Download citation
Download citation
link to html
Single-crystal X-ray diffraction has shown that lanthanum barium manganese trioxide, La0.815Ba0.185MnO3, is monoclinic (I2/c) below a first-order phase transition at 187.1 (3) K. This result differs from the Pbnm symmetry usually assigned to colossal magnetoresistance oxides, A1−xAxMnO3 with x ≃ 0.2, which adopt a distorted perovskite-type crystal structure. The Mn atom lies on an inversion center, the disordered Li/Ba site is on a twofold axis and one of the two independent O atoms also lies on a twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105017518/bc1071sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105017518/bc1071Isup2.hkl
Contains datablock I

Comment top

La0.815Ba0.185MnO3 is one of the manganese oxides in which colossal magnetoresistance (CMR) was found (Jonker & van Santen, 1950; van Santen & Jonker, 1950). These compounds exhibit various superstructures on the basis of tilting of octahedra (Glazer, 1972). Accordingly, rhombohedral, orthorhombic and monoclinic symmetries have been found in A1 − x A'xMnO3 systems (A = La, Nd, Pr and Sm, and A' = Ca, Ba and Sr) with x 0.2 (Goodenough, 2004).

Dabrowski et al. (1998) have reported the results of X-ray powder diffraction on vacancy-free La1 − xBaxMnO3 ceramic compounds with 0.1 < x < 0.24. A t room temperature, these authors found orthorhombic Pbnm symmetry for x = 0.1 and rhombohedral R-3c symmetry for x = 0.14–0.24. For x = 0.12, the sample contained both phases. Arkhipov et al. (2000) reported the temperature dependence of the lattice parameters of La0.8Ba0.2MnO3, also employing X-ray powder diffraction. According to their work, orthorhombic Pbnm symmetry is found at temperatures of less than 185 K, whereas a phase with R-3c symmetry is stable for temperatures higher than 196 K, with a first-order structural phase transition at Tc = 190.5 K.

Our investigations confirm the rhombohedral phase at high temperatures as well as the occurrence of a first-order phase transition at Tc = 187.1 (3) K, determined on cooling. However, we have found a structure with monoclinic I2/c symmetry for the low-temperature phase.

Both the rhombohedral and the monoclinic phases of La0.815Ba0.185MnO3 are distorted perovskite-type structures composed of corner-linked MnO6 octahedra with La/Ba cations lying in the 12-fold coordinated cavities (Fig.1). The tilting of the octahedra occurs in the same direction for both but with different magnitude, as described by the Mn—O—Mn angle, which is only one [164.7 (1)°] in the rhombohedral phase, whereas it splits into two in the monoclinic phase (Table 1). The tilting pattern is expressed as aaa and abb for rhombohedral R-3c and monoclinic I2/c, respectively, which is significantly different from a+aa expected for the orthorhombic Pbnm (Glazer, 1972). Distortions of the octahedra in the two structures are also different, as described by the Mn—O distances and by the O—Mn—O angles, which are 1.9742 (2) Å and 89.1 (1)°, respectively, in the rhombohedral phase whereas they both split into three different values in the monoclinic one.

A monoclinic I2/c structure was first reported for the compound La0.788Sr0.212Mn0.958O3 (Tamazyan et al., 2002). Compared with the La/Sr analogue, which exhibits almost equal Mn—O—Mn angles, La0.815Ba0.185MnO3 has two different Mn—O—Mn angles (Table 1). The Mn—O bonds have almost equal lengths indicating a very small coherent Jahn-Teller distortion, as was also found for the La/Sr compound. The degree of shear distortion of the MnO6 octahedra is smaller in the La/Ba compound, as shown by the smaller deviations of O—Mn—O bond angles from 90°. The effect of the larger cation radius is evidenced by larger lattice parameters as well as by different A—O (A = La, Ba or La, Sr) distances than in La0.788Sr0.212Mn0.958O3.

We report here the second finding of a monoclinic structure for the class of perovskite-type compounds A1 − xA'xMnO3 with x 0.2. In light of this result, the (x, T) phase diagrams of these systems would need to be revised (Zhou & Goodenough, 2001).

Experimental top

Single crystals of nominal composition La0.8Ba0.2MnO3 were grown by the non-crucible floating zone technique (Mukovskii et al., 2001). Electron microprobe analysis revealed a La:Ba:Mn ratio of 0.815 (10):0.185 (6):0.996 (8). The nominal and real Ba contents differ as a result of a strong evaporation of barium during melting.

Refinement top

A piece of about 0.13 × 0.06 × 0.05 mm was cut from the crystalline material and used for single-crystal X-ray diffraction. We found a crystal structure with space group R-3c at room temperature (T = 296 K), in accordance with previous studies (Arkhipov et al., 2000). At 160 K, the diffraction peaks appeared to be split in ω scans. The centering of 25 reflections showed an eightfold pseudo-cubic supercell 2ac × 2ac × 2ac (the subscript c refers to the primitive cubic perovskite unitcell) with a = 7.830 (3) Å b = 7.802 (3) Å, c = 7.832 (2) Å, α = 90.12 (2)° β = 90.56 (3)° and γ = 90.13 (3)°. The distortions from cubic lattice symmetry indicate that the true lattice is 21/2ac × 21/2ac × 2ac with either orthorhombic Pbnm or Imcm, or monoclinic I2/c symmetries (see Fig. 1 of Tamazyan et al., 2002). The splitting of reflections can be explained by twinning. Because the transition is first-order, every symmetry operator of the m3m point group that is not part of the crystal class (mmm or 2/m) may become a twinning operator (Tamazyan et al., 2002) and any orientation of the low-temperature structure within the hypothetical cubic perovskite lattice may occur. This is confirmed by the orientations of the five twin domains (out of a total of 12) with significant volume fractions (Table 2). Among them, two pairs of domains are related by a fourfold axis. The characteristic n-fold splitting of the pseudocubic (hh0)c and (hhh)c reflections is identified by means of measured ωθ sections and compared with the number of maxima expected for different symmetries (Tamazyan et al., 2002). Fig. 2 shows that the (333)c reflection is split into three peaks in accordance with monoclinic symmetry and at variance with orthorhombic symmetry. Twin matrices applied to the Miller indices (hkl are multiplied from the left) are the following: M1 = (1 0 0|0 1 0|0 0 1), M2 = (1/2 − 1/2 1/2|-1/2 1/2 1/2|-1 − 1 0), M3 = (1/2 1/2 1/2|-1/2 − 1/2 1/2|1 − 1 0), M4 = (−1/2 − 1/2 1/2|-1/2 − 1/2 − 1/2|1 − 1 0), M5 = (0 − 1 0|1 0 0|0 0 1). Structure refinements against all reflections led to R(obs) = 2.70, 3.23 and 3.46% for I2/c, Pbnm and Imcm, respectively. Additional tests were made by computing partial R values with the contributions of superlattice reflections only, which led to R(obs)/R(all) = 8.50/17.7, 11.93/74.1 and 18.27/31.1 for I2/c, Pbnm and Imcm, respectively. Measured intensity data show 45 observed reflections violating the I-centering. However, they are weak and they mainly belong to {110} in the eightfold pseudocubic superlattice. Such reflections can be explained as produced by λ/2 radiation since {220} reflections are very strong. The particularly high partial R(all) value for Pbnm demonstrates that the observed reflections violating the I-centering are not a result of structural effects. Because many studies of orthorhombic and monoclinic manganites report lattice parameters with a > b, we performed additional refinements in this setting and we checked the possibility of β < 90°. However, the splitting of the reflections prevented the unambiguous assignment of correct values to a and b (a > b or a < b). The best fit to the diffraction data was obtained in the monoclinic setting with a > b. This choice is confirmed by the observed maxima positions in the ωθ section in Fig. 2, since the middle position of the strongest peak is only possible by assuming a > b (by assuming a < b, the strongest peak would have occurred on the right side at higher theta). In the difference Fourier map the largest residuals are located 0.4 (s.u.?) and 0.6 (s.u.?) Å, respectively, from the La/Ba atom.

Computing details top

Data collection: DATCOL in CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SETANG LS in CAD-4 Software; data reduction: HELENA (Spek, 1997) and HABITUS (Herrendorf & Bärnighausen, 1997); program(s) used to solve structure: program (reference?); program(s) used to refine structure: Jana2000 (Petricek et al., 2000); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: Jana2000 (Petricek et al., 2000).

Figures top
[Figure 1] Fig. 1. A perspective view of the monoclinic crystal structure of La0.815Ba0.185MnO3.
[Figure 2] Fig. 2. The ωθ profile of the (333)c reflection. (a) A three-dimensional plot showing both the Kα1 and Kα2 peaks. Miller indices with subscripts referring to the five twin domains given in Table 2 are indicated. (b) A contour plot of the Kα1 peak.
lanthanum barium manganese trioxide top
Crystal data top
Ba0.185La0.815MnO3F(000) = 423.2
Mr = 241.6Dx = 6.706 Mg m3
Monoclinic, I2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -I 2ycCell parameters from 25 reflections
a = 5.564 (2) Åθ = 18.4–29.8°
b = 5.510 (2) ŵ = 22.37 mm1
c = 7.802 (3) ÅT = 160 K
β = 90.18 (3)°Rectangular prism, translucent dark brown
V = 239.19 (14) Å30.13 × 0.06 × 0.05 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
1184 reflections with I > 3σ(I)
Radiation source: Rotating AnodeRint = 0.000
Graphite monochromatorθmax = 39.9°, θmin = 4.5°
ω scansh = 99
Absorption correction: ψ scan
(HABITUS; Herrendorf & Bärnighausen, 1997)
k = 1010
Tmin = 0.193, Tmax = 0.327l = 914
1567 measured reflections3 standard reflections every 60 min
1567 independent reflections intensity decay: none
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.0001
wR(F2) = 0.033Δρmax = 3.02 e Å3
S = 1.68Δρmin = 2.99 e Å3
1567 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
31 parametersExtinction coefficient: 0.0028 (1)
Crystal data top
Ba0.185La0.815MnO3V = 239.19 (14) Å3
Mr = 241.6Z = 4
Monoclinic, I2/cMo Kα radiation
a = 5.564 (2) ŵ = 22.37 mm1
b = 5.510 (2) ÅT = 160 K
c = 7.802 (3) Å0.13 × 0.06 × 0.05 mm
β = 90.18 (3)°
Data collection top
Nonius MACH3
diffractometer
1184 reflections with I > 3σ(I)
Absorption correction: ψ scan
(HABITUS; Herrendorf & Bärnighausen, 1997)
Rint = 0.000
Tmin = 0.193, Tmax = 0.3273 standard reflections every 60 min
1567 measured reflections intensity decay: none
1567 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02731 parameters
wR(F2) = 0.033Δρmax = 3.02 e Å3
S = 1.68Δρmin = 2.99 e Å3
1567 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0000.00250 (15)
La00.49717 (5)0.750.00399 (7)0.815
Ba00.49720.750.00399 (7)0.185
O100.0569 (7)0.250.0107 (10)
O20.2513 (7)0.2495 (4)0.0298 (4)0.0117 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0018 (3)0.0038 (2)0.0020 (3)0.0002 (2)0.0013 (2)0.00013 (19)
La0.00413 (12)0.00502 (12)0.00281 (13)00.00096 (9)0
Ba0.00413 (12)0.00502 (12)0.00281 (13)00.00096 (9)0
O10.012 (2)0.0134 (15)0.0064 (16)00.0003 (13)0
O20.0131 (15)0.0111 (12)0.0110 (12)0.0043 (9)0.0009 (11)0.0004 (9)
Geometric parameters (Å, º) top
Mn—O11.9755 (7)La—O2xi2.932 (3)
Mn—O1i1.9755 (7)La—O2xii2.947 (3)
Mn—O21.975 (3)La—O2xiii2.594 (3)
Mn—O2i1.975 (3)O1—O22.805 (4)
Mn—O2ii1.968 (3)O1—O2xiv2.784 (4)
Mn—O2iii1.968 (3)O1—O2i2.782 (4)
La—O1iv2.8014 (5)O1—O2ix2.793 (4)
La—O1v2.8014 (5)O1—O2x2.805 (4)
La—O1vi3.053 (4)O1—O2ii2.784 (4)
La—O1vii2.457 (4)O1—O2xv2.782 (4)
La—O2viii2.599 (3)O1—O2iii2.793 (4)
La—O2iv2.932 (3)O2—O2ii2.794 (3)
La—O2vii2.947 (3)O2—O2xvi2.794 (3)
La—O2ix2.594 (3)O2—O2iii2.782 (6)
La—O2x2.599 (3)O2—O2xvii2.782 (6)
O1—Mn—O1i180O2ix—La—O2viii82.86 (10)
O2—Mn—O2i180O2ix—La—O2iv90.40 (9)
O2ii—Mn—O2iii180O2ix—La—O2vii173.68 (9)
O1—Mn—O290.46 (12)O2ix—La—O2x64.79 (11)
O1—Mn—O2i89.54 (12)O2ix—La—O2xi119.35 (11)
O1—Mn—O2ii89.81 (12)O2ix—La—O2xii60.15 (8)
O1—Mn—O2iii90.19 (12)O2ix—La—O2xiii116.80 (9)
O1i—Mn—O289.54 (12)O2x—La—O2viii116.65 (8)
O1i—Mn—O2i90.46 (12)O2x—La—O2iv60.33 (8)
O1i—Mn—O2ii90.19 (12)O2x—La—O2vii118.87 (11)
O1i—Mn—O2iii89.81 (12)O2x—La—O2ix64.79 (11)
O2—Mn—O2ii90.25 (14)O2x—La—O2xi173.23 (9)
O2—Mn—O2iii89.75 (14)O2x—La—O2xii90.83 (9)
O2i—Mn—O2ii89.75 (14)O2x—La—O2xiii82.86 (10)
O2i—Mn—O2iii90.25 (14)O2xi—La—O2viii60.33 (8)
O1iv—La—O1v166.51 (12)O2xi—La—O2iv123.37 (7)
O1iv—La—O1vi96.75 (8)O2xi—La—O2vii56.48 (10)
O1iv—La—O1vii83.25 (8)O2xi—La—O2ix119.35 (11)
O1iv—La—O2viii126.44 (9)O2xi—La—O2x173.23 (9)
O1iv—La—O2iv58.52 (8)O2xi—La—O2xii95.91 (9)
O1iv—La—O2vii58.06 (8)O2xi—La—O2xiii90.40 (9)
O1iv—La—O2ix126.40 (9)O2xii—La—O2viii118.87 (11)
O1iv—La—O2x61.93 (10)O2xii—La—O2iv56.48 (10)
O1iv—La—O2xi114.25 (9)O2xii—La—O2vii123.47 (7)
O1iv—La—O2xii114.69 (9)O2xii—La—O2ix60.15 (8)
O1iv—La—O2xiii61.95 (10)O2xii—La—O2x90.83 (9)
O1v—La—O1iv166.51 (12)O2xii—La—O2xi95.91 (9)
O1v—La—O1vi96.75 (8)O2xii—La—O2xiii173.68 (9)
O1v—La—O1vii83.25 (8)O2xiii—La—O2viii64.79 (11)
O1v—La—O2viii61.93 (10)O2xiii—La—O2iv119.35 (11)
O1v—La—O2iv114.25 (9)O2xiii—La—O2vii60.15 (8)
O1v—La—O2vii114.69 (9)O2xiii—La—O2ix116.80 (9)
O1v—La—O2ix61.95 (10)O2xiii—La—O2x82.86 (10)
O1v—La—O2x126.44 (9)O2xiii—La—O2xi90.40 (9)
O1v—La—O2xi58.52 (8)O2xiii—La—O2xii173.68 (9)
O1v—La—O2xii58.06 (8)Mn—O1—Mnx161.7 (2)
O1v—La—O2xiii126.40 (9)Mn—O1—Laxviii89.11 (3)
O1vi—La—O1iv96.75 (8)Mn—O1—Laxix88.76 (3)
O1vi—La—O1v96.75 (8)Mn—O1—Lavi80.87 (12)
O1vi—La—O1vii180Mn—O1—Lavii99.13 (12)
O1vi—La—O2viii58.33 (6)Mnx—O1—Mn161.7 (2)
O1vi—La—O2iv118.31 (5)Mnx—O1—Laxviii88.76 (3)
O1vi—La—O2vii118.26 (5)Mnx—O1—Laxix89.11 (3)
O1vi—La—O2ix58.40 (6)Mnx—O1—Lavi80.87 (12)
O1vi—La—O2x58.33 (6)Mnx—O1—Lavii99.13 (12)
O1vi—La—O2xi118.31 (5)Laxviii—O1—Laxix166.51 (17)
O1vi—La—O2xii118.26 (5)Laxviii—O1—Lavi83.25 (8)
O1vi—La—O2xiii58.40 (6)Laxviii—O1—Lavii96.75 (8)
O1vii—La—O1iv83.25 (8)Laxix—O1—Laxviii166.51 (17)
O1vii—La—O1v83.25 (8)Laxix—O1—Lavi83.25 (8)
O1vii—La—O1vi180Laxix—O1—Lavii96.75 (8)
O1vii—La—O2viii121.67 (6)Lavi—O1—Laxviii83.25 (8)
O1vii—La—O2iv61.69 (5)Lavi—O1—Laxix83.25 (8)
O1vii—La—O2vii61.74 (5)Lavi—O1—Lavii180
O1vii—La—O2ix121.60 (6)Lavii—O1—Laxviii96.75 (8)
O1vii—La—O2x121.67 (6)Lavii—O1—Laxix96.75 (8)
O1vii—La—O2xi61.69 (5)Lavii—O1—Lavi180
O1vii—La—O2xii61.74 (5)Mn—O2—Mnxvi166.44 (17)
O1vii—La—O2xiii121.60 (6)Mn—O2—Laxx93.66 (14)
O2viii—La—O2iv173.23 (9)Mn—O2—Laxix85.11 (9)
O2viii—La—O2vii90.83 (9)Mn—O2—Lavii84.54 (12)
O2viii—La—O2ix82.86 (10)Mn—O2—Laix95.31 (10)
O2viii—La—O2x116.65 (8)Mnxvi—O2—Mn166.44 (17)
O2viii—La—O2xi60.33 (8)Mnxvi—O2—Laxx94.97 (10)
O2viii—La—O2xii118.87 (11)Mnxvi—O2—Laxix85.09 (12)
O2viii—La—O2xiii64.79 (11)Mnxvi—O2—Lavii85.15 (9)
O2iv—La—O2viii173.23 (9)Mnxvi—O2—Laix93.98 (14)
O2iv—La—O2vii95.91 (9)Laxx—O2—Laxix173.23 (13)
O2iv—La—O2ix90.40 (9)Laxx—O2—Lavii89.17 (10)
O2iv—La—O2x60.33 (8)Laxx—O2—Laix97.14 (10)
O2iv—La—O2xi123.37 (7)Laxix—O2—Laxx173.23 (13)
O2iv—La—O2xii56.48 (10)Laxix—O2—Lavii84.09 (8)
O2iv—La—O2xiii119.35 (11)Laxix—O2—Laix89.60 (10)
O2vii—La—O2viii90.83 (9)Lavii—O2—Laxx89.17 (10)
O2vii—La—O2iv95.91 (9)Lavii—O2—Laxix84.09 (8)
O2vii—La—O2ix173.68 (9)Lavii—O2—Laix173.68 (13)
O2vii—La—O2x118.87 (11)Laix—O2—Laxx97.14 (10)
O2vii—La—O2xi56.48 (10)Laix—O2—Laxix89.60 (10)
O2vii—La—O2xii123.47 (7)Laix—O2—Lavii173.68 (13)
O2vii—La—O2xiii60.15 (8)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x, y, z+1; (ix) x+1/2, y+1/2, z+1/2; (x) x, y, z+1/2; (xi) x+1/2, y+1/2, z+1; (xii) x, y+1, z+1/2; (xiii) x1/2, y+1/2, z+1; (xiv) x1/2, y1/2, z+1/2; (xv) x, y, z+1/2; (xvi) x+1/2, y+1/2, z; (xvii) x+1/2, y+1/2, z; (xviii) x1/2, y1/2, z1/2; (xix) x+1/2, y1/2, z1/2; (xx) x, y, z1.

Experimental details

Crystal data
Chemical formulaBa0.185La0.815MnO3
Mr241.6
Crystal system, space groupMonoclinic, I2/c
Temperature (K)160
a, b, c (Å)5.564 (2), 5.510 (2), 7.802 (3)
β (°) 90.18 (3)
V3)239.19 (14)
Z4
Radiation typeMo Kα
µ (mm1)22.37
Crystal size (mm)0.13 × 0.06 × 0.05
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ scan
(HABITUS; Herrendorf & Bärnighausen, 1997)
Tmin, Tmax0.193, 0.327
No. of measured, independent and
observed [I > 3σ(I)] reflections
1567, 1567, 1184
Rint0.000
(sin θ/λ)max1)0.903
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.033, 1.68
No. of reflections1567
No. of parameters31
No. of restraints?
Δρmax, Δρmin (e Å3)3.02, 2.99

Computer programs: DATCOL in CAD-4 Software (Enraf–Nonius, 1989), SETANG LS in CAD-4 Software, HELENA (Spek, 1997) and HABITUS (Herrendorf & Bärnighausen, 1997), program (reference?), Jana2000 (Petricek et al., 2000), DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Mn—O11.9755 (7)La—O1iv2.457 (4)
Mn—O21.975 (3)La—O2v2.599 (3)
Mn—O2i1.968 (3)La—O2ii2.932 (3)
La—O1ii2.8014 (5)La—O2iv2.947 (3)
La—O1iii3.053 (4)La—O2vi2.594 (3)
O1—Mn—O2vii89.54 (12)Mn—O1—Mnix161.7 (2)
O1—Mn—O2i89.81 (12)Mn—O2—Mnx166.44 (17)
O2—Mn—O2viii89.75 (14)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z; (viii) x1/2, y+1/2, z; (ix) x, y, z+1/2; (x) x+1/2, y+1/2, z.
Twin volume fractions as refined in monoclinic I2/c for La0.815Ba0.185MnO3 at T = 160 K. top
Twin DomainV1V2V3V4V5
Volume Fraction0.61 (2)0.29 (1)0.05 (1)0.04 (1)0.02 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds