0000.000
Ca10.00882 (18)0.00833 (19)0.0090 (2)0.00449 (14)0.00078 (13)0.00014 (14)
Ca20.00893 (17)0.00759 (18)0.00776 (18)0.00422 (15)0.00085 (15)0.00043 (15)
Ca30.0059 (2)0.0109 (2)0.0074 (2)0.00476 (16)0.00024 (14)0.00287 (14)
P10.0055 (2)0.0055 (2)0.0094 (4)0.00274 (12)0.0000.000
P20.0062 (2)0.0061 (2)0.0064 (2)0.00367 (16)0.0001 (2)0.00009 (19)
P30.0060 (2)0.0063 (2)0.0072 (2)0.00322 (17)0.00003 (19)0.00021 (18)
Na10.0122 (10)0.0122 (10)0.0105 (15)0.0061 (5)0.0000.000
Na20.0059 (2)0.0109 (2)0.0074 (2)0.00476 (16)0.00024 (14)0.00287 (14)
O10.0124 (8)0.0124 (8)0.0096 (12)0.0062 (4)0.0000.000
O20.0070 (6)0.0070 (6)0.0137 (7)0.0028 (5)0.0006 (4)0.0019 (5)
O30.0091 (6)0.0094 (6)0.0072 (7)0.0043 (5)0.0002 (4)0.0001 (5)
O40.0103 (6)0.0089 (6)0.0071 (5)0.0054 (5)0.0008 (4)0.0017 (4)
O50.0086 (6)0.0071 (6)0.0162 (7)0.0048 (5)0.0001 (4)0.0004 (4)
O60.0066 (6)0.0143 (7)0.0128 (6)0.0033 (5)0.0022 (5)0.0013 (5)
O70.0091 (7)0.0147 (7)0.0106 (6)0.0048 (5)0.0031 (5)0.0008 (5)
O80.0091 (6)0.0129 (6)0.0214 (6)0.0066 (6)0.0046 (5)0.0049 (5)
O90.0145 (7)0.0162 (7)0.0084 (6)0.0059 (6)0.0004 (5)0.0006 (5)
O100.0126 (6)0.0080 (6)0.0105 (6)0.0045 (5)0.0018 (5)0.0001 (4)
Geometric parameters (Å, º) top
V—O52.0276 (16)P2—O71.5224 (15)
V—O5i2.0276 (16)P2—O101.5323 (14)
V—O5ii2.0276 (16)P2—O2ii1.5674 (16)
V—O22.0416 (16)P2—Na2xiii3.0072 (6)
V—O2i2.0416 (16)P2—Ca3xiii3.0072 (6)
V—O2ii2.0416 (16)P2—Ca2i3.1158 (7)
V—Ca23.5109 (6)P2—Ca2ii3.1438 (6)
V—Ca2ii3.5109 (6)P3—O91.5220 (15)
V—Ca2i3.5109 (6)P3—O61.5233 (14)
V—Ca1i3.5495 (6)P3—O41.5399 (14)
V—Ca13.5495 (6)P3—O51.5838 (16)
V—Ca1ii3.5495 (6)P3—Na2i3.1023 (6)
Ca1—O7iii2.3131 (14)P3—Ca3i3.1023 (6)
Ca1—O3i2.3569 (16)P3—Ca1i3.2529 (6)
Ca1—O8i2.4071 (15)P3—Na1vi3.4317 (18)
Ca1—O10iv2.4681 (14)Na1—O9xvi2.4741 (16)
Ca1—O42.4694 (13)Na1—O9xv2.4741 (16)
Ca1—O5ii2.5135 (14)Na1—O9i2.4741 (16)
Ca1—O52.5222 (14)Na1—O8xvii2.830 (3)
Ca1—O6ii2.7679 (15)Na1—O8xviii2.830 (3)
Ca1—P33.1201 (6)Na1—O8xix2.830 (3)
Ca1—P3ii3.2529 (6)Na1—P1xvii2.931 (3)
Ca1—Ca2v3.4887 (5)Na1—P3xvi3.4317 (18)
Ca1—P1vi3.4922 (4)Na1—P3xv3.4316 (18)
Ca2—O8vii2.3215 (14)Na1—P3i3.4316 (18)
Ca2—O4viii2.3735 (13)Na1—Ca3xx3.7048 (10)
Ca2—O92.4008 (15)Na1—Na2xx3.7048 (10)
Ca2—O6ix2.4515 (13)O1—Na2xi2.5084 (8)
Ca2—O2i2.4582 (13)O1—Ca3xi2.5084 (8)
Ca2—O22.4830 (13)O1—Ca3xiii2.5084 (8)
Ca2—O10ii2.6080 (14)O1—Na2xiii2.5084 (8)
Ca2—O7i2.6540 (15)O2—P2i1.5674 (16)
Ca2—P2ii3.1158 (7)O2—Ca2ii2.4582 (13)
Ca2—P2i3.1438 (6)O3—Ca1ii2.3569 (16)
Ca2—Ca1x3.4887 (5)O3—Na2xiii2.5608 (13)
Ca3—O10xi2.3932 (14)O3—Ca3xiii2.5608 (13)
Ca3—O4ii2.4217 (13)O4—Ca2xxi2.3735 (13)
Ca3—O32.4772 (13)O4—Na2i2.4217 (14)
Ca3—O6xii2.4852 (14)O4—Ca3i2.4217 (14)
Ca3—O12.5084 (8)O5—Ca1i2.5135 (14)
Ca3—O3xi2.5608 (13)O6—Ca2xxii2.4515 (13)
Ca3—O9ii2.6349 (16)O6—Na2xxiii2.4852 (14)
Ca3—O72.6411 (15)O6—Ca3xxiii2.4852 (14)
Ca3—O8xi2.9784 (16)O6—Ca1i2.7679 (15)
Ca3—P2xi3.0073 (6)O7—Ca1xix2.3131 (14)
Ca3—P3ii3.1023 (6)O7—Ca2ii2.6540 (14)
Ca3—P23.1148 (6)O8—Ca2xxiv2.3216 (14)
P1—O11.528 (3)O8—Ca1ii2.4071 (14)
P1—O8xiii1.5399 (12)O8—Na1xiv2.830 (3)
P1—O8xi1.5399 (13)O8—Na2xiii2.9784 (16)
P1—O81.5399 (12)O8—Ca3xiii2.9784 (16)
P1—Na1xiv2.931 (3)O9—Na1vi2.4741 (16)
P1—Na2xi3.2361 (7)O9—Na2i2.6350 (16)
P1—Ca3xi3.2361 (7)O9—Ca3i2.6350 (16)
P1—Ca3xiii3.2361 (7)O10—Na2xiii2.3932 (14)
P1—Na2xiii3.2361 (7)O10—Ca3xiii2.3932 (14)
P1—Ca1xv3.4922 (4)O10—Ca1xxv2.4681 (14)
P2—O31.5196 (16)O10—Ca2i2.6080 (13)
O5—V—O5i85.02 (7)O8xi—P1—O8109.83 (6)
O5—V—O5ii85.02 (7)O1—P1—Na1xiv180.0
O5i—V—O5ii85.02 (7)O8xiii—P1—Na1xiv70.89 (6)
O5—V—O298.36 (6)O8xi—P1—Na1xiv70.89 (6)
O5i—V—O2176.59 (6)O8—P1—Na1xiv70.89 (6)
O5ii—V—O295.66 (5)O1—P1—Na2xi48.795 (14)
O5—V—O2i95.66 (5)O8xiii—P1—Na2xi66.51 (6)
O5i—V—O2i98.36 (6)O8xi—P1—Na2xi102.29 (6)
O5ii—V—O2i176.59 (7)O8—P1—Na2xi146.38 (7)
O2—V—O2i80.94 (7)Na1xiv—P1—Na2xi131.206 (14)
O5—V—O2ii176.59 (6)O1—P1—Ca3xi48.795 (14)
O5i—V—O2ii95.66 (5)O8xiii—P1—Ca3xi66.51 (6)
O5ii—V—O2ii98.36 (6)O8xi—P1—Ca3xi102.29 (6)
O2—V—O2ii80.94 (7)O8—P1—Ca3xi146.38 (7)
O2i—V—O2ii80.94 (7)Na1xiv—P1—Ca3xi131.206 (14)
O5—V—Ca281.54 (4)O1—P1—Ca348.795 (14)
O5i—V—Ca2136.85 (4)O8xiii—P1—Ca3146.38 (6)
O5ii—V—Ca2133.83 (4)O8xi—P1—Ca366.51 (6)
O2—V—Ca243.90 (4)O8—P1—Ca3102.29 (6)
O2i—V—Ca243.19 (4)Na1xiv—P1—Ca3131.205 (14)
O2ii—V—Ca295.74 (5)Na2xi—P1—Ca381.32 (2)
O5—V—Ca2ii136.85 (4)Ca3xi—P1—Ca381.32 (2)
O5i—V—Ca2ii133.83 (4)O1—P1—Ca3xiii48.795 (14)
O5ii—V—Ca2ii81.54 (4)O8xiii—P1—Ca3xiii102.29 (6)
O2—V—Ca2ii43.19 (4)O8xi—P1—Ca3xiii146.38 (6)
O2i—V—Ca2ii95.74 (5)O8—P1—Ca3xiii66.51 (6)
O2ii—V—Ca2ii43.90 (4)Na1xiv—P1—Ca3xiii131.205 (14)
Ca2—V—Ca2ii78.893 (15)Na2xi—P1—Ca3xiii81.32 (2)
O5—V—Ca2i133.83 (4)Ca3xi—P1—Ca3xiii81.32 (2)
O5i—V—Ca2i81.54 (4)Ca3—P1—Ca3xiii81.32 (2)
O5ii—V—Ca2i136.85 (4)O1—P1—Na2xiii48.795 (14)
O2—V—Ca2i95.74 (5)O8xiii—P1—Na2xiii102.29 (6)
O2i—V—Ca2i43.90 (4)O8xi—P1—Na2xiii146.38 (6)
O2ii—V—Ca2i43.19 (4)O8—P1—Na2xiii66.51 (6)
Ca2—V—Ca2i78.893 (15)Na1xiv—P1—Na2xiii131.205 (14)
Ca2ii—V—Ca2i78.893 (15)Na2xi—P1—Na2xiii81.32 (2)
O5—V—Ca1i43.78 (4)Ca3xi—P1—Na2xiii81.32 (2)
O5i—V—Ca1i44.03 (4)O1—P1—Ca1xv91.329 (16)
O5ii—V—Ca1i95.44 (5)O8xi—P1—Ca1xv145.10 (6)
O2—V—Ca1i139.05 (4)O8—P1—Ca1xv88.44 (6)
O2i—V—Ca1i87.33 (4)Na1xiv—P1—Ca1xv88.671 (16)
O2ii—V—Ca1i135.75 (4)Na2xi—P1—Ca1xv69.849 (11)
Ca2—V—Ca1i104.315 (10)Ca3xi—P1—Ca1xv69.849 (11)
Ca2ii—V—Ca1i176.655 (16)Ca3—P1—Ca1xv140.10 (3)
Ca2i—V—Ca1i102.539 (9)Ca3xiii—P1—Ca1xv67.861 (11)
O5—V—Ca144.03 (4)Na2xiii—P1—Ca1xv67.861 (11)
O5i—V—Ca195.44 (5)O3—P2—O7109.48 (8)
O5ii—V—Ca143.78 (4)O3—P2—O10109.05 (7)
O2—V—Ca187.33 (4)O7—P2—O10113.52 (8)
O2i—V—Ca1135.75 (4)O3—P2—O2ii109.35 (8)
O2ii—V—Ca1139.05 (4)O7—P2—O2ii107.59 (8)
Ca2—V—Ca1102.539 (9)O10—P2—O2ii107.77 (7)
Ca2ii—V—Ca1104.315 (10)O3—P2—Na2xiii58.36 (5)
Ca2i—V—Ca1176.655 (16)O7—P2—Na2xiii118.66 (6)
Ca1i—V—Ca174.207 (15)O10—P2—Na2xiii52.08 (5)
O5—V—Ca1ii95.44 (5)O2ii—P2—Na2xiii133.69 (6)
O5i—V—Ca1ii43.78 (4)O3—P2—Ca3xiii58.36 (5)
O5ii—V—Ca1ii44.03 (4)O7—P2—Ca3xiii118.66 (6)
O2—V—Ca1ii135.75 (4)O10—P2—Ca3xiii52.08 (5)
O2i—V—Ca1ii139.05 (4)O2ii—P2—Ca3xiii133.69 (6)
O2ii—V—Ca1ii87.33 (4)O3—P2—Ca351.64 (5)
Ca2—V—Ca1ii176.655 (16)O7—P2—Ca357.87 (6)
Ca2ii—V—Ca1ii102.539 (9)O10—P2—Ca3130.20 (6)
Ca2i—V—Ca1ii104.315 (10)O2ii—P2—Ca3121.77 (5)
Ca1i—V—Ca1ii74.206 (15)Na2xiii—P2—Ca387.05 (2)
Ca1—V—Ca1ii74.207 (15)Ca3xiii—P2—Ca387.05 (2)
O7iii—Ca1—O3i142.38 (5)O3—P2—Ca2i125.40 (6)
O7iii—Ca1—O8i84.43 (5)O7—P2—Ca2i124.74 (6)
O3i—Ca1—O8i78.81 (5)O10—P2—Ca2i56.61 (5)
O7iii—Ca1—O10iv73.56 (5)O2ii—P2—Ca2i51.19 (5)
O3i—Ca1—O10iv138.50 (5)Na2xiii—P2—Ca2i96.792 (17)
O8i—Ca1—O10iv88.59 (5)Ca3xiii—P2—Ca2i96.792 (17)
O7iii—Ca1—O4141.41 (5)Ca3—P2—Ca2i172.42 (2)
O3i—Ca1—O474.70 (4)O3—P2—Ca2ii115.27 (5)
O8i—Ca1—O497.70 (5)O7—P2—Ca2ii57.40 (6)
O10iv—Ca1—O468.00 (4)O10—P2—Ca2ii135.16 (6)
O7iii—Ca1—O5ii84.87 (5)O2ii—P2—Ca2ii51.20 (5)
O3i—Ca1—O5ii77.79 (5)Na2xiii—P2—Ca2ii172.05 (2)
O8i—Ca1—O5ii124.87 (5)Ca3xiii—P2—Ca2ii172.05 (2)
O10iv—Ca1—O5ii138.37 (5)Ca3—P2—Ca2ii85.072 (17)
O4—Ca1—O5ii122.49 (5)Ca2i—P2—Ca2ii90.91 (2)
O7iii—Ca1—O5125.07 (5)O9—P3—O6113.19 (8)
O3i—Ca1—O577.27 (5)O9—P3—O4107.53 (8)
O8i—Ca1—O5150.46 (5)O6—P3—O4113.87 (8)
O10iv—Ca1—O597.99 (5)O9—P3—O5110.95 (8)
O4—Ca1—O559.29 (5)O6—P3—O5106.52 (8)
O5ii—Ca1—O565.94 (7)O4—P3—O5104.45 (7)
O7iii—Ca1—O6ii71.60 (4)O9—P3—Na2i58.05 (6)
O3i—Ca1—O6ii71.00 (4)O6—P3—Na2i139.22 (6)
O8i—Ca1—O6ii69.29 (4)O4—P3—Na2i50.08 (5)
O10iv—Ca1—O6ii140.07 (5)O5—P3—Na2i113.71 (5)
O4—Ca1—O6ii145.03 (5)O9—P3—Ca3i58.05 (6)
O5ii—Ca1—O6ii56.01 (5)O6—P3—Ca3i139.22 (6)
O5—Ca1—O6ii117.82 (5)O4—P3—Ca3i50.08 (5)
O7iii—Ca1—P3143.51 (4)O5—P3—Ca3i113.71 (5)
O3i—Ca1—P371.65 (3)O9—P3—Ca1117.60 (6)
O8i—Ca1—P3123.84 (4)O6—P3—Ca1129.19 (6)
O10iv—Ca1—P383.74 (3)O4—P3—Ca151.30 (5)
O4—Ca1—P329.12 (3)O5—P3—Ca153.48 (5)
O5ii—Ca1—P394.22 (4)Na2i—P3—Ca174.389 (15)
O5—Ca1—P330.31 (4)Ca3i—P3—Ca174.389 (15)
O6ii—Ca1—P3136.18 (3)O9—P3—Ca1i134.53 (6)
O7iii—Ca1—P3ii74.37 (4)O6—P3—Ca1i58.08 (6)
O3i—Ca1—P3ii74.62 (3)O4—P3—Ca1i116.64 (5)
O8i—Ca1—P3ii97.12 (4)O5—P3—Ca1i48.91 (5)
O10iv—Ca1—P3ii146.68 (4)Na2i—P3—Ca1i158.71 (2)
O4—Ca1—P3ii142.41 (4)Ca3i—P3—Ca1i158.71 (2)
O5ii—Ca1—P3ii28.35 (4)Ca1—P3—Ca1i84.412 (19)
O5—Ca1—P3ii93.01 (4)O6—P3—Na1vi81.18 (6)
O6ii—Ca1—P3ii27.85 (3)O4—P3—Na1vi101.07 (6)
P3—Ca1—P3ii118.46 (2)O5—P3—Na1vi147.09 (7)
O7iii—Ca1—Ca2v49.52 (4)Na2i—P3—Na1vi68.871 (14)
O3i—Ca1—Ca2v98.66 (3)Ca3i—P3—Na1vi68.871 (14)
O8i—Ca1—Ca2v41.52 (3)Ca1—P3—Na1vi143.230 (18)
O10iv—Ca1—Ca2v97.30 (3)Ca1i—P3—Na1vi132.357 (19)
O4—Ca1—Ca2v138.40 (3)O9xvi—Na1—O9xv115.30 (5)
O5ii—Ca1—Ca2v94.80 (4)O9xvi—Na1—O9i115.30 (5)
O5—Ca1—Ca2v160.72 (4)O9xv—Na1—O9i115.30 (5)
O6ii—Ca1—Ca2v44.30 (3)O9xvi—Na1—O8xvii107.96 (8)
P3—Ca1—Ca2v165.023 (17)O9xv—Na1—O8xvii123.42 (9)
P3ii—Ca1—Ca2v67.831 (14)O9i—Na1—O8xvii72.97 (6)
O7iii—Ca1—P1vi105.01 (4)O9xvi—Na1—O8xviii72.97 (6)
O3i—Ca1—P1vi66.33 (4)O9xv—Na1—O8xviii107.96 (8)
O8i—Ca1—P1vi21.72 (3)O9i—Na1—O8xviii123.42 (9)
O10iv—Ca1—P1vi87.85 (3)O8xvii—Na1—O8xviii52.88 (6)
O4—Ca1—P1vi77.30 (3)O9xvi—Na1—O8xix123.42 (9)
O5ii—Ca1—P1vi132.66 (4)O9xv—Na1—O8xix72.97 (6)
O5—Ca1—P1vi129.26 (4)O9i—Na1—O8xix107.96 (8)
O6ii—Ca1—P1vi82.88 (3)O8xvii—Na1—O8xix52.88 (6)
P3—Ca1—P1vi102.222 (15)O8xviii—Na1—O8xix52.88 (6)
P3ii—Ca1—P1vi109.076 (16)O9xvi—Na1—P1xvii102.71 (8)
Ca2v—Ca1—P1vi62.977 (11)O9xv—Na1—P1xvii102.71 (8)
O8vii—Ca2—O4viii86.01 (5)O9i—Na1—P1xvii102.71 (8)
O8vii—Ca2—O984.21 (5)O8xvii—Na1—P1xvii30.94 (4)
O4viii—Ca2—O9140.55 (5)O8xviii—Na1—P1xvii30.94 (4)
O8vii—Ca2—O6ix76.51 (5)O8xix—Na1—P1xvii30.94 (4)
O4viii—Ca2—O6ix72.49 (5)O9xvi—Na1—P3xvi23.42 (4)
O9—Ca2—O6ix140.54 (5)O9xv—Na1—P3xvi111.45 (8)
O8vii—Ca2—O2i156.17 (6)O9i—Na1—P3xvi99.99 (7)
O4viii—Ca2—O2i83.68 (5)O8xvii—Na1—P3xvi122.31 (4)
O9—Ca2—O2i90.21 (5)O8xviii—Na1—P3xvi96.18 (3)
O6ix—Ca2—O2i120.18 (5)O8xix—Na1—P3xvi146.45 (6)
O8vii—Ca2—O2136.83 (5)P1xvii—Na1—P3xvi124.99 (4)
O4viii—Ca2—O2127.18 (5)O9xvi—Na1—P3xv99.99 (7)
O9—Ca2—O283.49 (5)O9xv—Na1—P3xv23.42 (4)
O6ix—Ca2—O287.51 (5)O9i—Na1—P3xv111.45 (8)
O2i—Ca2—O264.87 (7)O8xvii—Na1—P3xv146.45 (6)
O8vii—Ca2—O10ii97.03 (5)O8xviii—Na1—P3xv122.31 (4)
O4viii—Ca2—O10ii67.13 (4)O8xix—Na1—P3xv96.18 (3)
O9—Ca2—O10ii76.30 (5)P1xvii—Na1—P3xv124.99 (4)
O6ix—Ca2—O10ii139.48 (5)P3xvi—Na1—P3xv90.38 (6)
O2i—Ca2—O10ii59.15 (5)O9xvi—Na1—P3i111.45 (8)
O2—Ca2—O10ii119.69 (5)O9xv—Na1—P3i99.99 (7)
O8vii—Ca2—O7i78.92 (5)O9i—Na1—P3i23.42 (4)
O4viii—Ca2—O7i143.48 (5)O8xvii—Na1—P3i96.18 (3)
O9—Ca2—O7i70.98 (5)O8xviii—Na1—P3i146.45 (6)
O6ix—Ca2—O7i71.71 (4)O8xix—Na1—P3i122.31 (4)
O2i—Ca2—O7i121.04 (5)P1xvii—Na1—P3i124.99 (4)
O2—Ca2—O7i57.96 (5)P3xvi—Na1—P3i90.38 (6)
O10ii—Ca2—O7i147.26 (5)P3xv—Na1—P3i90.38 (6)
O8vii—Ca2—P2ii126.38 (4)O9xvi—Na1—Ca3xx45.26 (4)
O4viii—Ca2—P2ii72.68 (3)O9xv—Na1—Ca3xx70.48 (4)
O9—Ca2—P2ii82.85 (4)O9i—Na1—Ca3xx146.99 (11)
O6ix—Ca2—P2ii136.05 (4)O8xvii—Na1—Ca3xx133.31 (7)
O2i—Ca2—P2ii29.79 (4)O8xviii—Na1—Ca3xx80.62 (3)
O2—Ca2—P2ii92.75 (4)O8xix—Na1—Ca3xx104.76 (4)
O10ii—Ca2—P2ii29.38 (3)P1xvii—Na1—Ca3xx107.59 (4)
O7i—Ca2—P2ii141.90 (3)P3xvi—Na1—Ca3xx51.36 (2)
O8vii—Ca2—P2i107.68 (4)P3xv—Na1—Ca3xx60.01 (3)
O4viii—Ca2—P2i147.07 (4)P3i—Na1—Ca3xx127.18 (9)
O9—Ca2—P2i71.86 (4)O9xvi—Na1—Na2xx45.26 (4)
O6ix—Ca2—P2i81.61 (4)O9xv—Na1—Na2xx70.48 (4)
O2i—Ca2—P2i92.40 (4)O9i—Na1—Na2xx146.99 (11)
O2—Ca2—P2i29.47 (4)O8xvii—Na1—Na2xx133.31 (7)
O10ii—Ca2—P2i136.90 (3)O8xviii—Na1—Na2xx80.62 (3)
O7i—Ca2—P2i28.90 (3)O8xix—Na1—Na2xx104.76 (4)
P2ii—Ca2—P2i116.90 (2)P1xvii—Na1—Na2xx107.59 (4)
O8vii—Ca2—Ca1x43.41 (4)P3xvi—Na1—Na2xx51.36 (2)
O4viii—Ca2—Ca1x107.69 (3)P3xv—Na1—Na2xx60.01 (3)
O9—Ca2—Ca1x90.67 (4)P3i—Na1—Na2xx127.18 (9)
O6ix—Ca2—Ca1x52.05 (4)Ca3xx—Na1—Na2xx0.000 (14)
O2i—Ca2—Ca1x160.19 (4)P1—O1—Na2xi103.93 (6)
O2—Ca2—Ca1x95.58 (4)P1—O1—Ca3xi103.93 (6)
O10ii—Ca2—Ca1x139.92 (3)P1—O1—Ca3103.93 (6)
O7i—Ca2—Ca1x41.52 (3)Na2xi—O1—Ca3114.40 (5)
P2ii—Ca2—Ca1x168.808 (18)Ca3xi—O1—Ca3114.40 (5)
P2i—Ca2—Ca1x69.141 (13)P1—O1—Ca3xiii103.93 (6)
O8vii—Ca2—V156.31 (4)Na2xi—O1—Ca3xiii114.40 (5)
O4viii—Ca2—V116.08 (4)Ca3xi—O1—Ca3xiii114.40 (5)
O9—Ca2—V73.28 (4)Ca3—O1—Ca3xiii114.40 (5)
O6ix—Ca2—V116.76 (4)P1—O1—Na2xiii103.93 (6)
O2i—Ca2—V34.64 (4)Na2xi—O1—Na2xiii114.40 (5)
O2—Ca2—V34.76 (4)P2i—O2—V129.95 (9)
O10ii—Ca2—V84.93 (3)P2i—O2—Ca2ii99.03 (6)
O7i—Ca2—V86.70 (3)V—O2—Ca2ii102.16 (6)
P2ii—Ca2—V58.902 (11)P2i—O2—Ca299.33 (7)
P2i—Ca2—V58.679 (12)V—O2—Ca2101.34 (5)
Ca1x—Ca2—V127.811 (13)Ca2ii—O2—Ca2129.08 (6)
O10xi—Ca3—O4ii150.13 (5)P2—O3—Ca1ii146.06 (9)
O10xi—Ca3—O3124.12 (5)P2—O3—Ca399.61 (7)
O4ii—Ca3—O373.44 (5)Ca1ii—O3—Ca3102.15 (5)
O10xi—Ca3—O6xii93.57 (4)P2—O3—Na2xiii91.30 (6)
O4ii—Ca3—O6xii71.10 (5)Ca1ii—O3—Na2xiii103.26 (5)
O3—Ca3—O6xii142.16 (5)Ca3—O3—Na2xiii113.65 (6)
O10xi—Ca3—O1103.41 (6)P2—O3—Ca3xiii91.30 (6)
O4ii—Ca3—O1106.22 (6)Ca1ii—O3—Ca3xiii103.26 (5)
O3—Ca3—O164.42 (4)Ca3—O3—Ca3xiii113.65 (6)
O6xii—Ca3—O1113.94 (6)P3—O4—Ca2xxi146.26 (8)
O10xi—Ca3—O3xi60.11 (5)P3—O4—Na2i100.73 (7)
O4ii—Ca3—O3xi132.79 (5)Ca2xxi—O4—Na2i97.40 (5)
O3—Ca3—O3xi126.32 (6)P3—O4—Ca3i100.73 (7)
O6xii—Ca3—O3xi72.80 (5)Ca2xxi—O4—Ca3i97.40 (5)
O1—Ca3—O3xi63.22 (3)P3—O4—Ca199.58 (6)
O10xi—Ca3—O9ii99.16 (5)Ca2xxi—O4—Ca1104.79 (5)
O4ii—Ca3—O9ii58.29 (4)Na2i—O4—Ca1100.54 (5)
O3—Ca3—O9ii77.69 (5)Ca3i—O4—Ca1100.54 (5)
O6xii—Ca3—O9ii94.43 (5)P3—O5—V138.02 (9)
O1—Ca3—O9ii142.05 (4)P3—O5—Ca1i102.74 (7)
O3xi—Ca3—O9ii153.82 (5)V—O5—Ca1i102.30 (6)
O10xi—Ca3—O769.18 (5)P3—O5—Ca196.22 (6)
O4ii—Ca3—O7112.82 (5)V—O5—Ca1102.00 (6)
O3—Ca3—O757.96 (5)Ca1i—O5—Ca1116.52 (6)
O6xii—Ca3—O7151.72 (5)P3—O6—Ca2xxii141.66 (8)
O1—Ca3—O792.35 (6)P3—O6—Na2xxiii124.57 (7)
O3xi—Ca3—O7113.46 (5)Ca2xxii—O6—Na2xxiii93.73 (5)
O9ii—Ca3—O767.77 (4)P3—O6—Ca3xxiii124.57 (7)
O10xi—Ca3—O8xi125.51 (5)Ca2xxii—O6—Ca3xxiii93.73 (5)
O4ii—Ca3—O8xi71.91 (5)P3—O6—Ca1i94.08 (6)
O3—Ca3—O8xi91.97 (4)Ca2xxii—O6—Ca1i83.66 (4)
O6xii—Ca3—O8xi64.80 (4)Na2xxiii—O6—Ca1i94.35 (5)
O1—Ca3—O8xi53.36 (6)Ca3xxiii—O6—Ca1i94.35 (5)
O3xi—Ca3—O8xi65.68 (5)P2—O7—Ca1xix159.02 (9)
O9ii—Ca3—O8xi130.10 (5)P2—O7—Ca392.91 (6)
O7—Ca3—O8xi143.47 (4)Ca1xix—O7—Ca3106.35 (5)
O10xi—Ca3—P2xi30.34 (3)P2—O7—Ca2ii93.70 (6)
O4ii—Ca3—P2xi157.19 (4)Ca1xix—O7—Ca2ii88.96 (5)
O3—Ca3—P2xi127.42 (4)Ca3—O7—Ca2ii106.08 (5)
O6xii—Ca3—P2xi86.31 (3)P1—O8—Ca2xxiv140.73 (9)
O1—Ca3—P2xi79.60 (4)P1—O8—Ca1ii122.93 (8)
O3xi—Ca3—P2xi30.34 (4)Ca2xxiv—O8—Ca1ii95.07 (4)
O9ii—Ca3—P2xi129.09 (4)P1—O8—Na1xiv78.17 (7)
O7—Ca3—P2xi88.54 (3)Ca2xxiv—O8—Na1xiv92.98 (5)
O8xi—Ca3—P2xi95.99 (3)Ca1ii—O8—Na1xiv118.54 (6)
O10xi—Ca3—P3ii127.25 (4)P1—O8—Na2xiii85.19 (7)
O4ii—Ca3—P3ii29.19 (3)Ca2xxiv—O8—Na2xiii84.68 (5)
O3—Ca3—P3ii70.62 (4)Ca1ii—O8—Na2xiii90.87 (5)
O6xii—Ca3—P3ii84.41 (4)Na1xiv—O8—Na2xiii150.58 (6)
O1—Ca3—P3ii125.51 (4)P1—O8—Ca3xiii85.19 (7)
O3xi—Ca3—P3ii156.82 (4)Ca2xxiv—O8—Ca3xiii84.68 (5)
O9ii—Ca3—P3ii29.35 (3)Ca1ii—O8—Ca3xiii90.87 (5)
O7—Ca3—P3ii88.64 (3)Na1xiv—O8—Ca3xiii150.58 (6)
O8xi—Ca3—P3ii101.07 (3)P3—O9—Ca2133.09 (9)
P2xi—Ca3—P3ii154.84 (2)P3—O9—Na1vi116.32 (10)
O10xi—Ca3—P297.15 (4)Ca2—O9—Na1vi100.66 (9)
O4ii—Ca3—P292.78 (3)P3—O9—Na2i92.61 (7)
O3—Ca3—P228.75 (4)Ca2—O9—Na2i114.25 (6)
O6xii—Ca3—P2162.04 (4)Na1vi—O9—Na2i92.91 (5)
O1—Ca3—P277.50 (4)P3—O9—Ca3i92.61 (7)
O3xi—Ca3—P2125.12 (4)Ca2—O9—Ca3i114.25 (6)
O9ii—Ca3—P269.69 (3)Na1vi—O9—Ca3i92.91 (5)
O7—Ca3—P229.22 (3)P2—O10—Na2xiii97.59 (6)
O8xi—Ca3—P2118.66 (3)P2—O10—Ca3xiii97.59 (6)
P2xi—Ca3—P2110.03 (2)P2—O10—Ca1xxv128.42 (7)
P3ii—Ca3—P277.633 (16)Na2xiii—O10—Ca1xxv109.51 (5)
O1—P1—O8xiii109.11 (6)Ca3xiii—O10—Ca1xxv109.51 (5)
O1—P1—O8xi109.11 (6)P2—O10—Ca2i94.01 (6)
O8xiii—P1—O8xi109.83 (6)Na2xiii—O10—Ca2i132.53 (6)
O1—P1—O8109.11 (6)Ca3xiii—O10—Ca2i132.53 (6)
O8xiii—P1—O8109.83 (6)Ca1xxv—O10—Ca2i98.17 (5)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x+y+2/3, y+1/3, z1/6; (iv) y+2/3, x+4/3, z1/6; (v) y+5/3, x+4/3, z1/6; (vi) x, y+1, z; (vii) x+y+1/3, y+2/3, z+1/6; (viii) x+y2/3, y1/3, z+1/6; (ix) x+1/3, xy+5/3, z+1/6; (x) y+4/3, x+5/3, z+1/6; (xi) x+y+1, x+1, z; (xii) x+1, y, z; (xiii) y+1, xy, z; (xiv) y+2/3, x+1/3, z1/6; (xv) x, y1, z; (xvi) x+y1, x, z; (xvii) y+1/3, x+2/3, z+1/6; (xviii) x2/3, xy1/3, z+1/6; (xix) x+y+1/3, y1/3, z+1/6; (xx) x1, y1, z; (xxi) x+y1/3, y+1/3, z1/6; (xxii) x1/3, xy+4/3, z1/6; (xxiii) x1, y, z; (xxiv) x+y1/3, y2/3, z1/6; (xxv) y+4/3, x+2/3, z+1/6.

Experimental details

Crystal data
Chemical formulaCa8.42Na1.16V(PO4)7
Mr1079.88
Crystal system, space groupTrigonal, R3c
Temperature (K)173
a, c (Å)10.3273 (3), 37.098 (2)
V3)3426.5 (2)
Z6
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.18 × 0.16 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
Tmin, Tmax0.615, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
9009, 1818, 1808
Rint0.014
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.048, 1.12
No. of reflections1818
No. of parameters143
No. of restraints2
Δρmax, Δρmin (e Å3)0.35, 0.67
Absolute structureFlack (1983), 875 Friedel pairs
Absolute structure parameter0.0 (3)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), JANA2000 (Petricek & Dusek, 2000), JANA2000.

Selected bond lengths (Å) top
V—O52.0276 (16)Ca3—O32.4772 (13)
V—O22.0416 (16)Ca3—O6ix2.4852 (14)
Ca1—O7i2.3131 (14)Ca3—O12.5084 (8)
Ca1—O3ii2.3569 (16)Ca3—O3viii2.5608 (13)
Ca1—O8ii2.4071 (15)Ca3—O9iv2.6349 (16)
Ca1—O10iii2.4681 (14)Ca3—O72.6411 (15)
Ca1—O42.4694 (13)Ca3—O8viii2.9784 (16)
Ca1—O5iv2.5135 (14)P1—O11.528 (3)
Ca1—O52.5222 (14)P1—O81.5399 (12)
Ca1—O6iv2.7679 (15)P2—O31.5196 (16)
Ca2—O8v2.3215 (14)P2—O71.5224 (15)
Ca2—O4vi2.3735 (13)P2—O101.5323 (14)
Ca2—O92.4008 (15)P2—O2iv1.5674 (16)
Ca2—O6vii2.4515 (13)P3—O91.5220 (15)
Ca2—O2ii2.4582 (13)P3—O61.5233 (14)
Ca2—O22.4830 (13)P3—O41.5399 (14)
Ca2—O10iv2.6080 (14)P3—O51.5838 (16)
Ca2—O7ii2.6540 (15)Na1—O9x2.4741 (16)
Ca3—O10viii2.3932 (14)Na1—O8xi2.830 (3)
Ca3—O4iv2.4217 (13)
Symmetry codes: (i) x+y+2/3, y+1/3, z1/6; (ii) y+1, xy+1, z; (iii) y+2/3, x+4/3, z1/6; (iv) x+y, x+1, z; (v) x+y+1/3, y+2/3, z+1/6; (vi) x+y2/3, y1/3, z+1/6; (vii) x+1/3, xy+5/3, z+1/6; (viii) x+y+1, x+1, z; (ix) x+1, y, z; (x) x, y1, z; (xi) y+1/3, x+2/3, z+1/6.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds